Effect of a retinoic acid analogue on BMP-driven pluripotent stem cell chondrogenesis | Scientific Reports – Nature.com


James, S. L. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 19902017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159), 17891858 (2018).

Article Google Scholar

Zhang, W., Ouyang, H., Dass, C. R. & Xu, J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 4(October 2015), 15040 (2016).

Article CAS PubMed PubMed Central Google Scholar

Yamanaka, S. Pluripotent stem cell-based cell therapyPromise and challenges. Cell Stem Cell 27(4), 523531 (2020).

Article CAS PubMed Google Scholar

Jevotovsky, D. S., Alfonso, A. R., Einhorn, T. A. & Chiu, E. S. Osteoarthritis and stem cell therapy in humans: A systematic review. Osteoarthr. Cartil. 26(6), 711729 (2018).

Article CAS Google Scholar

Craft, A. M. et al. Generation of articular chondrocytes from human pluripotent stem cells. Nat. Biotechnol. 33(6), 638645 (2015).

Article CAS PubMed Google Scholar

Smith, C. A. et al. Directed differentiation of hPSCs through a simplified lateral plate mesoderm protocol for generation of articular cartilage progenitors. PLoS One 18(1), e0280024 (2023).

Article CAS PubMed PubMed Central Google Scholar

Loh, K. M. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166(2), 451467 (2016).

Article CAS PubMed PubMed Central Google Scholar

Chijimatsu, R. & Saito, T. Mechanisms of synovial joint and articular cartilage development. Cell. Mol. Life Sci. 76(20), 39393952 (2019).

Article CAS PubMed Google Scholar

Humphreys, P. A. et al. Developmental principles informing human pluripotent stem cell differentiation to cartilage and bone. Semin. Cell Dev. Biol. 127(July 2021), 1736 (2022).

Article CAS PubMed Google Scholar

Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance canonical Wnt/-catenin, activin/Nodal and BMP signaling. Development 135(17), 29692979 (2008).

Article CAS PubMed Google Scholar

Row, R. H. et al. BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. Elife 7, 127 (2018).

Article Google Scholar

Pignatti, E., Zeller, R. & Zuniga, A. To BMP or not to BMP during vertebrate limb bud development. Semin. Cell Dev. Biol. 32, 119127 (2014).

Article CAS PubMed Google Scholar

Ray, A., Singh, P. N. P., Sohaskey, M. L., Harland, R. M. & Bandyopadhyay, A. Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Development 142(6), 11691179 (2015).

Article CAS PubMed PubMed Central Google Scholar

Kobayashi, T., Lyons, K. M., McMahon, A. P. & Kronenberg, H. M. BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc. Natl. Acad. Sci. U. S. A. 102(50), 1802318027 (2005).

Article CAS PubMed PubMed Central Google Scholar

Yoon, B. S. & Lyons, K. M. Multiple functions of BMPs in chondrogenesis. J. Cell. Biochem. 93(1), 93103 (2004).

Article CAS PubMed Google Scholar

Oldershaw, R. A. et al. Directed differentiation of human embryonic stem cells toward chondrocytes. Nat. Biotechnol. 28(11), 11871194 (2010).

Article CAS PubMed Google Scholar

Wang, T. et al. Enhanced chondrogenesis from human embryonic stem cells. Stem Cell Res. 39(May), 101497 (2019).

Article CAS PubMed PubMed Central Google Scholar

Diederichs, S., Klampfleuthner, F. A. M., Moradi, B. & Richter, W. Chondral differentiation of induced pluripotent stem cells without progression into the endochondral pathway. Front. Cell Dev. Biol. 7(November), 110 (2019).

Google Scholar

Kawata, M. et al. Simple and robust differentiation of human pluripotent stem cells toward chondrocytes by two small-molecule compounds. Stem Cell Rep. 13(3), 530544 (2019).

Article CAS Google Scholar

Weston, A. D., Chandraratna, R. A. S., Torchia, J. & Underhill, T. M. Requirement for RAR-mediated gene repression in skeletal progenitor differentiation. J. Cell Biol. 158(1), 3951 (2002).

Article CAS PubMed PubMed Central Google Scholar

Pacifici, M., Cossu, G., Molinaro, M. & Tato, F. Vitamin A inhibits chondrogenesis but not myogenesis. Exp. Cell Res. 129(2), 469474 (1980).

Article CAS PubMed Google Scholar

Hoffman, L. M. et al. BMP action in skeletogenesis involves attenuation of retinoid signaling. J. Cell Biol. 174(1), 101113 (2006).

Article CAS PubMed PubMed Central Google Scholar

Langston, A. W. & Gudas, L. J. Retinoic acid and homeobox gene regulation. Curr. Opin. Genet. Dev. 4(4), 550555 (1994).

Article CAS PubMed Google Scholar

Boncinelli, E., Simeone, A., Acampora, D. & Mavilio, F. HOX gene activation by retinoic acid. Trends Genet. 7(10), 329334 (1991).

Article CAS PubMed Google Scholar

Bel-Vialar, S., Itasaki, N. & Krumlauf, R. Initiating Hox gene expression: In the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129(22), 51035115 (2002).

Article CAS PubMed Google Scholar

Shen, P. et al. Rapid induction and long-term self-renewal of neural crest-derived ectodermal chondrogenic cells from hPSCs. npj Regen. Med. 7(1), 115 (2022).

Article CAS Google Scholar

Xu, S. C., Harris, M. A., Rubenstein, J. L. R., Mundy, G. R. & Harris, S. E. Bone morphogenetic protein-2 (BMP-2) signaling to the Col21 gene in chondroblasts requires the homeobox gene Dlx-2. DNA Cell Biol. 20(6), 359365 (2001).

Article CAS PubMed Google Scholar

Lafont, J. E., Poujade, F. A., Pasdeloup, M., Neyret, P. & Mallein-Gerin, F. Hypoxia potentiates the BMP-2 driven COL2A1 stimulation in human articular chondrocytes via p38 MAPK. Osteoarthr. Cartil. 24(5), 856867 (2016).

Article CAS Google Scholar

Fernndez-Lloris, R. et al. Induction of the Sry-related factor SOX6 contributes to bone morphogenetic protein-2- induced chondroblastic differentiation of C3H10T1/2 cells. Mol. Endocrinol. 17(7), 13321343 (2003).

Article PubMed Google Scholar

Kim, H. S., Neugebauer, J., Mcknite, A., Tilak, A. & Christian, J. L. BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian embryogenesis. 122 (2019).

James, R. G. & Schultheiss, T. M. Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev. Biol. 288(1), 113125 (2005).

Article CAS PubMed Google Scholar

Huang, D., Li, J., Hu, F., Xia, C., Weng, Q., Wang, T. et al. Lateral plate mesoderm cell-based organoid system for NK cell regeneration from human pluripotent stem cells. Cell Discov. 8(1) (2022).

Xi, H. et al. In vivo human somitogenesis guides somite development from hPSCs. Cell Rep. 18(6), 15731585 (2017).

Article CAS PubMed PubMed Central Google Scholar

Wu, C. L. et al. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat. Commun. 12(1), 362 (2021).

Article CAS PubMed PubMed Central Google Scholar

Umeda, K. et al. Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci. Rep. 2(455), 111 (2012).

Google Scholar

Araoka, T., Mae, S. I., Kurose, Y., Uesugi, M., Ohta, A., Yamanaka, S. et al. Efficient and rapid induction of human iPSCs/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods. PLoS One, 9(1), epub (114) (2014).

Zhang, P. et al. Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood 111(4), 19331941 (2008).

Article CAS PubMed Google Scholar

Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. M. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9(17), 21052116 (1995).

Article CAS PubMed Google Scholar

Chalamalasetty, R. B. et al. Mesogenin 1 is a master regulator of paraxial presomitic mesoderm differentiation. Development 141(22), 42854297 (2014).

Article CAS PubMed PubMed Central Google Scholar

Chapman, D. L., Agulnik, I., Hancock, S., Silver, L. M. & Papaioannou, V. E. Tbx6, a mouse T-box gene implicated in paraxial mesoderm formation at gastrulation. Dev. Biol. 180(2), 534542 (1996).

Article CAS PubMed Google Scholar

Kashyap, V. & Gudas, L. J. Epigenetic regulatory mechanisms distinguish retinoic acid-mediated transcriptional responses in stem cells and fibroblasts. J. Biol. Chem. 285(19), 1453414548 (2010).

Article CAS PubMed PubMed Central Google Scholar

Cheng, A. et al. Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Transl. Med. 3(11), 12871294 (2014).

Article CAS PubMed PubMed Central Google Scholar

Wang, L. et al. Activin/Smad2-induced histone H3 Lys-27 trimethylation (H3K27me3) reduction is crucial to initiate mesendoderm differentiation of human embryonic stem cells. J. Biol. Chem. 292(4), 13391350 (2017).

Article CAS PubMed Google Scholar

Fowler, D. A. & Larsson, H. C. E. The tissues and regulatory pattern of limb chondrogenesis. Dev. Biol. 463(2), 124134 (2020).

Article CAS PubMed Google Scholar

Waxman, J. S., Keegan, B. R., Roberts, R. W., Poss, K. D. & Yelon, D. Hoxb5b acts downstream of retinoic acid signaling in the forelimb field to restrict heart field potential in zebrafish. Dev. Cell 15(6), 923934 (2008).

Article CAS PubMed PubMed Central Google Scholar

Feneck, E. & Logan, M. The role of retinoic acid in establishing the early limb bud. Biomolecules 10(2) (2020).

Cunningham, T. J. & Duester, G. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat. Rev. Mol. Cell Biol. 16(2), 110123 (2015).

Article CAS PubMed PubMed Central Google Scholar

Nishimoto, S., Wilde, S. M., Wood, S. & Logan, M. P. O. RA acts in a coherent feed-forward mechanism with Tbx5 to control limb bud induction and initiation. Cell Rep. 12(5), 879891 (2015).

Article CAS PubMed PubMed Central Google Scholar

Jepsen, K. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102(6), 753763 (2000).

Article CAS PubMed Google Scholar

Simeone, A., Acampora, D., Arcioni, L., Andrews, P. W., Boncinelli, E. & Mavilio, F. Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nat. 1990 3466286, 346(6286), 763766 (1990).

Kmita, M. & Duboule, D. Organizing axes in time and space; 25 years of colinear tinkering. Science (80-.) 301(5631), 331333 (2003).

Article CAS Google Scholar

Papalopulu, N., Lovel-badage, R. & Krumlauf, R. The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays a collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos. Nucleic Acids Res. 19(20), 5497 (1991).

Article CAS PubMed PubMed Central Google Scholar

De, K. B. et al. Analysis of dynamic changes in retinoid-induced transcription and epigenetic profiles of murine Hox clusters in ES cells. Genome Res. 25(8), 12291243 (2015).

Visit link:
Effect of a retinoic acid analogue on BMP-driven pluripotent stem cell chondrogenesis | Scientific Reports - Nature.com

Related Posts