Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications | Signal Transduction and … – Nature.com


Rowe, R. G. & Daley, G. Q. Induced pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Genet. 20, 377388 (2019).

Article CAS PubMed PubMed Central Google Scholar

Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115130 (2017).

Article CAS PubMed Google Scholar

Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861872 (2007).

Article CAS PubMed Google Scholar

Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663676 (2006).

Article CAS PubMed Google Scholar

Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 19171920 (2007).

Article CAS PubMed Google Scholar

Takahashi, K. & Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 17, 183193 (2016).

Article CAS PubMed Google Scholar

Breschi, A., Gingeras, T. R. & Guigo, R. Comparative transcriptomics in human and mouse. Nat. Rev. Genet. 18, 425440 (2017).

Article CAS PubMed PubMed Central Google Scholar

Gharib, W. H. & Robinson-Rechavi, M. When orthologs diverge between human and mouse. Brief. Bioinform. 12, 436441 (2011).

Article PubMed PubMed Central Google Scholar

Lynch, V. J. Use with caution: developmental systems divergence and potential pitfalls of animal models. Yale J. Biol. Med. 82, 5366 (2009).

CAS PubMed PubMed Central Google Scholar

Takebe, T. & Wells, J. M. Organoids by design. Science 364, 956959 (2019).

Article CAS PubMed PubMed Central Google Scholar

Yamanaka, S. Pluripotent Stem Cell-based Cell Therapy- Promise And Challenges. Cell Stem Cell 27, 523531 (2020).

Article CAS PubMed Google Scholar

Gurdon, J. B. The generation of diversity and pattern in animal development. Cell 68, 185199 (1992).

Article CAS PubMed Google Scholar

Kiefer, J. C. Epigenetics in development. Dev. Dyn. 236, 11441156 (2007).

Article CAS PubMed Google Scholar

Tompkins, J. D. Discovering DNA methylation, the history and future of the writing on DNA. J. Hist. Biol. 55, 865887 (2022).

PubMed PubMed Central Google Scholar

Roe, S. A. Matter, life, and generation: eighteen-century embryology and the Haller-Wolff Debate, (Cambridge University Press, 1981).

Kilgour, F. G. William Harvey and his contributions. Circulation 23, 286296 (1961).

Article CAS PubMed Google Scholar

Aulie, R. P. Caspar Friedrich Wolff and his Theoria generationis, 1759. J. Hist. Med. Allied Sci. 16, 124144 (1961).

Article CAS PubMed Google Scholar

Weismann, A. Das Keimplasma; eine Theorie der Vererbung, (Jena, Fischer, 1892).

Waddington, C. H. The Strategy of the Genes; A Discussion of Some Aspects of Theoretical Biology, (Cambridge: Cambridge University Press, 1957).

Nanney, D. L. Epigenetic control systems. Proc. Natl. Acad. Sci. USA 44, 712717 (1958).

Article CAS PubMed PubMed Central Google Scholar

Gurdon, J. B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10, 622640 (1962).

CAS PubMed Google Scholar

Gurdon, J. B. The transplantation of nuclei between two species of Xenopus. Dev. Biol. 5, 6883 (1962).

Article CAS PubMed Google Scholar

Gurdon, J. B. Adult frogs derived from the nuclei of single somatic cells. Dev. Biol. 4, 256273 (1962).

Article CAS PubMed Google Scholar

Gurdon, J. B. Multiple genetically identical frogs. J. Hered. 53, 59 (1962).

Article CAS PubMed Google Scholar

Gurdon, J. B., Elsdale, T. R. & Fischberg, M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 6465 (1958).

Article CAS PubMed Google Scholar

Jeltsch, A. & Jurkowska, R. Z. New concepts in DNA methylation. Trends Biochem. Sci. 39, 310318 (2014).

Article CAS PubMed Google Scholar

Riggs, A. D. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14, 925 (1975).

Article CAS PubMed Google Scholar

Robertson, K. D. & Wolffe, A. P. DNA methylation in health and disease. Nat. Rev. Genet. 1, 1119 (2000).

Article CAS PubMed Google Scholar

Schubeler, D. Function and information content of DNA methylation. Nature 517, 321326 (2015).

Article CAS PubMed Google Scholar

Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154156 (1981).

Article CAS PubMed Google Scholar

Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 76347638 (1981).

Article CAS PubMed PubMed Central Google Scholar

Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 11451147 (1998).

Article CAS PubMed Google Scholar

Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 15531558 (2001).

Article CAS PubMed Google Scholar

Cowan, C. A., Atienza, J., Melton, D. A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 13691373 (2005).

Article CAS PubMed Google Scholar

Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 9871000 (1987).

Article CAS PubMed Google Scholar

Halder, G., Callaerts, P. & Gehring, W. J. Induction of ectopic eyes by targeted expression of the eyeless gene in drosophila. Science 267, 17881792 (1995).

Article CAS PubMed Google Scholar

Kulessa, H., Frampton, J. & Graf, T. Gata-1 reprograms Avian Myelomonocytic cell-lines into Eosinophils, Thromboblasts, and Erythroblasts. Gene Dev. 9, 12501262 (1995).

Article CAS PubMed Google Scholar

Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663676 (2004).

Article CAS PubMed Google Scholar

Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318324 (2007).

Article CAS PubMed Google Scholar

Huangfu, D. W. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26, 795797 (2008).

Article CAS PubMed PubMed Central Google Scholar

Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol. 26, 12691275 (2008).

Article CAS PubMed Google Scholar

Hou, P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651654 (2013).

Article CAS PubMed Google Scholar

Zhu, J. et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152, 642654 (2013).

Article CAS PubMed PubMed Central Google Scholar

Apostolou, E. & Hochedlinger, K. Chromatin dynamics during cellular reprogramming. Nature 502, 462471 (2013).

Article CAS PubMed PubMed Central Google Scholar

Apostolou, E. & Stadtfeld, M. Cellular trajectories and molecular mechanisms of iPSC reprogramming. Curr. Opin. Genet. Dev. 52, 7785 (2018).

Article CAS PubMed PubMed Central Google Scholar

Cacchiarelli, D. et al. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell 162, 412424 (2015).

Article CAS PubMed PubMed Central Google Scholar

Nefzger, C. M. et al. Cell type of origin dictates the route to pluripotency. Cell Rep. 21, 26492660 (2017).

Article CAS PubMed Google Scholar

Borkent, M. et al. A serial shRNA screen for roadblocks to reprogramming identifies the protein modifier SUMO2. Stem Cell Rep. 6, 704716 (2016).

Article CAS Google Scholar

Buckley, S. M. et al. Regulation of Pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell 11, 783798 (2012).

Article CAS PubMed PubMed Central Google Scholar

Qin, H. et al. Systematic identification of barriers to human iPSC generation. Cell 158, 449461 (2014).

Article CAS PubMed PubMed Central Google Scholar

Simic, M. S. et al. Transient activation of the UPR(ER) is an essential step in the acquisition of pluripotency during reprogramming. Sci. Adv. 5, eaaw0025 (2019).

Article CAS PubMed PubMed Central Google Scholar

Wu, Y. et al. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Sci. Adv. 5, eaax7525 (2019).

Go here to see the original:
Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications | Signal Transduction and ... - Nature.com

Related Posts