Induced Pluripotent Stem Cells (iPSCs)-Roles in Regenerative Therapies …


Title & authors Abstract Conflict of interest statement Figures Similar articles Cited by References Publication types MeSH terms Related information Grant support LinkOut - more resources

Review

Affiliations Expand

Item in Clipboard

Review

Mourad A M Aboul-Soudet al. Cells. 2021.

Display options

Format Abstract PubMed PMID

Item in Clipboard

Display options

Format Abstract PubMed PMID

The discovery of induced pluripotent stem cells (iPSCs) has made an invaluable contribution to the field of regenerative medicine, paving way for identifying the true potential of human embryonic stem cells (ESCs). Since the controversy around ethicality of ESCs continue to be debated, iPSCs have been used to circumvent the process around destruction of the human embryo. The use of iPSCs have transformed biological research, wherein increasing number of studies are documenting nuclear reprogramming strategies to make them beneficial models for drug screening as well as disease modelling. The flexibility around the use of iPSCs include compatibility to non-invasive harvesting, and ability to source from patients with rare diseases. iPSCs have been widely used in cardiac disease modelling, studying inherited arrhythmias, neural disorders including Alzheimer's disease, liver disease, and spinal cord injury. Extensive research around identifying factors that are involved in maintaining the identity of ESCs during induction of pluripotency in somatic cells is undertaken. The focus of the current review is to detail all the clinical translation research around iPSCs and the strength of its ever-growing potential in the clinical space.

Keywords: disease; drug screening; embryo; induced pluripotent stem cells; modelling.

The authors declare that they have no conflict of interest.

Figure 1

Showing the process of progression

Figure 1

Showing the process of progression and generating iPSC cells. Detailed description of creating

Showing the process of progression and generating iPSC cells. Detailed description of creating iPSCs with reprogramming factors and differentiating them into a variety of cell types.

Figure 2

Schematic representation on derivation and

Figure 2

Schematic representation on derivation and assay for human iPSCs. Detailed schematic representation of

Schematic representation on derivation and assay for human iPSCs. Detailed schematic representation of derivation of iPSC with the various assays to evaluate the developmental efficiency.

Figure 3

Process of liver development and

Figure 3

Process of liver development and hepatic differentiation from hiPSCs. The process of isolated

Process of liver development and hepatic differentiation from hiPSCs. The process of isolated cells from patients can be cultured and reprogrammed into patient-specific hiPSCs and quick comparison from natural liver development.

Skalova S, Svadlakova T, Shaikh Qureshi WM, Dev K, Mokry J. Skalova S, et al. Int J Mol Sci. 2015 Feb 13;16(2):4043-67. doi: 10.3390/ijms16024043. Int J Mol Sci. 2015. PMID: 25689424 Free PMC article. Review.

Ohnuki M, Takahashi K. Ohnuki M, et al. Philos Trans R Soc Lond B Biol Sci. 2015 Oct 19;370(1680):20140367. doi: 10.1098/rstb.2014.0367. Philos Trans R Soc Lond B Biol Sci. 2015. PMID: 26416678 Free PMC article. Review.

Valdimarsdttir G, Richter A. Valdimarsdttir G, et al. Laeknabladid. 2015 Dec;101(12):581-6. doi: 10.17992/lbl.2015.12.56. Laeknabladid. 2015. PMID: 26656400 Review. Icelandic.

Parrotta EI, Scalise S, Scaramuzzino L, Cuda G. Parrotta EI, et al. Int J Mol Sci. 2019 Nov 16;20(22):5760. doi: 10.3390/ijms20225760. Int J Mol Sci. 2019. PMID: 31744081 Free PMC article. Review.

Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K. Okano H, et al. Circ Res. 2013 Feb 1;112(3):523-33. doi: 10.1161/CIRCRESAHA.111.256149. Circ Res. 2013. PMID: 23371901 Review.

Ng WC, Lokanathan Y, Baki MM, Fauzi MB, Zainuddin AA, Azman M. Ng WC, et al. Biomedicines. 2022 Nov 30;10(12):3082. doi: 10.3390/biomedicines10123082. Biomedicines. 2022. PMID: 36551838 Free PMC article. Review.

Shakir S, Hackett TL, Mostao-Guidolin LB. Shakir S, et al. Front Bioeng Biotechnol. 2022 Oct 28;10:1011800. doi: 10.3389/fbioe.2022.1011800. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36394026 Free PMC article. Review.

Alberti G, Russo E, Corrao S, Anzalone R, Kruzliak P, Miceli V, Conaldi PG, Di Gaudio F, La Rocca G. Alberti G, et al. Biomedicines. 2022 Nov 5;10(11):2822. doi: 10.3390/biomedicines10112822. Biomedicines. 2022. PMID: 36359342 Free PMC article. Review.

Linkova DD, Rubtsova YP, Egorikhina MN. Linkova DD, et al. Cells. 2022 Aug 29;11(17):2691. doi: 10.3390/cells11172691. Cells. 2022. PMID: 36078098 Free PMC article. Review.

Li XW, Lu YY, Zhang SY, Sai NN, Fan YY, Cheng Y, Liu QS. Li XW, et al. Front Pharmacol. 2022 Jun 22;13:926123. doi: 10.3389/fphar.2022.926123. eCollection 2022. Front Pharmacol. 2022. PMID: 35814256 Free PMC article.

Show all 116 references

Cite

Format: AMA APA MLA NLM

Read more:
Induced Pluripotent Stem Cells (iPSCs)-Roles in Regenerative Therapies ...

Related Posts