By Matthew Pillar, Editor, BioProcess Online
Differentiated Focus On Harnessing The Innate Immune System
Cytovia Therapeutics was launched in 2019 on the premise that allogeneic, innate immune cells held the best promise for next-generation cell therapy development in oncology. The co-founders of Cytovia, CEO Dr. Daniel Teper and Board Director Dr. Laurent Audoly, built the company on two complementary technologies: (1) natural killer cells differentiated from stem cells (iNK cells), that could potentially be edited, and (2) multifunctional tetravalent cell engager antibodies that boost the activity of natural killer cells (dubbed FLEX-NK cell engagers). Both technologies, says Dr. Teper, generate so-called off the shelf therapeutics that can be suited to all patients.
The unmet needs Cytovia seeks to address represent some very large patient populations. Worldwide, there are close to 800,000 hepatocellular carcinoma patients, and about 100,000 suffering from myeloma. Myeloma, while representing a smaller patient population, is a more mature market. In recent years, pharmaceutical treatments for myeloma grew from a few billion in worldwide sales to more than 20 billion, and sales are expected to approach 30 billion by 2026, says Dr. Teper. The largest product in that category is the CD38 antibody DARZALEX (daratumumab) from J&J, which alone tallied $6 billion in sales in 2021.
Daniel Teper, Co-Founder, Chairman & CEO, Cytovia Therapeutics, IncHepatocellular carcinoma, on the other hand, represents a new frontier. Less than 30 percent of the patients with advanced disease responds to current treatment, with an average of just 6.8 months of progression-free survival, says Teper.
That technology has given rise to a preclinical pipeline that company co-founder, chairman, and CEO Dr. Daniel Teper repeatedly characterizes as differentiated. We noticed that a number of cell therapy companies have migrated toward targets that are well-validated, but very crowded, such as CD19 or BCMA, he says. Noting that theres nothing wrong with that and hes right, because competition yields innovation in drug development he acknowledges that the business risk of joining the well-validated masses gets real at the clinical stage. Once you validate the technology and order clinical trials, if youre number seven of 25 CD19 or BCMA therapies, youve got a big challenge ahead of you, he surmises.
Regarding Cytovias differentiation strategy, its programs display different indications and treatment modalities, including a FLEX-NK cell engager targeting GPC3 for the treatment of solid tumors including hepatocellular carcinoma, another FLEX-NK cell engager targeting CD38 for multiple myeloma, and even a CAR-iNK cell candidate targeting epidermal growth factor receptor (EGFR) for glioblastoma. Its a balanced portfolio of relatively novel targets, he says.
Fast Moving R&D Efforts And A Compelling Strategy
In April, Cytovia Chief Medical Officer Stanley R. Frankel, MD and Chief Scientific Officer Wei Li, Ph.D. presented at the annual meeting of the American Association for Cancer Research (AACR). Dr. Teper calls it a milestone for two reasons. First, this marked the initial presentation of our own data at one of the most relevant scientific meetings, which is an important achievement for a young company. Second, consistently with our mission to differentiate, were the only company thats developed both an IPSC-derived NK cell platform and an NK engager antibody platform. At the AACR meeting, we presented in vivo proof-of-concept data combining our iNK cells together with our GPC3-targeting NK engagers, demonstrating that we could reduce the tumor burden and the relevant biomarker protein in hepatocellular carcinoma, he says.
The combination of antibodies and cells is unique and important, says Dr. Teper, because as the disease becomes more severe, the patients functional NK cell count is depleted. The capability of an antibody that redirects NK cells to kill tumor cells is limited if those NK cells arent functional when theyre engaged.
The ability to add billions of NK cells, off the shelf, to reestablish the patients immune pool, leads to very significant efficacy, says Dr. Teper. He says the approach might be an alternative to CAR-NK therapy, or it might be complimentary, but it will definitely improve accessibility. He anticipates the therapy being administered on an outpatient basis due to the limited risk of cytokine release syndrome and GVHD.
If clinical trials confirm that the combination of the two is safe and effective, we're essentially opening up the opportunity for many more patients to benefit from cell therapy.
Included among those patients, he says, are those suffering from solid tumors, which have presented cell therapy developers with a particularly vexing challenge. The differentiator in Cytovias NK cell engagers, says Dr. Teper, is that they target NKp46, an activating receptor on the NK cell. Unlike some other activating receptors, NKp46 is very stable in its expression in infiltrating NK cells and we believe this is a potential advantage in targeting solid tumor., he says. Gene editing techonology will allow the company to consider edits to further reduce the inhibition of the tumor microenvironment and perhaps, he says, increase the persistence of NK cells.
Locking Down Best-In-Class Allogeneic Cell Therapy Manufacturing
Dr. Teper says that while the currently marketed autologous products are working for many patients, their production process is complex, the cost to produce them is too high, and the risk of side effects including cytokine release syndrome (CRS) and graft-versus-host disease (GVHD) limit their use. Allogeneic CAR T-cell products have initially demonstrated some promising data, but not to the level of autologous products, he says. In contrast, allogeneic NK and CAR NK approaches have shown initial efficacy, have very good safety profiles, and are more reasonably manufactured. While most of those approaches to-date have been produced from donor-derived cells, Dr. Teper believes induced pluripotent stem cells (IPSCs) are the way of the future due to the consistency and scalability they lend to the manufacturing process. In addition to batch-to-batch consistency challenges in donor-derived cells, which limit their scalability, their lack of homogeneity makes gene editing more difficult, he says. IPSCs, on the other hand, offer excellent product characterization, better scalability, a lower cost of goods, and easier gene editing opportunity. Thats because they originate from a highly controlled master cell bank that enables engineers to differentiate, expand, and cryopreserve trillions of highly characterized cells. There are inherent process development, manufacturing, and cost advantages to IPSCs, and we think the FDA and other global regulatory agencies will increasingly request that cell therapy products be perfectly characterized. That's much easier to do when you have a monoclonal cell bank and you're able to characterize the product at every step of development.
For its part, Cytovia is manufacturing its current supply internally. The CDMOs are catching up with new cell therapy manufacturing technologies, and IPSC technologies in particular, says Dr. Teper. That requires a sometimes-inefficient transfer of knowledge and processes. We believe that internal control of manufacturing allows us to control the quality and availability of the product for clinical trials, and these are both extremely important for a young company.
Rather than wholly outsource to a CDMO, Cytovia partners on R&D and GMP manufacturing with organizations including Cellectis, CytoImmune, the Hebrew University of Jerusalem, INSERM, the New York Stem Cell Foundation, STC Biologics, and the University of California San Francisco. In partnership with BioSciencesCorp, the company maintains a dedicated 100,000 square-foot facility in Puerto Rico comprised of six clean rooms and a process development lab, staffed entirely by Cytovia, which is currently producing clinical CGMP batches in anticipation of filing INDs late this year in preparation for clinical trials in early 2023.
Tracking To Plan On Securing Capital To Enable R&D And Clinical Trials
Pending the closings, proceeds from private placements, funds in Isleworth's trust account (net of redemptions), and proceeds from other prospective financings in the aggregate of up to $100 million, Cytovia forecasts up to two years of operating capital for further development of its gene-edited iNK and FLEX-NK cell engager technologies. The company plans to focus on multiple milestones, the most near-term being the filing of the companys first INDs in 2022 and early 2023 for its GPC3 FLEX-NK cell engager antibody (CYT-303) and its non-edited iNK cell (CYT-100) in hepatocellular carcinoma and its CD38 FLEX-NK cell engager antibody (CYT-338) for multiple myeloma. In clinical trials, the company plans to study the antibodies and the cells alone and in combination. By the end of 2023, it intends to bring two additional productsCYT -150, a gene-edited iNK cell and CYT -503, a GPC3-targeted CAR iNK productto the clinic. Its a franchise of multiple modalities, and our phase 1/2 trial will interrogate the safety and clinical response of each of them in one therapy or in combination, and then determine which well move forward for pivotal trials, says Dr. Teper.
By the end of 2023, it intends to bring two additional productsfor hepatocellular carcinomaCYT -150, a gene edited iNK cell and CYT -503, a GPC3-targeted CAR iNK productto the clinic. Its a franchise of multiple modalities that can be used alone or in combination, and our phase 1/2 trial will interrogate the safety and clinical response of each of them in one therapy or in combination, and then determine which well move forward for pivotal trials, says Dr. Teper.
Learn more about Cytovia Therapeutics at http://www.cytoviatx.com
See the original post here:
IPSCs For Democratized Cell Therapy - BioProcess Online
- 10. The Promise of Induced Pluripotent Stem Cells (iPSCs ... [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- What are induced pluripotent stem cells? [Stem Cell ... [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 6 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 2 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 5 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 3 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 4 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 1 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- piggyBac transposition reprograms fibroblasts to induced ... [Last Updated On: May 8th, 2015] [Originally Added On: May 8th, 2015]
- Induced Pluripotent Stem Cells (IPSCs) - HowStuffWorks [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Pluripotency of Induced Pluripotent Stem Cells [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Induced stem cells - Wikipedia, the free encyclopedia [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Induced Pluripotent Stem Cells (iPS) | UCLA Broad Stem ... [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- iPS cells and reprogramming: turn any cell of the body ... [Last Updated On: June 2nd, 2015] [Originally Added On: June 2nd, 2015]
- induced pluripotent stem cells - RCN Corporation [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Generating Mice from Induced Pluripotent Stem Cells | Protocol [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Stem Cell Key Terms | California's Stem Cell Agency [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- Cell potency - Wikipedia, the free encyclopedia [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- Induced pluripotent stem cell therapy - Wikipedia, the ... [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- Glossary [Stem Cell Information] [Last Updated On: August 15th, 2015] [Originally Added On: August 15th, 2015]
- STEMCELL Technologies Inc. Enters a Licensing Agreement ... [Last Updated On: August 29th, 2015] [Originally Added On: August 29th, 2015]
- Pluripotent Stem Cells 101 | Boston Children's Hospital [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- COMPLETE 2015-16 INDUCED PLURIPOTENT STEM CELL INDUSTRY REPORT [Last Updated On: October 20th, 2015] [Originally Added On: October 20th, 2015]
- Complete 2015-16 Induced Pluripotent Stem Cell Industry ... [Last Updated On: October 20th, 2015] [Originally Added On: October 20th, 2015]
- Derivation of Ethnically Diverse Human Induced Pluripotent ... [Last Updated On: October 21st, 2015] [Originally Added On: October 21st, 2015]
- Purest yet liver-like cells generated from induced ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- World Induced Pluripotent Stem Cells Market - Opportunities ... [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- Induced Pluripotent Stem Cells Market 2016: Hepatocytes ... [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- The Promise of Induced Pluripotent Stem Cells (iPSCs ... [Last Updated On: September 23rd, 2016] [Originally Added On: September 23rd, 2016]
- Induced Pluripotent Stem Cells: 10 Years After the ... [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Induced Pluripotent Stem Cell Initiative | California's ... [Last Updated On: October 7th, 2016] [Originally Added On: October 7th, 2016]
- Stem Cell Basics VI. | stemcells.nih.gov [Last Updated On: October 12th, 2016] [Originally Added On: October 12th, 2016]
- Induced stem cells - Wikipedia [Last Updated On: October 18th, 2016] [Originally Added On: October 18th, 2016]
- Induced Pluripotent Stem Cells (iPS) - UCLA Broad Stem Cell [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Induced Pluripotent Stem Cells: A New Frontier for Stem ... [Last Updated On: October 27th, 2016] [Originally Added On: October 27th, 2016]
- Induced pluripotent stem cells and Parkinson's disease ... [Last Updated On: October 27th, 2016] [Originally Added On: October 27th, 2016]
- Generation of Induced Pluripotent Stem Cells with ... [Last Updated On: November 3rd, 2016] [Originally Added On: November 3rd, 2016]
- Generation of Neural Crest-Like Cells From Human ... [Last Updated On: November 14th, 2016] [Originally Added On: November 14th, 2016]
- Induced pluripotent stem-cell therapy - Wikipedia [Last Updated On: November 18th, 2016] [Originally Added On: November 18th, 2016]
- Generation of germline-competent induced pluripotent stem ... [Last Updated On: November 22nd, 2016] [Originally Added On: November 22nd, 2016]
- Induced pluripotent stem cell models from X-linked ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Live Cell Imaging of Induced Pluripotent Stem Cell ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Induced Pluripotent Stem Cells - cellapplications.com [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Why Induced Pluripotent Stem Cells Are Vital for Glaucoma ... [Last Updated On: December 3rd, 2016] [Originally Added On: December 3rd, 2016]
- Stem Cell Glossary - stemcells.nih.gov [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- Clinical potential of human-induced pluripotent stem cells ... [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- Induced stem cells - Wikiversity [Last Updated On: December 17th, 2016] [Originally Added On: December 17th, 2016]
- Induced pluripotent stem cell Wikipedia StemCell Therapy [Last Updated On: December 17th, 2016] [Originally Added On: December 17th, 2016]
- Embryonic stem (ES) cells and induced pluripotent stem ... [Last Updated On: January 17th, 2017] [Originally Added On: January 17th, 2017]
- Induced Pluripotent Stem Cell Repository | California's ... [Last Updated On: January 23rd, 2017] [Originally Added On: January 23rd, 2017]
- induced pluripotent stem cells - eurostemcell.org [Last Updated On: January 27th, 2017] [Originally Added On: January 27th, 2017]
- When C9ORF72 Silences U2, Spliceosomes Can't Find What They ... - Alzforum [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- The Stem Cell Revolution - Seeking Alpha [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Evotec in neurology iPSC drug discovery collaboration with stem-cell specialist Censo - FierceBiotech [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Treating Asthma with Stem Cells | Technology Networks - Technology Networks [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Embryonic stem cells to be available for medical use in Japan by next March - The Japan Times [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- This Study Could Help Extend the Human Lifespan - Futurism [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- Grnenthal Group: Launch of the Project - Modelling Neuron-glia Networks Into a Drug Discovery Platform for Pain ... - PR Newswire (press release) [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- The Global Market for Induced Pluripotent Stem Cells (iPSCs) should reach $3.6 Billion in 2021, Increasing at a CAGR ... - Business Wire (press... [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- SBP Scientist Receives Prestigious WM Keck Foundation Grant - Newswise (press release) [Last Updated On: July 11th, 2017] [Originally Added On: July 11th, 2017]
- Is it time to start worrying about conscious human mini-brains? - PLoS Blogs (blog) [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- A New Epigenetic Barrier to Induced Pluripotent Stem Cells - WhatIsEpigenetics.com [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- What are induced pluripotent stem cells or iPS cells? - Stem ... [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- Stem Cell Glossary - Closer Look at Stem Cells [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- CRISPR Corrects Disease Mutation in Human Embryos - Genetic Engineering & Biotechnology News (blog) [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- World's 1st trial of drug developed from iPS cells to begin - Japan ... - Japan Today [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- ASU grad students' lab skills help earn funding for cutting-edge biomedical research - Arizona State University [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- How Food Preservatives May Disrupt Human Hormones - Laboratory Equipment [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- Dopaminergic neurons derived from iPSCs in non-human primate model - Phys.Org [Last Updated On: August 12th, 2017] [Originally Added On: August 12th, 2017]
- Artificial Blood Vessels Mimic Rare Accelerated Aging Disease - Duke Today [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells Market Demands, Trends, Growth ... - MilTech [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- induced pluripotent stem cell (iPS cell) | biology ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells: Global Markets Report 2017-2021 [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- MESO-BRAIN initiative receives 3.3million to replicate brain's neural networks through 3D nanoprinting - Cordis News [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Global Induced Pluripotent Stem Cells Market: HTF Market [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells in Global Effort to ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- How Do We Get Pluripotent Stem Cells? | Boston Children's ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Fertile offspring produced from sterile mice using iPS cells - Kyodo News Plus [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- Brain Spheroids Hatch Mature Astrocytes | ALZFORUM - Alzforum [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- Breakthrough in Gene Editing Comes as Scientists Correct Disease-Causing Mutation in Human Embryo - TrendinTech [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]