In Nature Communications, Ali Ycel and Vadim Gladyshev have published a review of the current state of the art in partial cellular reprogramming, detailing what this technology does and how it might be used safely.
This paper begins by treading familiar ground on the subject, explaining its end goals and purpose. When successful, partial cellular reprogramming induces reprogramming-induced rejuvenation (RIR), a state in which a cell is transformed into an epigenetically younger cell of the same type and fulfilling the same function [1]. This process has had multiple crucial successes in experimental models, including human muscle cells [2] and skin cells [3] along with restoring vision [4] and extending lifespan [5] in mice.
Much of this work has been done in mice that have been genetically modified to express the necessary factors when doxycycline is administered. This has even been accomplished after birth via an adeno-associated virus (AAV) [5]. While there are four Yamanaka factors, OSKM, the fourth, c-Myc, is often omitted because it raises the risk of cancer. OSK administration significantly reduced the frailty of the treated mice.
As the authors note, applying these sorts of genetic modification techniques directly to human beings is currently infeasible with existing technologies. Partial reprogramming requires carefully determined generation of Yamanaka factors inside cells. To apply this in a clinical setting would require gene therapy that has specific and strong effects on individual tissues, and using the AAV system that works on mice is not yet practical for people [6]. Generating partially reprogrammed cells outside the body, similarly to how induced pluripotent stem cells (iPSCs) are generated, may be feasible for therapeutic purposes.
Administering small molecules to people in order to effect rejuvenation in the form of a drug has been the dream of aging researchers for some time. Previous work has spurred the creation of iPSCs through such chemical means [7]. The authors of this review describe these methods as less powerful than gene therapy and requiring multiple stages of administration. This implies a degree of safety and control that makes them more attractive for human research.
An experiment on mouse cells, which also included Vadim Gladyshev, had revealed that using a 7c cocktail reduced multiple aspects of aging, including epigenetic clock measurements, age-related metabolic changes, and oxidative stress markers [8]. However, it also upregulates the senescence-associated p53 pathway, which is downregulated through normal reprogramming methods and may cause cells to become senescent earlier [9].
Normally, constant expression of the Yamanaka factors in a living organism causes its cells to completely revert to a pluripotent state, in which they forget their roles, become cancerous, and cause the organism to die. For example, inducing OSKM for six days in the hearts of mice was found to be beneficial for them, while extending it for a dozen days proved lethal [10]. However, constantly inducing OSK in neural ganglion cells for a full 10-18 months improved vision without this side effect [4].
The authors note many of the aspects of aging that are improved or possibly improved with RIR, of which the most obvious, epigenetic alterations, is only one. Inflammation and proteostasis are also affected. Telomere attrition, however, occurs only in later reprogramming and is not affected by the partial variety [11]. Direct changes to cellular communication and genomic stability are not yet known.
However, the authors point out that, while full reprogramming does not cells to mutate, creating colonies of iPSCs causes evolutionary pressure: cells with mutations that may not be beneficial for the whole organism may be more prevalent in iPSC colonies [12]. It remains to be seen if this is a concern for partial reprogramming.
The authors also mention a biochemical pluripotency network and the fundamental differences between full and partial rejuvenation. Most critically, they hold that partial reprogramming is caused by factors that are downstream of full reprogramming. If it is possible to directly affect these factors instead of relying on the Yamanaka full-reprogramming factors, it might be possible to cause RIR without risking the dangerous side effects associated with complete reprogramming. However, this area of research remains unexplored.
To do this, we need your support. Your charitable contribution tranforms into rejuvenation research, news, shows, and more. Will you help?
[1] Ocampo, A., Reddy, P., Martinez-Redondo, P., Platero-Luengo, A., Hatanaka, F., Hishida, T., & Belmonte, J. C. I. (2016). In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell, 167(7), 1719-1733.
[2] Sarkar, T. J., Quarta, M., Mukherjee, S., Colville, A., Paine, P., Doan, L., & Sebastiano, V. (2020). Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nature communications, 11(1), 1545.
[3] Gill, D., Parry, A., Santos, F., Okkenhaug, H., Todd, C. D., Hernando-Herraez, I., & Reik, W. (2022). Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. Elife, 11, e71624.
[4] Lu, Y., Brommer, B., Tian, X., Krishnan, A., Meer, M., Wang, C., & Sinclair, D. A. (2020). Reprogramming to recover youthful epigenetic information and restore vision. Nature, 588(7836), 124-129.
[5] Macip, C. C., Hasan, R., Hoznek, V., Kim, J., Lu, Y. R., Metzger IV, L. E., & Davidsohn, N. (2024). Gene Therapy-Mediated Partial Reprogramming Extends Lifespan and Reverses Age-Related Changes in Aged Mice. Cellular Reprogramming, 26(1), 24-32.
[6] Pupo, A., Fernndez, A., Low, S. H., Franois, A., Surez-Amarn, L., & Samulski, R. J. (2022). AAV vectors: The Rubiks cube of human gene therapy. Molecular Therapy.
[7] Guan, J., Wang, G., Wang, J., Zhang, Z., Fu, Y., Cheng, L., & Deng, H. (2022). Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature, 605(7909), 325-331.
[8] Mitchell, W., Goeminne, L. J., Tyshkovskiy, A., Zhang, S., Chen, J. Y., Paulo, J. A., & Gladyshev, V. N. (2023). Multi-omics characterization of partial chemical reprogramming reveals evidence of cell rejuvenation. bioRxiv, 2023-06.
[9] Tyner, S. D., Venkatachalam, S., Choi, J., Jones, S., Ghebranious, N., Igelmann, H., & Donehower, L. A. (2002). p53 mutant mice that display early ageing-associated phenotypes. Nature, 415(6867), 45-53.
[10] Chen, Y., Lttmann, F. F., Schoger, E., Schler, H. R., Zelarayn, L. C., Kim, K. P., & Braun, T. (2021). Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science, 373(6562), 1537-1540.
[11] Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 126(4), 663-676.
[12] Kosanke, M., Osetek, K., Haase, A., Wiehlmann, L., Davenport, C., Schwarzer, A., & Martin, U. (2021). Reprogramming enriches for somatic cell clones with small-scale mutations in cancer-associated genes. Molecular Therapy, 29(8), 2535-2553.
Read the original post:
Looking for the Path to Safe Cell Rejuvenation - Lifespan.io News
- 10. The Promise of Induced Pluripotent Stem Cells (iPSCs ... [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- What are induced pluripotent stem cells? [Stem Cell ... [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 6 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 2 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 5 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 3 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 4 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 1 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- piggyBac transposition reprograms fibroblasts to induced ... [Last Updated On: May 8th, 2015] [Originally Added On: May 8th, 2015]
- Induced Pluripotent Stem Cells (IPSCs) - HowStuffWorks [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Pluripotency of Induced Pluripotent Stem Cells [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Induced stem cells - Wikipedia, the free encyclopedia [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Induced Pluripotent Stem Cells (iPS) | UCLA Broad Stem ... [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- iPS cells and reprogramming: turn any cell of the body ... [Last Updated On: June 2nd, 2015] [Originally Added On: June 2nd, 2015]
- induced pluripotent stem cells - RCN Corporation [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Generating Mice from Induced Pluripotent Stem Cells | Protocol [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Stem Cell Key Terms | California's Stem Cell Agency [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- Cell potency - Wikipedia, the free encyclopedia [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- Induced pluripotent stem cell therapy - Wikipedia, the ... [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- Glossary [Stem Cell Information] [Last Updated On: August 15th, 2015] [Originally Added On: August 15th, 2015]
- STEMCELL Technologies Inc. Enters a Licensing Agreement ... [Last Updated On: August 29th, 2015] [Originally Added On: August 29th, 2015]
- Pluripotent Stem Cells 101 | Boston Children's Hospital [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- COMPLETE 2015-16 INDUCED PLURIPOTENT STEM CELL INDUSTRY REPORT [Last Updated On: October 20th, 2015] [Originally Added On: October 20th, 2015]
- Complete 2015-16 Induced Pluripotent Stem Cell Industry ... [Last Updated On: October 20th, 2015] [Originally Added On: October 20th, 2015]
- Derivation of Ethnically Diverse Human Induced Pluripotent ... [Last Updated On: October 21st, 2015] [Originally Added On: October 21st, 2015]
- Purest yet liver-like cells generated from induced ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- World Induced Pluripotent Stem Cells Market - Opportunities ... [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- Induced Pluripotent Stem Cells Market 2016: Hepatocytes ... [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- The Promise of Induced Pluripotent Stem Cells (iPSCs ... [Last Updated On: September 23rd, 2016] [Originally Added On: September 23rd, 2016]
- Induced Pluripotent Stem Cells: 10 Years After the ... [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Induced Pluripotent Stem Cell Initiative | California's ... [Last Updated On: October 7th, 2016] [Originally Added On: October 7th, 2016]
- Stem Cell Basics VI. | stemcells.nih.gov [Last Updated On: October 12th, 2016] [Originally Added On: October 12th, 2016]
- Induced stem cells - Wikipedia [Last Updated On: October 18th, 2016] [Originally Added On: October 18th, 2016]
- Induced Pluripotent Stem Cells (iPS) - UCLA Broad Stem Cell [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Induced Pluripotent Stem Cells: A New Frontier for Stem ... [Last Updated On: October 27th, 2016] [Originally Added On: October 27th, 2016]
- Induced pluripotent stem cells and Parkinson's disease ... [Last Updated On: October 27th, 2016] [Originally Added On: October 27th, 2016]
- Generation of Induced Pluripotent Stem Cells with ... [Last Updated On: November 3rd, 2016] [Originally Added On: November 3rd, 2016]
- Generation of Neural Crest-Like Cells From Human ... [Last Updated On: November 14th, 2016] [Originally Added On: November 14th, 2016]
- Induced pluripotent stem-cell therapy - Wikipedia [Last Updated On: November 18th, 2016] [Originally Added On: November 18th, 2016]
- Generation of germline-competent induced pluripotent stem ... [Last Updated On: November 22nd, 2016] [Originally Added On: November 22nd, 2016]
- Induced pluripotent stem cell models from X-linked ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Live Cell Imaging of Induced Pluripotent Stem Cell ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Induced Pluripotent Stem Cells - cellapplications.com [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Why Induced Pluripotent Stem Cells Are Vital for Glaucoma ... [Last Updated On: December 3rd, 2016] [Originally Added On: December 3rd, 2016]
- Stem Cell Glossary - stemcells.nih.gov [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- Clinical potential of human-induced pluripotent stem cells ... [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- Induced stem cells - Wikiversity [Last Updated On: December 17th, 2016] [Originally Added On: December 17th, 2016]
- Induced pluripotent stem cell Wikipedia StemCell Therapy [Last Updated On: December 17th, 2016] [Originally Added On: December 17th, 2016]
- Embryonic stem (ES) cells and induced pluripotent stem ... [Last Updated On: January 17th, 2017] [Originally Added On: January 17th, 2017]
- Induced Pluripotent Stem Cell Repository | California's ... [Last Updated On: January 23rd, 2017] [Originally Added On: January 23rd, 2017]
- induced pluripotent stem cells - eurostemcell.org [Last Updated On: January 27th, 2017] [Originally Added On: January 27th, 2017]
- When C9ORF72 Silences U2, Spliceosomes Can't Find What They ... - Alzforum [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- The Stem Cell Revolution - Seeking Alpha [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Evotec in neurology iPSC drug discovery collaboration with stem-cell specialist Censo - FierceBiotech [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Treating Asthma with Stem Cells | Technology Networks - Technology Networks [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Embryonic stem cells to be available for medical use in Japan by next March - The Japan Times [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- This Study Could Help Extend the Human Lifespan - Futurism [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- Grnenthal Group: Launch of the Project - Modelling Neuron-glia Networks Into a Drug Discovery Platform for Pain ... - PR Newswire (press release) [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- The Global Market for Induced Pluripotent Stem Cells (iPSCs) should reach $3.6 Billion in 2021, Increasing at a CAGR ... - Business Wire (press... [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- SBP Scientist Receives Prestigious WM Keck Foundation Grant - Newswise (press release) [Last Updated On: July 11th, 2017] [Originally Added On: July 11th, 2017]
- Is it time to start worrying about conscious human mini-brains? - PLoS Blogs (blog) [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- A New Epigenetic Barrier to Induced Pluripotent Stem Cells - WhatIsEpigenetics.com [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- What are induced pluripotent stem cells or iPS cells? - Stem ... [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- Stem Cell Glossary - Closer Look at Stem Cells [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- CRISPR Corrects Disease Mutation in Human Embryos - Genetic Engineering & Biotechnology News (blog) [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- World's 1st trial of drug developed from iPS cells to begin - Japan ... - Japan Today [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- ASU grad students' lab skills help earn funding for cutting-edge biomedical research - Arizona State University [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- How Food Preservatives May Disrupt Human Hormones - Laboratory Equipment [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- Dopaminergic neurons derived from iPSCs in non-human primate model - Phys.Org [Last Updated On: August 12th, 2017] [Originally Added On: August 12th, 2017]
- Artificial Blood Vessels Mimic Rare Accelerated Aging Disease - Duke Today [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells Market Demands, Trends, Growth ... - MilTech [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- induced pluripotent stem cell (iPS cell) | biology ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells: Global Markets Report 2017-2021 [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- MESO-BRAIN initiative receives 3.3million to replicate brain's neural networks through 3D nanoprinting - Cordis News [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Global Induced Pluripotent Stem Cells Market: HTF Market [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells in Global Effort to ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- How Do We Get Pluripotent Stem Cells? | Boston Children's ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Fertile offspring produced from sterile mice using iPS cells - Kyodo News Plus [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- Brain Spheroids Hatch Mature Astrocytes | ALZFORUM - Alzforum [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- Breakthrough in Gene Editing Comes as Scientists Correct Disease-Causing Mutation in Human Embryo - TrendinTech [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]