Neurite outgrowth deficits caused by rare PLXNB1 mutation in … – Nature.com


Bebbington P, Ramana R. The epidemiology of bipolar affective disorder. Soc Psychiatry Psychiatr Epidemiol. 1995;30:27992.

Article CAS PubMed Google Scholar

Pini S, de Queiroz V, Pagnin D, Pezawas L, Angst J, Cassano GB, et al. Prevalence and burden of bipolar disorders in European countries. Eur Neuropsychopharmacol. 2005;15:42534.

Article CAS PubMed Google Scholar

Burton CZ, Ryan KA, Kamali M, Marshall DF, Harrington G, McInnis MG, et al. Psychosis in bipolar disorder: does it represent a more severe illness? Bipolar Disord. 2018;20:1826.

Article PubMed Google Scholar

Brus MJ, Solanto MV, Goldberg JF. Adult ADHD vs. bipolar disorder in the DSM-5 era: a challenging differentiation for clinicians. J Psychiatr Pract. 2014;20:42837.

Article PubMed Google Scholar

Schulze TG, Akula N, Breuer R, Steele J, Nalls MA, Singleton AB, et al. Molecular genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder. World J Biol Psychiatry. 2014;15:2008.

Article PubMed Google Scholar

Smeland OB, Bahrami S, Frei O, Shadrin A, OConnell K, Savage J, et al. Genome-wide analysis reveals extensive genetic overlap between schizophrenia, bipolar disorder, and intelligence. Mol Psychiatry. 2020;25:84453.

Article CAS PubMed Google Scholar

Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell. 2018;173:170515.e16.

Article PubMed Central Google Scholar

Weller EB, Weller RA, Fristad MA. Bipolar disorder in children: misdiagnosis, underdiagnosis, and future directions. J Am Acad Child Adolesc Psychiatry. 1995;34:70914.

Article CAS PubMed Google Scholar

Renk K, White R, Lauer BA, McSwiggan M, Puff J, Lowell A. Bipolar disorder in children. Psychiatry J 2014;2014:119.

Article Google Scholar

Beyer DKE, Freund N. Animal models for bipolar disorder: from bedside to the cage. Int J Bipolar Disord. 2017;5:35.

Article PubMed PubMed Central Google Scholar

Strakowski SM, DelBello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry. 2005;10:10516.

Article CAS PubMed Google Scholar

Pavuluri MN, OConnor MM, Harral EM, Sweeney JA. An fMRI study of the interface between affective and cognitive neural circuitry in pediatric bipolar disorder. Psychiatry Res. 2008;162:24455.

Article PubMed PubMed Central Google Scholar

Chen CH, Suckling J, Lennox BR, Ooi C, Bullmore ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord. 2011;13:115.

Article CAS PubMed Google Scholar

OShea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol Cell Neurosci. 2016;73:6383.

Article PubMed Google Scholar

Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R, et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry. 2015;20:70317.

Article CAS PubMed PubMed Central Google Scholar

Bavamian S, Mellios N, Lalonde J, Fass DM, Wang J, Sheridan SD, et al. Dysregulation of miR-34a Links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry. 2015;20:57384.

Article CAS PubMed PubMed Central Google Scholar

Wang JL, Shamah SM, Sun AX, Waldman ID, Haggarty SJ, Perlis RH. Label-free, live optical imaging of reprogrammed bipolar disorder patient-derived cells reveals a functional correlate of lithium responsiveness. Transl Psychiatry. 2014;4:e4288.

Article CAS PubMed PubMed Central Google Scholar

Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:959.

Article CAS PubMed PubMed Central Google Scholar

Stern S, Santos R, Marchetto MC, Mendes APD, Rouleau GA, Biesmans S, et al. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients responsiveness to lithium. Mol Psychiatry. 2018;23:145365.

Article CAS PubMed Google Scholar

Craddock N, Sklar P. Genetics of bipolar disorder. Lancet 2013;381:165462.

Article CAS PubMed Google Scholar

Sullivan PF, Geschwind DH. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell. 2019;177:162.

Article CAS PubMed PubMed Central Google Scholar

Song J, Bergen SE, Kuja-Halkola R, Larsson H, Landn M, Lichtenstein P. Bipolar disorder and its relation to major psychiatric disorders: a family-based study in the Swedish population. Bipolar Disord. 2015;17:18493.

Article PubMed Google Scholar

Hou L, Bergen SE, Akula N, Song J, Hultman CM, Landn M, et al. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum Mol Genet. 2016;25:338394.

Article CAS PubMed PubMed Central Google Scholar

Mullins N, Forstner AJ, OConnell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:81729.

Article CAS PubMed PubMed Central Google Scholar

Sul JH, Service SK, Huang AY, Ramensky V, Hwang SG, Teshiba TM, et al. Contribution of common and rare variants to bipolar disorder susceptibility in extended pedigrees from population isolates. Transl Psychiatry. 2020;10:110.

Article Google Scholar

Toma C, Shaw AD, Allcock RJN, Heath A, Pierce KD, Mitchell PB, et al. An examination of multiple classes of rare variants in extended families with bipolar disorder. Transl Psychiatry. 2018;8:112.

Article Google Scholar

Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793803.

Article CAS PubMed PubMed Central Google Scholar

Clifton NE, Hannon E, Harwood JC, di Florio A, Thomas KL, Holmans PA, et al. Dynamic expression of genes associated with schizophrenia and bipolar disorder across development. Transl Psychiatry. 2019;9:74.

Zeng B, Bendl J, Kosoy R, Fullard JF, Hoffman GE, Roussos P. Multi-ancestry eQTL meta-analysis of human brain identifies candidate causal variants for brain-related traits. Nat Genet. 2022;54:1619.

Article CAS PubMed PubMed Central Google Scholar

Ament SA, Szelinger S, Glusman G, Ashworth J, Hou L, Akula N, et al. Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci USA. 2015;112:357681.

Article CAS PubMed PubMed Central Google Scholar

Kataoka M, Matoba N, Sawada T, Kazuno AA, Ishiwata M, Fujii K, et al. Exome sequencing for bipolar disorder points to roles of de novo loss-of-function and protein-altering mutations. Mol Psychiatry. 2016;21:88593.

Article CAS PubMed PubMed Central Google Scholar

Sullivan PF, Daly MJ, ODonovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet. 2012;13:53751.

Article CAS PubMed PubMed Central Google Scholar

Falk A, Heine VM, Harwood AJ, Sullivan PF, Peitz M, Brstle O, et al. Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Mol Psychiatry. 2016;21:116779.

Article CAS PubMed PubMed Central Google Scholar

Ishii T, Ishikawa M, Fujimori K, Maeda T, Kushima I, Arioka Y, et al. In vitro modeling of the bipolar disorder and schizophrenia using patient-derived induced pluripotent stem cells with copy number variations of PCDH15 and RELN. eNeuro. 2019;6:ENEURO.040318.2019.

Article PubMed Google Scholar

Zoghbi AW, Dhindsa RS, Goldberg TE, Mehralizade A, Motelow JE, Wang X, et al. High-impact rare genetic variants in severe schizophrenia. Proc Natl Acad Sci USA. 2021;118:e2112560118.

Lopez-Larson MP, Shah LM, Weeks HR, King JB, Mallik AK, Yurgelun-Todd DA, et al. Abnormal functional connectivity between default and salience networks in pediatric bipolar disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:8593.

PubMed Google Scholar

The Mini-International Neuropsychiatric Interview (M.I.N.I.). the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59:2233.

Google Scholar

Achenbach TM, Rescorla LA. Manual for the ASEBA school-age forms & profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families; 2001.

Google Scholar

Wechsler D. Wechsler abbreviated scale of intelligence. New York, NY: The Psychological Corporation: Harcourt Brace & Company; 1999.

Google Scholar

Jo HJ, Gotts SJ, Reynolds RC, Bandettini PA, Martin A, Cox RW, et al. Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI. J Appl Math. 2013. https://doi.org/10.1155/2013/935154.

Article PubMed PubMed Central Google Scholar

Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29:16273.

Article CAS PubMed Google Scholar

Anderson JS, Ferguson MA, Lopez-Larson M, Yurgelun-Todd D. Reproducibility of single-subject functional connectivity measurements. Am J Neuroradiol. 2011;32:54855.

Article CAS PubMed PubMed Central Google Scholar

Saad ZS, Gotts SJ, Murphy K, Chen G, jo HJ, Martin A, et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect. 2012;2:2532.

Article PubMed PubMed Central Google Scholar

Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage. 2009;44:893905.

Article PubMed Google Scholar

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142.

Article PubMed Google Scholar

Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:112565.

Article PubMed Google Scholar

Han DH, Kim SM, Bae S, Renshaw PF, Anderson JS. Brain connectivity and psychiatric comorbidity in adolescents with Internet gaming disorder. Addict Biol. 2017;22:80212.

Article PubMed Google Scholar

Shah LM, Cramer JA, Ferguson MA, Birn RM, Anderson JS. Reliability and reproducibility of individual differences in functional connectivity acquired during task and resting state. Brain Behav. 2016;6:e00456.

Article PubMed PubMed Central Google Scholar

Curtis BJ, Williams PG, Jones CR, Anderson JS. Sleep duration and resting fMRI functional connectivity: examination of short sleepers with and without perceived daytime dysfunction. Brain Behav. 2016;6:e00576.

Freed D, Aldana R, Weber J, Edwards J. The sentieon genomics tools - a fast and accurate solution to variant calling from next-generation sequence data. BioRxiv 2017 https://doi.org/10.1101/115717.

Faust GG, Hall IM. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics. 2014;30:25035.

Article CAS PubMed PubMed Central Google Scholar

Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:30478.

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:i88490.

Here is the original post:
Neurite outgrowth deficits caused by rare PLXNB1 mutation in ... - Nature.com

Related Posts