Inherited erythromelalgia is a rare and potentially devastating syndrome associated with severe burning pain in the hands and feet, creating a major unmet medical need.
More than 100 million Americans suffer from chronic pain of varying degrees, with the lack of effective but non-addictive painkillers partially contributing to the national substance abuse crisis. Potent opiates are often addictive, while other painkillers may be associated with poor tolerability, resulting in suboptimal pain control from many indications. Developing next-generation painkillers, therefore, has enormous value.
While chronic pain is often caused by injury, it can also be caused by genetic variants that naturally occurred in humans, such as in inherited erythromelalgia (IEM). Also called Man on Fire syndrome, it is associated with chronic burning pain in the hands and feet that cannot be relieved by common painkillers. Research from my work and others has led to new insights into pain pathophysiology in patients with IEM, as well as advancements in therapy.
The pain associated with IEM is caused by a genetic mutation in the SCN9A gene, which produces a hyperactive Nav1.7 sodium channel. The Nav1.7 channel is considered a pain channel since it is directly involved in many human pain syndromes. Through extensive research, we identified more than two dozen SCN9A mutations that lead to IEM. Consequently, for these patients, one-size-fits-all pain medication does not work. Currently, IEM treatment is a matter of trial and error. One of our major research goals, therefore, was to develop a precision medicine approach to treating these patients based on their genetic background.
While most patients with IEM do not respond to any available pain medications, there are exceptions. In the clinic, it was found that patients with one particular mutation on the SCN9A gene, V400M, responded to a non-selective sodium channel blocker that is traditionally used to treat seizures called carbamazepine (CBZ). Using patch-clamp analysis, it was found that CBZ normalises activation of the hyperactive Nav1.7 mutant and therefore makes it act more like wide-type.
The responsiveness of V400M to CBZ was encouraging and motivated us to identify additional mutations that might respond to the drug. To do this, we constructed a human Nav1.7 3D structure model to locate IEM mutations. Using this approach, we identified another common IEM-associated mutation, S241T, located very close to V400M. The proximity between these two mutations led us to suspect that they may be affected by CBZ in a similar manner.
To study the functional consequence of these mutations in intact pain-sensing neurons, and to test how these neurons responded to CBZ, we used microelectrode array (MEA) technology.
An MEA is a grid of tightly spaced microelectrodes, and theyre often used in the study of neural activity or circuits. They may be placed in the brains of living animals, but they can also be embedded in the wells of a multi-well cell culture plate allowing for in vitro modelling (Figure 1).
Figure 1: (Left) Image of a neuron grown over an MEA electrode. Voltage activity from the neuron is recorded (green) and individual neural signals or action potentials (white) are automatically tracked. (Right) In an MEA culture dish, the location and time of every recorded action potential (AP) is assigned a tick mark. The relationship between tick marks (or APs) reveals deep insights about how the neurons are interacting. Watch the full video here.
This arrangement allows us to culture sensory neurons in vitro and record the electrical activity noninvasively over weeks to months of these cultured pain-sensing neurons. Also, this technique enables us to grow replicates of the culture and simultaneously test multiple genetic, pharmacological and environmental manipulations (Figure 2). For example, we could study multiple mutations at once, and since IEM is triggered by warmth, we could also test the effect of temperature on the model using a built-in precise temperature control of the MEA system.
Figure 2: (Left) Multiwell solutions allow scientist to track up to 96 neural cell cultures simultaneously, accelerating scientific discovery and changing the way scientists ask questions. (Right) 48-well CytoView MEA plate being docked into a Maestro Pro MEA system, with built-in precise temperature and CO2 control.
Using this MEA system, we performed experiments to address our main question: can we develop a personalised medicine approach to guide the drug selection process for IEM patients based on their genetic background?
We grew neuron cultures harbouring one of several IEM-associated mutations. In neurons featuring the S241T mutation, CBZ significantly reduced the firing frequency, as well as the number of active DRG sensory neurons, when compared to vehicle treatment. We found this difference to be statistically significant. Conversely, when we performed this same test on a different F1449V mutation, we found that CBZ does not have a major effect on these neurons.
Figure 3: Pain in a dish. (Top row) Neurons expressing the Nav1.7S241T mutation fire significantly more action potentials than wild-type (WT) neurons, and this effect is exacerbated with increasing temperatures. (Bottom row) When these neurons were treated with carbamazepine (CBZ), the firing frequency was greatly reduced, suggesting CBZ as a potential treatment for IEM patients with S241T mutations. Watch the webinar here.
Altogether, we demonstrated that the effect of CBZ is mutant-specific, suggesting the need for a more personalised approach towards treating IEM. The data suggests that the mutation Nav1.7S241T may respond to CBZ.
Next, we aimed to take our research findings and test them in the clinic. After a nationwide search, we identified two IEM patients carrying the Nav1.7S241T mutation who were eager to participate in our study. Together with our colleagues, we designed a randomised, placebo-controlled double-blind crossover clinical trial for these two patients. We gave the patients either a placebo or CBZ for six weeks and we recorded their responses in several ways.
We found that CBZ reduced pain more than the placebo did. Specifically, it reduced total pain duration, episode duration and the number of times it woke the patient up during sleep. Together with our colleagues, we also performed functional MRI and found that while the patient on placebo showed brain activity in areas associated with chronic pain, the patient on CBZ showed brain activity in brain areas associated with acute pain a pattern that indicates that CBZ affects how the brain responds to pain signals in patients harbouring the SCN9AS241T mutation.
These results show that precision medicine, guided by genomic analysis and functional profiling, provides a promising way to transform pain treatment. With continued research and analysis, we aim to shift the paradigm of a trial-and-error approach to identify effective painkillers to a personalised medicine approach based on the genetic make-up of individual patients to treat chronic pain in the near future.
*Dr Yang Yang is currently an Assistant Professor at Purdue University in the Department of Medicinal Chemistry and Molecular Pharmacology, also affiliated with Purdue Institute for Integrative Neuroscience. His current research focuses on pharmacogenomics, induced pluripotent stem cells (iPSCs) and neurological diseases, including chronic pain, epilepsy, autism and neurodegenerative diseases. Using state-of-the-art technologies, Y Lab aims to understand how genetic mutations of key genes including ion channels contribute to neurological diseases, and to develop novel pharmacogenomic approaches for disease intervention.
Top image credit: stock.adobe.com/au/sveta
Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletters and bimonthly magazine.
Read the rest here:
Pharmacogenomic approach to cure the pain of the 'burning man' - Lab + Life Scientist
- 10. The Promise of Induced Pluripotent Stem Cells (iPSCs ... [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- What are induced pluripotent stem cells? [Stem Cell ... [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 6 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 2 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 5 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 3 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 4 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 1 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- piggyBac transposition reprograms fibroblasts to induced ... [Last Updated On: May 8th, 2015] [Originally Added On: May 8th, 2015]
- Induced Pluripotent Stem Cells (IPSCs) - HowStuffWorks [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Pluripotency of Induced Pluripotent Stem Cells [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Induced stem cells - Wikipedia, the free encyclopedia [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Induced Pluripotent Stem Cells (iPS) | UCLA Broad Stem ... [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- iPS cells and reprogramming: turn any cell of the body ... [Last Updated On: June 2nd, 2015] [Originally Added On: June 2nd, 2015]
- induced pluripotent stem cells - RCN Corporation [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Generating Mice from Induced Pluripotent Stem Cells | Protocol [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Stem Cell Key Terms | California's Stem Cell Agency [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- Cell potency - Wikipedia, the free encyclopedia [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- Induced pluripotent stem cell therapy - Wikipedia, the ... [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- Glossary [Stem Cell Information] [Last Updated On: August 15th, 2015] [Originally Added On: August 15th, 2015]
- STEMCELL Technologies Inc. Enters a Licensing Agreement ... [Last Updated On: August 29th, 2015] [Originally Added On: August 29th, 2015]
- Pluripotent Stem Cells 101 | Boston Children's Hospital [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- COMPLETE 2015-16 INDUCED PLURIPOTENT STEM CELL INDUSTRY REPORT [Last Updated On: October 20th, 2015] [Originally Added On: October 20th, 2015]
- Complete 2015-16 Induced Pluripotent Stem Cell Industry ... [Last Updated On: October 20th, 2015] [Originally Added On: October 20th, 2015]
- Derivation of Ethnically Diverse Human Induced Pluripotent ... [Last Updated On: October 21st, 2015] [Originally Added On: October 21st, 2015]
- Purest yet liver-like cells generated from induced ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- World Induced Pluripotent Stem Cells Market - Opportunities ... [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- Induced Pluripotent Stem Cells Market 2016: Hepatocytes ... [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- The Promise of Induced Pluripotent Stem Cells (iPSCs ... [Last Updated On: September 23rd, 2016] [Originally Added On: September 23rd, 2016]
- Induced Pluripotent Stem Cells: 10 Years After the ... [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Induced Pluripotent Stem Cell Initiative | California's ... [Last Updated On: October 7th, 2016] [Originally Added On: October 7th, 2016]
- Stem Cell Basics VI. | stemcells.nih.gov [Last Updated On: October 12th, 2016] [Originally Added On: October 12th, 2016]
- Induced stem cells - Wikipedia [Last Updated On: October 18th, 2016] [Originally Added On: October 18th, 2016]
- Induced Pluripotent Stem Cells (iPS) - UCLA Broad Stem Cell [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Induced Pluripotent Stem Cells: A New Frontier for Stem ... [Last Updated On: October 27th, 2016] [Originally Added On: October 27th, 2016]
- Induced pluripotent stem cells and Parkinson's disease ... [Last Updated On: October 27th, 2016] [Originally Added On: October 27th, 2016]
- Generation of Induced Pluripotent Stem Cells with ... [Last Updated On: November 3rd, 2016] [Originally Added On: November 3rd, 2016]
- Generation of Neural Crest-Like Cells From Human ... [Last Updated On: November 14th, 2016] [Originally Added On: November 14th, 2016]
- Induced pluripotent stem-cell therapy - Wikipedia [Last Updated On: November 18th, 2016] [Originally Added On: November 18th, 2016]
- Generation of germline-competent induced pluripotent stem ... [Last Updated On: November 22nd, 2016] [Originally Added On: November 22nd, 2016]
- Induced pluripotent stem cell models from X-linked ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Live Cell Imaging of Induced Pluripotent Stem Cell ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Induced Pluripotent Stem Cells - cellapplications.com [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Why Induced Pluripotent Stem Cells Are Vital for Glaucoma ... [Last Updated On: December 3rd, 2016] [Originally Added On: December 3rd, 2016]
- Stem Cell Glossary - stemcells.nih.gov [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- Clinical potential of human-induced pluripotent stem cells ... [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- Induced stem cells - Wikiversity [Last Updated On: December 17th, 2016] [Originally Added On: December 17th, 2016]
- Induced pluripotent stem cell Wikipedia StemCell Therapy [Last Updated On: December 17th, 2016] [Originally Added On: December 17th, 2016]
- Embryonic stem (ES) cells and induced pluripotent stem ... [Last Updated On: January 17th, 2017] [Originally Added On: January 17th, 2017]
- Induced Pluripotent Stem Cell Repository | California's ... [Last Updated On: January 23rd, 2017] [Originally Added On: January 23rd, 2017]
- induced pluripotent stem cells - eurostemcell.org [Last Updated On: January 27th, 2017] [Originally Added On: January 27th, 2017]
- When C9ORF72 Silences U2, Spliceosomes Can't Find What They ... - Alzforum [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- The Stem Cell Revolution - Seeking Alpha [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Evotec in neurology iPSC drug discovery collaboration with stem-cell specialist Censo - FierceBiotech [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Treating Asthma with Stem Cells | Technology Networks - Technology Networks [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Embryonic stem cells to be available for medical use in Japan by next March - The Japan Times [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- This Study Could Help Extend the Human Lifespan - Futurism [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- Grnenthal Group: Launch of the Project - Modelling Neuron-glia Networks Into a Drug Discovery Platform for Pain ... - PR Newswire (press release) [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- The Global Market for Induced Pluripotent Stem Cells (iPSCs) should reach $3.6 Billion in 2021, Increasing at a CAGR ... - Business Wire (press... [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- SBP Scientist Receives Prestigious WM Keck Foundation Grant - Newswise (press release) [Last Updated On: July 11th, 2017] [Originally Added On: July 11th, 2017]
- Is it time to start worrying about conscious human mini-brains? - PLoS Blogs (blog) [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- A New Epigenetic Barrier to Induced Pluripotent Stem Cells - WhatIsEpigenetics.com [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- What are induced pluripotent stem cells or iPS cells? - Stem ... [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- Stem Cell Glossary - Closer Look at Stem Cells [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- CRISPR Corrects Disease Mutation in Human Embryos - Genetic Engineering & Biotechnology News (blog) [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- World's 1st trial of drug developed from iPS cells to begin - Japan ... - Japan Today [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- ASU grad students' lab skills help earn funding for cutting-edge biomedical research - Arizona State University [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- How Food Preservatives May Disrupt Human Hormones - Laboratory Equipment [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- Dopaminergic neurons derived from iPSCs in non-human primate model - Phys.Org [Last Updated On: August 12th, 2017] [Originally Added On: August 12th, 2017]
- Artificial Blood Vessels Mimic Rare Accelerated Aging Disease - Duke Today [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells Market Demands, Trends, Growth ... - MilTech [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- induced pluripotent stem cell (iPS cell) | biology ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells: Global Markets Report 2017-2021 [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- MESO-BRAIN initiative receives 3.3million to replicate brain's neural networks through 3D nanoprinting - Cordis News [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Global Induced Pluripotent Stem Cells Market: HTF Market [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells in Global Effort to ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- How Do We Get Pluripotent Stem Cells? | Boston Children's ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Fertile offspring produced from sterile mice using iPS cells - Kyodo News Plus [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- Brain Spheroids Hatch Mature Astrocytes | ALZFORUM - Alzforum [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- Breakthrough in Gene Editing Comes as Scientists Correct Disease-Causing Mutation in Human Embryo - TrendinTech [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]