I. Introduction: What are stem cells, and why are they important?
Stem cells have the remarkable potential to renew themselves. They can develop into many different cell types in the body during early life and growth. Researchers study many different types of stem cells. There are several main categories: the pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) and nonembryonic or somatic stem cells (commonly called adult stem cells). Pluripotent stem cells have the ability to differentiate into all of the cells of the adult body. Adult stem cells are found in a tissue or organ and can differentiate to yield the specialized cell types of that tissue or organ.
Pluripotent stem cells
Early mammalian embryos at the blastocyst stage contain two types of cells cells of the inner cell mass, and cells of the trophectoderm. The trophectodermal cells contribute to the placenta. The inner cell mass will ultimately develop into the specialized cell types, tissues, and organs of the entire body of the organism. Previous work with mouse embryos led to the development of a method in 1998 to derive stem cells from the inner cell mass of preimplantation human embryos and to grow human embryonic stem cells (hESCs) in the laboratory. In 2006, researchers identified conditions that would allow some mature human adult cells to be reprogrammed into an embryonic stem cell-like state. Those reprogramed stem cells are called induced pluripotent stem cells (iPSCs).
Adult stem cells
Throughout the life of the organism, populations of adult stem cells serve as an internal repair system that generates replacements for cells that are lost through normal wear and tear, injury, or disease. Adult stem cells have been identified in many organs and tissues and are generally associated with specific anatomical locations. These stem cells may remain quiescent (non-dividing) for long periods of time until they are activated by a normal need for more cells to maintain and repair tissues.
Stem cells have unique abilities to self-renew and to recreate functional tissues.
Stem cells have the ability to self-renew.
Unlike muscle cells, blood cells, or nerve cellswhich do not normally replicate stem cells may replicate many times. When a stem cell divides, the resulting two daughter cells may be: 1) both stem cells, 2) a stem cell and a more differentiated cell, or 3) both more differentiated cells. What controls the balance between these types of divisions to maintain stem cells at an appropriate level within a given tissue is not yet well known.
Discovering the mechanism behind self-renewal may make it possible to understand how cell fate (stem vs. non-stem) is regulated during normal embryonic development and post-natally, or misregulated as during aging, or even in the development of cancer. Such information may also enable scientists to grow stem cells more efficiently in the laboratory. The specific factors and conditions that allow pluripotent stem cells to remain undifferentiated are of great interest to scientists. It has taken many years of trial and error to learn to derive and maintain pluripotent stem cells in the laboratory without the cells spontaneously differentiating into specific cell types.
Stem cells have the ability to recreate functional tissues.
Pluripotent stem cells are undifferentiated; they do not have any tissue-specific characteristics (such as morphology or gene expression pattern) that allow them to perform specialized functions. Yet they can give rise to all of the differentiated cells in the body, such as heart muscle cells, blood cells, and nerve cells. On the other hand, adult stem cells differentiate to yield the specialized cell types of the tissue or organ in which they reside, and may have defining morphological features and patterns of gene expression reflective of that tissue.
Different types of stems cells have varying degrees of potency; that is, the number of different cell types that they can form. While differentiating, the cell usually goes through several stages, becoming more specialized at each step. Scientists are beginning to understand the signals that trigger each step of the differentiation process. Signals for cell differentiation include factors secreted by other cells, physical contact with neighboring cells, and certain molecules in the microenvironment.
How are stem cells grown in the laboratory?
Growing cells in the laboratory is known as cell culture. Stem cells can proliferate in laboratory environments in a culture dish that contains a nutrient broth known as culture medium (which is optimized for growing different types of stem cells). Most stem cells attach, divide, and spread over the surface of the dish.
The culture dish becomes crowded as the cells divide, so they need to be re-plated in the process of subculturing, which is repeated periodically many times over many months. Each cycle of subculturing is referred to as a passage. The original cells can yield millions of stem cells. At any stage in the process, batches of cells can be frozen and shipped to other laboratories for further culture and experimentation.
How do you reprogram regular cells to make iPSCs?
Differentiated cells, such as skin cells, can be reprogrammed back into a pluripotent state. Reprogramming is achieved over several weeks by forced expression of genes that are known to be master regulators of pluripotency. At the end of this process, these master regulators will remodel the expression of an entire network of genes. Features of differentiated cells will be replaced by those associated with the pluripotent state, essentially reversing the developmental process.
How are stem cells stimulated to differentiate?
As long as the pluripotent stem cells are grown in culture under appropriate conditions, they can remain undifferentiated. To generate cultures of specific types of differentiated cells, scientists may change the chemical composition of the culture medium, alter the surface of the culture dish, or modify the cells by forcing the expression of specific genes. Through years of experimentation, scientists have established some basic protocols, or recipes, for the differentiation of pluripotent stem cells into some specific cell types (see Figure 1 below).
What laboratory tests are used to identify stem cells?
At various points during the process of generating stem cell lines, scientists test the cells to see whether they exhibit the fundamental properties that make them stem cells. These tests may include:
Given their unique regenerative abilities, there are many ways in which human stem cells are being used in biomedical research and therapeutics development.
Understanding the biology of disease and testing drugs
Scientists can use stem cells to learn about human biology and for the development of therapeutics. A better understanding of the genetic and molecular signals that regulate cell division, specialization, and differentiation in stem cells can yield information about how diseases arise and suggest new strategies for therapy. Scientists can use iPSCs made from a patient and differentiate those iPSCs to create organoids (small models of organs) or tissue chips for studying diseased cells and testing drugs, with personalized results.
Cell-based therapies
An important potential application is the generation of cells and tissues for cell-based therapies, also called tissue engineering. The current need for transplantable tissues and organs far outweighs the available supply. Stem cells offer the possibility of a renewable source. There is typically a very small number of adult stem cells in each tissue, and once removed from the body, their capacity to divide is limited, making generation of large quantities of adult stem cells for therapies difficult. In contrast, pluripotent stem cells are less limited by starting material and renewal potential.
To realize the promise of stem cell therapies in diseases, scientists must be able to manipulate stem cells so that they possess the necessary characteristics for successful differentiation, transplantation, and engraftment. Scientists must also develop procedures for the administration of stem cell populations, along with the induction of vascularization (supplying blood vessels), for the regeneration and repair of three-dimensional solid tissues.
To be useful for transplant purposes, stem cells must be reproducibly made to:
While stem cells offer exciting promise for future therapies, significant technical hurdles remain that will likely only be overcome through years of intensive research.
Note: Currently, the only stem cell-based products that are approved for use by the U.S. Food and Drug Administration (FDA) for use in the United States consist of blood-forming stem cells (hematopoietic progenitor cells) derived from cord blood. These products are approved for limited use in patients with disorders that affect the body system that is involved in the production of blood (called the hematopoietic system). TheseFDA-approved stem cell products are listed on the FDA website. Bone marrow also is used for these treatments but is generally not regulated by the FDA for this use. The FDA recommends that people considering stem cell treatments make sure that the treatment is either FDA-approved or being studied under an Investigational New Drug Application (IND), which is a clinical investigation plan submitted and allowed to proceed by the FDA.
NIH conducts and funds basic, translational, and clinical research with a range of different types of stem cells. NIH-supported research with human pluripotent stem cells is conducted under the terms of theNIH Guidelines for Human Stem Cell Research. NIH awards are listed in various categories of stem cell research through theNIH Estimates of Funding for Various Research, Condition, and Disease Categories (RCDC). NIH also supports a major adult stem cell and iPSC research initiative through theRegenerative Medicine Innovation Project.
Go here to read the rest:
Stem Cell Basics | STEM Cell Information - National Institutes of Health
- 10. The Promise of Induced Pluripotent Stem Cells (iPSCs ... [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- What are induced pluripotent stem cells? [Stem Cell ... [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 6 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 2 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 5 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 3 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 4 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 1 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- piggyBac transposition reprograms fibroblasts to induced ... [Last Updated On: May 8th, 2015] [Originally Added On: May 8th, 2015]
- Induced Pluripotent Stem Cells (IPSCs) - HowStuffWorks [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Pluripotency of Induced Pluripotent Stem Cells [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Induced stem cells - Wikipedia, the free encyclopedia [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Induced Pluripotent Stem Cells (iPS) | UCLA Broad Stem ... [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- iPS cells and reprogramming: turn any cell of the body ... [Last Updated On: June 2nd, 2015] [Originally Added On: June 2nd, 2015]
- induced pluripotent stem cells - RCN Corporation [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Generating Mice from Induced Pluripotent Stem Cells | Protocol [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Stem Cell Key Terms | California's Stem Cell Agency [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- Cell potency - Wikipedia, the free encyclopedia [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- Induced pluripotent stem cell therapy - Wikipedia, the ... [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- Glossary [Stem Cell Information] [Last Updated On: August 15th, 2015] [Originally Added On: August 15th, 2015]
- STEMCELL Technologies Inc. Enters a Licensing Agreement ... [Last Updated On: August 29th, 2015] [Originally Added On: August 29th, 2015]
- Pluripotent Stem Cells 101 | Boston Children's Hospital [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- COMPLETE 2015-16 INDUCED PLURIPOTENT STEM CELL INDUSTRY REPORT [Last Updated On: October 20th, 2015] [Originally Added On: October 20th, 2015]
- Complete 2015-16 Induced Pluripotent Stem Cell Industry ... [Last Updated On: October 20th, 2015] [Originally Added On: October 20th, 2015]
- Derivation of Ethnically Diverse Human Induced Pluripotent ... [Last Updated On: October 21st, 2015] [Originally Added On: October 21st, 2015]
- Purest yet liver-like cells generated from induced ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- World Induced Pluripotent Stem Cells Market - Opportunities ... [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- Induced Pluripotent Stem Cells Market 2016: Hepatocytes ... [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- The Promise of Induced Pluripotent Stem Cells (iPSCs ... [Last Updated On: September 23rd, 2016] [Originally Added On: September 23rd, 2016]
- Induced Pluripotent Stem Cells: 10 Years After the ... [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Induced Pluripotent Stem Cell Initiative | California's ... [Last Updated On: October 7th, 2016] [Originally Added On: October 7th, 2016]
- Stem Cell Basics VI. | stemcells.nih.gov [Last Updated On: October 12th, 2016] [Originally Added On: October 12th, 2016]
- Induced stem cells - Wikipedia [Last Updated On: October 18th, 2016] [Originally Added On: October 18th, 2016]
- Induced Pluripotent Stem Cells (iPS) - UCLA Broad Stem Cell [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Induced Pluripotent Stem Cells: A New Frontier for Stem ... [Last Updated On: October 27th, 2016] [Originally Added On: October 27th, 2016]
- Induced pluripotent stem cells and Parkinson's disease ... [Last Updated On: October 27th, 2016] [Originally Added On: October 27th, 2016]
- Generation of Induced Pluripotent Stem Cells with ... [Last Updated On: November 3rd, 2016] [Originally Added On: November 3rd, 2016]
- Generation of Neural Crest-Like Cells From Human ... [Last Updated On: November 14th, 2016] [Originally Added On: November 14th, 2016]
- Induced pluripotent stem-cell therapy - Wikipedia [Last Updated On: November 18th, 2016] [Originally Added On: November 18th, 2016]
- Generation of germline-competent induced pluripotent stem ... [Last Updated On: November 22nd, 2016] [Originally Added On: November 22nd, 2016]
- Induced pluripotent stem cell models from X-linked ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Live Cell Imaging of Induced Pluripotent Stem Cell ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Induced Pluripotent Stem Cells - cellapplications.com [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Why Induced Pluripotent Stem Cells Are Vital for Glaucoma ... [Last Updated On: December 3rd, 2016] [Originally Added On: December 3rd, 2016]
- Stem Cell Glossary - stemcells.nih.gov [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- Clinical potential of human-induced pluripotent stem cells ... [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- Induced stem cells - Wikiversity [Last Updated On: December 17th, 2016] [Originally Added On: December 17th, 2016]
- Induced pluripotent stem cell Wikipedia StemCell Therapy [Last Updated On: December 17th, 2016] [Originally Added On: December 17th, 2016]
- Embryonic stem (ES) cells and induced pluripotent stem ... [Last Updated On: January 17th, 2017] [Originally Added On: January 17th, 2017]
- Induced Pluripotent Stem Cell Repository | California's ... [Last Updated On: January 23rd, 2017] [Originally Added On: January 23rd, 2017]
- induced pluripotent stem cells - eurostemcell.org [Last Updated On: January 27th, 2017] [Originally Added On: January 27th, 2017]
- When C9ORF72 Silences U2, Spliceosomes Can't Find What They ... - Alzforum [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- The Stem Cell Revolution - Seeking Alpha [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Evotec in neurology iPSC drug discovery collaboration with stem-cell specialist Censo - FierceBiotech [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Treating Asthma with Stem Cells | Technology Networks - Technology Networks [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Embryonic stem cells to be available for medical use in Japan by next March - The Japan Times [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- This Study Could Help Extend the Human Lifespan - Futurism [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- Grnenthal Group: Launch of the Project - Modelling Neuron-glia Networks Into a Drug Discovery Platform for Pain ... - PR Newswire (press release) [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- The Global Market for Induced Pluripotent Stem Cells (iPSCs) should reach $3.6 Billion in 2021, Increasing at a CAGR ... - Business Wire (press... [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- SBP Scientist Receives Prestigious WM Keck Foundation Grant - Newswise (press release) [Last Updated On: July 11th, 2017] [Originally Added On: July 11th, 2017]
- Is it time to start worrying about conscious human mini-brains? - PLoS Blogs (blog) [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- A New Epigenetic Barrier to Induced Pluripotent Stem Cells - WhatIsEpigenetics.com [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- What are induced pluripotent stem cells or iPS cells? - Stem ... [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- Stem Cell Glossary - Closer Look at Stem Cells [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- CRISPR Corrects Disease Mutation in Human Embryos - Genetic Engineering & Biotechnology News (blog) [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- World's 1st trial of drug developed from iPS cells to begin - Japan ... - Japan Today [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- ASU grad students' lab skills help earn funding for cutting-edge biomedical research - Arizona State University [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- How Food Preservatives May Disrupt Human Hormones - Laboratory Equipment [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- Dopaminergic neurons derived from iPSCs in non-human primate model - Phys.Org [Last Updated On: August 12th, 2017] [Originally Added On: August 12th, 2017]
- Artificial Blood Vessels Mimic Rare Accelerated Aging Disease - Duke Today [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells Market Demands, Trends, Growth ... - MilTech [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- induced pluripotent stem cell (iPS cell) | biology ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells: Global Markets Report 2017-2021 [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- MESO-BRAIN initiative receives 3.3million to replicate brain's neural networks through 3D nanoprinting - Cordis News [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Global Induced Pluripotent Stem Cells Market: HTF Market [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells in Global Effort to ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- How Do We Get Pluripotent Stem Cells? | Boston Children's ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Fertile offspring produced from sterile mice using iPS cells - Kyodo News Plus [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- Brain Spheroids Hatch Mature Astrocytes | ALZFORUM - Alzforum [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- Breakthrough in Gene Editing Comes as Scientists Correct Disease-Causing Mutation in Human Embryo - TrendinTech [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]