Regenerative Medicine Market Analysis By Product Type, Therapeutic Category, Region And Forecast Till 2025 : Grand View Research Inc. – MENAFN.COM

(MENAFN - GetNews) According to report published by Grand View Research, The global regenerative medicine market size was estimated at USD 2.60 million in 2018 and is expected to witness a CAGR of 11.6% throughout the forecast period.

The global regenerative medicine market size is expected to reach USD 5.60 billion by 2025, expanding at a CAGR of 11.6% over the forecast period, according to a new report by Grand View Research, Inc. Regenerative medicines are expected to have a significant impact in healthcare to treat specific indications and chronic conditions. Therefore, high prevalence of cancer, neurodegenerative, orthopedic, and other aging-associated disorders coupled with increasing global geriatric population is driving the market growth. Moreover, rising prevalence of inheritable genetic diseases is anticipated to fuel the demand in the field of biotechnology field.

Market players are engaged in implementing novel protocols for the release of novel therapeutics. For instance, in July 2018, Convelo Therapeutics launched regenerative medicines for the treatment of various neurological diseases, such as multiple sclerosis.Agreements models initiated by the companies coupled with commercialization in emerging countries fuels the growth. For instance, in March 2018, Hitachi Chemical signed an agreement with the Daiichi Sankyo and SanBio Group to conduct clinical manufacturing of regenerative medicines developed by respective companies for Japanese and U.S. markets.

Regenerative medicine is anticipated to witness great attention in healthcare sector due to its wide range of applications and significant advancements tissue engineering, stem cells, gene therapy, drug discovery, and nanotechnology. For example, 3D printing is preferred over scaffold with stem cells to restore structure and functional characteristics of biological specimens.

Dermatology is estimated to hold the largest market share in terms of revenue in 2018, owing to the availability of various products and their application in simple and chronic wound healing. Oncology therapeutic category on the other hand, is projected to expand at the fastest CAGR during the forecast period owing to the presence of strong pipeline of regenerative medicines for cancer treatment.

North America held the largest regenerative medicine market share in terms of revenue in 2018 and is projected to continue its dominance in near future. A significant number of universities and research organizations investigating various stem cell-based approaches for regenerative apposition in U.S. is anticipated to propel the growth.

Request a sample Copy of the Regenerative Medicine Market Research Report @ https://www.grandviewresearch.com/industry-analysis/regenerative-medicine-market/request/rs1

Key Takeaways Of The Report :

Therapeutics emerged dominant among product segments in 2018 due to high usage of primary cell-based therapies along with advances in stem cell and progenitor cell therapies

Implementation of primary cell-based therapies in dermatological, musculoskeletal, and dental application results in highest share of this segment

Stem cell and progenitor cell-based therapies are anticipated to witness rapid growth due to high investments in stem cell research and increasing number of stem cell banks

With rise in R & D and clinical trials, key players are offering consulting services leading to lucrative growth of the services segment

Asia Pacific is projected to witness the fastest CAGR during the forecast period due to rapid adoption of cell-based approaches in healthcare and emergence of key players

Key players operating in the regenerative medicine market including AstraZeneca; F Hoffmann-La Roche Ltd.; Pfizer Inc.; Merck & Co., Inc.; Integra LifeSciences Corporation; and Eli Lilly and Company

Have Any Query? Ask Our Experts @ https://www.grandviewresearch.com/inquiry/4557/ibb

Grand View Research has segmented the global regenerative medicine market on the basis of product type, therapeutic category, and region:

Regenerative Medicine Product Type Outlook (Revenue, USD Million, 2014 - 2025)

Therapeutics & Devices

Primary Cell-bases Therapeutics

Dermatology

Musculoskeletal

Surgical

Dental

Others

Stem Cell & Progenitor Cell-based Therapeutics

Autologous

Allogeneic

Others

Cell-based Immunotherapies

Gene Therapies

Tools

Banks

Services

Regenerative Medicine Therapeutic Category Outlook (Revenue, USD Million, 2014 - 2025)

Regenerative Medicine Regional Outlook (Revenue, USD Million, 2014 - 2025)

North America

Europe

Asia Pacific

Latin America

Middle East & Africa

Browse Related Reports:

Biopreservation Market : https://www.grandviewresearch.com/industry-analysis/biopreservation-market

Molecular Cytogenetics Market : https://www.grandviewresearch.com/industry-analysis/molecular-cytogenetics-market

About Grand View Research

Grand View Research provides syndicated as well as customized research reports and consulting services on 46 industries across 25 major countries worldwide. This U.S.-based market research and consulting company is registered in California and headquartered in San Francisco. Comprising over 425 analysts and consultants, the company adds 1200+ market research reports to its extensive database each year. Supported by an interactive market intelligence platform, the team at Grand View Research guides Fortune 500 companies and prominent academic institutes in comprehending the global and regional business environment and carefully identifying future opportunities.

Media Contact Company Name: Grand View Research, Inc. Contact Person: Sherry James, Corporate Sales Specialist - U.S.A. Email: Send Email Phone: 1-415-349-0058, Toll Free: 1-888-202-9519 Address: 201, Spear Street, 1100 City: San Francisco State: California Country: United States Website: https://www.grandviewresearch.com/industry-analysis/regenerative-medicine-market

MENAFN1002202000703268ID1099679792

See the article here:
Regenerative Medicine Market Analysis By Product Type, Therapeutic Category, Region And Forecast Till 2025 : Grand View Research Inc. - MENAFN.COM

Cambridge Science Festival showcases new research at the forefront of healthcare and medicine – Cambridge Network

All events are free. Other topics covered include the impact of new and emerging global infectious diseases such as coronavirus; innovative new methods for detecting ovarian cancer; the promises and pitfalls of gene editing; the rise of antibiotic-resistant superbugs; the worlds second HIV cure; and using stem cells to regenerate damaged tissues.

Using state-of-the-art technology, researchers are now able to grow organoids miniature versions of organs. In Mini-organs in a dish: how organoids are revolutionising research (12 March), Dr Emma Rawlins, The Gurdon Institute, explains how organoids are grown and discusses why this new technology is so important for biomedical research.

Dr Rawlins said: Scientists have been growing animal and human cells in the laboratory for more than 60 years. While these lab-grown cells are a powerful research tool, providing the basis for important developments in modern medicine, including some cancer drugs, anti-HIV therapies and vaccines, they are grown in very artificial conditions and therefore dont resemble any cells in our bodies. Ten years ago, Professor Hans Clevers and colleagues in the Netherlands invented a more complex cell culture system in which mini-organs, or organoids, could be grown. This discovery has led to a worldwide revolution in cell growth.

Scientists in Cambridge are at the forefront of this research, and mini-guts, livers, lungs, kidneys, placentas and even brains are growing in labs all over the city. This ability to study cells in a more natural setting provides many new and interesting research opportunities. Organoid technology has already been used to study human embryonic development, to test personalised treatments for cystic fibrosis and to replace some of the animals used in drug testing. Scientists are now exploring its potential for growing replacement organs, repairing damaged genes and providing personalised treatments for other diseases.

Researchers are also exploring whether they can print biomaterials to repair organs amongst other healthcare benefits. In 3D printing for healthcare (14 March), Dr Yan Yan Shery Huang, Department of Engineering, gives an overview on how 3D printing technologies could transform the way implants are produced, drugs are screened or perhaps even how damaged organs are repaired.

3D printing is already making impacts on patients needing artificial limbs, where the plastic-based prosthesis can be made 'personalised' to shapes and sizes, with relatively low-cost and short production time, Dr Huang said. For 3D printed personalised implants it is more technologically demanding; although, non-biological material-based implants are making their ways to the market and patients, such as 3D printed dental implants and implants for bone structural reconstruction.

Research is now focused on overcoming challenges in using 3D printing for biological materials and even living materials like cells. Applications are focused on two main streams: bioprinting for tissue and organ function replacements, including printing a scaffold for a heart, a human ear, and a blood vessel-permeated-bioreactor; and bioprinting for drug testing pseudo-models of different levels of complexities, from brain to muscles have already been created. Research is continuing, with the aim to reduce and replace animal studies and to improve the predictive power of the models.

Hardening of the arteries is a widespread condition that is a major cause of cardiovascular disease, including heart attacks and stroke. Stroke is also linked to vascular dementia and is one of the nations major causes of adult disability there is a stroke every five minutes in the UK and costs the economy 26b per annum. This figure is expected to triple by 2035. Despite the huge impact that hardened arteries have for human health, there are still no cures. In More than a blocked pipe: the hardening of arteries and their role in stroke and heart attacks (18 March), Dr Nick Evans, Department of Medicine, and Professor Melinda Duer, Department of Chemistry, discuss their combined efforts to find better diagnoses and treatments. They reveal new research and findings on how hardened arteries can be diagnosed more precisely through PET (positron emission tomography), which is proving to be an excellent way to assess carotid calcification in patients and could lead to potential new drug treatment.

Speaking ahead of the event, Professor Duer said: To stop artery calcification, we need to stop the mineral from forming in the artery wall in the first place. We have very recently discovered that a molecule known as poly(ADP ribose), produced by cells in the artery wall that are stressed from fatty deposits around them, is responsible for initiating the formation of the mineral deposits. poly(ADP ribose) gathers calcium and sticks it to the collagen and other molecules in the artery wall, so concentrating the calcium into specific spots in the artery wall which then allows mineral to form. The exciting treatment possibility is to stop stressed cells from making poly(ADP ribose) if it works, it will be the first drug treatment for vascular calcification.

Dr Evans added: Our newly presented research also shows how we can identify the microcalcification in patients using PET and how it gives us an understanding of the different processes causing atherosclerotic plaques (the hardening of arteries) to become damaged and trigger clots to form that cause a stroke.

Scientists and researchers at the forefront of tackling ovarian cancer are also making breakthroughs. In Tackling ovarian cancer: turning the tide on one of the toughest cancers (19 March), Cancer Research UK Cambridge Institute (CRUK CI), the Department of Radiology and AstraZeneca discuss how they are rapidly turning the tide on ovarian cancer using innovative new detection methods and through new treatments, such as Olaparib which was made available in the UK in December 2019.

The new detection methods currently being researched by CRUK CI include liquid biopsy, a process that uses advanced genomic technologies to extract cancer tumour DNA fragments from patients blood plasma. The process offers earlier detection and is far less invasive for patients. Another method is virtual biopsy using state-of-the-art imaging techniques, which is also being researched by the Department of Radiology, University of Cambridge.

The final day of the Festival, Sunday 22nd March, is dedicated to health with over 50 events hosted across Cambridge Biomedical Campus (CBC). Events include Gene editing: rewriting the future! Dr Alasdair Russell, CRUK CI, talks about the CRISPR genome editing revolution, its promise and its pitfalls. In The story of HIV Public Health England and partner organisations discuss the history of HIV in England and show how we have come so far in the diagnosis, treatment and care of people living with the illness. During Open science at the Jeffrey Cheah biomedical centre, visitors can learn more about the new kids on the block on the CBC and chat with scientists about stem cells, infectious diseases, cancer and new therapies. Tours of Royal Papworth Hospital offer a look inside one of the worlds leading heart and lung hospitals and a chance to meet the outstanding teams involved in delivering patient care.

Further related health-related events:

Bookings open on Monday 10 February at 11am.

The full programme can downloaded via Cambridge Science Festival>>>

Image: Talking science with the Department of Materials Science and MetallurgyCredit: Domininkas Zalys

Keep up to date with the Festival on social media via Facebook and Twitter #CamSciFest and Instagram.

This years Festival sponsors and partners are Cambridge University Press, AstraZeneca, Illumina, TTP Group, Anglia Ruskin University, Cambridge Epigenetix, Cambridge Science Centre, Cambridge Junction, IET, Hills Road 6th Form College, British Science Week, Cambridge University Health Partners, Cambridge Academy for Science and Technology, and Walters Kundert Charitable Trust. Media Partners: BBC Radio Cambridgeshire and Cambridge Independent.

Read the rest here:
Cambridge Science Festival showcases new research at the forefront of healthcare and medicine - Cambridge Network

Biotech companies leading the way with exosome human clinical trials – Born2Invest

Testing a new therapeutic in human subjects for the first time is a major step in the translation of any novel treatment from the laboratory bench to clinical use.

When the therapeutic represents a paradigm shift, reaching this milestone is even more significant.

After years of planning, preparation and hard work to establish a base camp, starting human clinical trials is the first step towards the summit itself: gaining regulatory approval for product sales.

Exosomes tiny packets of proteins and nucleic acids (e.g. mRNA and miRNA) released by cells, that have powerful regenerative properties ranging from promoting wound healing to stimulating brain injury recovery following stroke represent just such a paradigm-shifting potential advance in human medicine.

The first commercial exosome therapeutics conference was held in Boston in September 2019 and over 15 companies participated.

This conference signals the emergence of exosomes as a new class of regenerative medicine products.

So far, just one or two of the companies working in the novel field of exosome-based therapies have reached the pivotal point and transitioned into human clinical trials. In this article we survey the field, starting with the pace-setters.

During the past few years, a handful of universities and research hospitals have carried out small scale, first-in-human Phase I clinical trials using exosomes. In each case where the study results are available, the exosome treatment was found to be safe and well-tolerated.

But the field has hotted up in the past few months, with the first companies reaching the pivotal point of testing exosome-based products in people.

On 28th January 2020, Melbourne-based Exopharm announced the first dosing under its first human clinical trial, becoming the first company to test exosomes potential for healing wounds in people.

The PLEXOVAL Phase I study will test Exopharms Plexaris product, a cell-free formulation of exosomes from platelets, which in preclinical animal studies have shown a regenerative effect, improving wound closure and reducing scarring.

The main readouts of the PLEXOVAL study the results of which are expected to be available sometime after mid-2020 will be safety, wound closure and scarring.

Joining Exopharm at the front of the pack is Maryland-based United Therapeutics.

Founded in 1996, United Therapeutics specialises in lung diseases and has a portfolio of FDA-approved conventional small molecule and biologic drugs on the market for a range of lung conditions.

On 26th June 2019, United Therapeutics announced approval for a Phase I trial (NCT03857841) of an exosome-based therapy against bronchopulmonary dysplasia (BDP), a condition common in preterm infants that receive assisted ventilation and supplemental oxygen.

Recruitment has commenced but dosing has not been announced. The study is due to conclude by December 2021. BDP is characterised by arrested lung growth and development, with health implications that can persist into adulthood.

Human clinical trials of a stem cell therapy for BDP, by Korean stem cell company Medipost, are already underway. However as with many stem cell therapies recent animal studies have shown that is the exosomes released by stem cells that are responsible for the therapeutic effect.

United Therapeutics therapy, UNEX-42, is a preparation of extracellular vesicles that are secreted from human bone marrow-derived mesenchymal stem cells. The company has not released any information about how its exosomes are produced or isolated.

A little behind the two leaders, three other companies have announced their aim to initiate their first clinical trials of exosome therapeutics within the next 12 months.

Launched in 2015, Cambridge, Massachusetts-based Codiak has long been considered among the leaders in developing exosome-based therapies.

Rather than exploiting the innate regenerative potential of select exosome populations, Codiak is developing engineered exosomes that feature a defined therapeutic payload. The companys initial focus has been to target immune cells, leveraging the immune system to combat cancer.

The company plans to initiate clinical trials of its lead candidate, exoSTING, in the first half of 2020. The therapeutic is designed to trigger a potent antitumor response from the patients own immune system, mediated by T cells. A second immuno-oncology candidate, exoIL-12, is due to enter clinical trials in the second half of 2020, the company says.

In nearby New Jersey, Avalon Globocare is also developing engineered exosomes. Its lead product, AVA-201, consists of exosomes enriched in the RNA miR-185, which are produced using engineered mesenchymal stem cells.

In animal tests, miR-185 suppressed cancer cell proliferation, invasion and migration in oral cancer. In July 2019, the company announced plans to start its first exosome clinical trial before the close of 2019. As of February 2020, however, no further announcement regarding this clinical trial has been made.

Avalon has also made no further announcement on a second planned clinical trial, also intended to start during the fourth quarter of 2019, of a second exosome candidate, AVA-202.

These angiogenic regenerative exosomes, derived from endothelial cells, can promote wound healing and blood vessel formation, the company says. The planned Phase I trial was to test AVA-202 for vascular diseases and wound healing.

Meanwhile, Miami-based Aegle Therapeutics plans to begin a Phase I/IIa clinical trial of its exosome therapy, AGLE-102, during 2020. AGLE-102 is based on native regenerative exosomes isolated from bone marrow mesenchymal stem cells.

After initially focussing on burns patients, in January 2020 to company announced had raised the funds to commence an FDA-cleared clinical trial of AGLE-102 to treat dystrophic epidermolysis bullosa, a rare paediatric skin blistering disorder. The company says it plans to commence this clinical trial in the first half of 2020.

A number of companies are in the preclinical phase of exosome therapy research.

Some of these companies have been set up specifically to develop exosome-based products. In the UK, Evox co-founded by University of Oxford researcher Matthew Wood in 2016 is developing engineered exosomes to treat rare diseases.

The company has developed or sourced technology that allows it to attach proteins to exosomes surface, or to load proteins or nucleic acids inside the exosome, to deliver a therapeutic cargo to a target organ.

Its lead candidate targets a lysosomal storage disorder called Niemann-Pick Disease type C, using exosomes that carry a protein therapeutic cargo. Evox says it plans to submit the Investigational New Drug (IND) application to the FDA during 2020, paving the way for the first clinical trial. It currently has five other candidates, for various indications, at the preclinical stage of development.

In Korea, Ilias and ExoCoBio are developing exosome therapeutics. Ilias founded by faculty from the Korean Advance Institute of Science and Technology specialises in loading large protein therapeutics into exosomes.

It is currently carrying out preclinical research toward treating sepsis, preterm labour and Gauchers disease. ExoCoBio is focusing on the native regenerative capacity of exosomes derived from mesenchymal stem cells, including to treat atopic dermatitis.

New companies continue to enter the exosome space. In August 2019, Carmine Therapeutics was launched, with the aim to develop gene therapies that utilize exosomes from red blood cells to deliver large nucleic acid cargoes. The company is targeting the areas of haematology, oncology and immunology.

Meanwhile, a wave of companies originally set up to develop live stem cell therapies are diversifying into stem cell derived exosome production and research.

It is now generally acknowledged that stem cell exosomes are the main therapeutically active component of stem cells, and that medical products based on exosomes will be safer to apply, and easier and cheaper to make and transport, than live cell therapies.

Originally established to produce neural stem cells for other research organisations, Aruna Bio has developed proprietary neural exosomes that can cross the blood brain barrier.

The company is now developing an exosome therapy for stroke. In October 2019, the Athens, Georgia-based company said had raised funding to support the research and development to enable its first IND application to the FDA in 2021.

In the UK, ReNeuron has also focussed on stroke, and has several clinical trials underway assessing its CTX stem cells to promote post stroke rehabilitation. The company is also working with third parties to investigate the drug- and gene therapy delivery potential of exosomes derived from CTX stem cells.

Switzerland-based Anjarium is also developing an exosome platform to selectively deliver therapeutics.20 The company is focussing on engineering exosomes loaded with therapeutic RNA cargo and displaying targeting moieties on its surface.

California-based Capricor has commenced clinical trials of a cardiosphere-derived stem cell therapy for the treatment of Duchenne muscular dystrophy (DMD).

At an earlier phase, its regenerative exosome therapy CAP-2003 is in pre-clinical development for a variety of inflammatory disorders including DMD.

A number of other stem cell companies, including TriArm, Creative Medical, AgeX Therapeutics and BrainStorm Cell Therapeutics, are reported to be investigating exosome-based therapies derived from their stem cell lines.

Exopharms position as a frontrunner in bringing exosomes into humans is no lucky accident. The companys operations are based around its unique, proprietary method for manufacturing and isolating exosomes, known as LEAP technology.

As academics and observers of the exosome field have pointed out, reliable and scalable exosome manufacture has threatened to be a major bottleneck that limits the translation of exosome therapeutics into clinical use. The standard laboratory-scale method for collecting the exosomes produced by cultured cells has been to spin the liquid cell culture medium in an ultracentrifuge, or pass it through a fine filter.

The most common technique used so far, the ultracentrifuge, has major scalability limitations. Issues include the high level of skill and manual labour required, the time-intensive nature of the process, and the associated costs of reagents and equipment. It is impossible to imagine collecting enough exosomes for a late stage clinical trial this way.

Another issue is the low purity of the exosomes collected. These techniques sort the contents of cell culture medium by their mass and/or size. Although the exosomes are concentrated, they could be accompanied by other biological components present in the cell culture medium that happen to be a similar size or mass to the exosome.

Importantly, a biotechnology company needs a proprietary step in the process to make a proprietary product over which it has exclusivity. Exopharms LEAP technology is a good example of a proprietary manufacturing step. Ultracentrifuge is not a proprietary process.

So the big players in the emerging exosome field have generally placed a strong emphasis on developing their manufacturing and purification capability.

Exopharm developed a chromatography-based purification method, in which a patent-applied-for inexpensive functionalised polymer a LEAP Ligand is loaded into a chromatography column. The LEAP Ligand sticks to the membrane surface of exosomes passed through the column. Everything else in the cell culture medium mixture is simply washed away. The pure exosome product is then eluted from the column and collected for use. As well as being very scalable, the technique is versatile. LEAP can be used to produce a range of exosome products, by isolating exosomes from different cell sources.

Codiak, similarly, says it has developed scalable, proprietary chromatography-based methods to produced exosomes with comparable identity, purity, and functional properties as exosomes purified using methods such as ultracentrifugation. Chromatography is a flow-based technique for separating mixtures. In an April 2019 SEC filing, the company said it is establishing its own Phase 1/2 clinical manufacturing facility, which it is aiming to have fully-operational by first half 2020.

Avalon GloboCare teamed up with Weill Cornell Medicine to develop a standardised production method for isolating clinical-grade exosomes. Aegle also says it has a proprietary isolation process for producing therapeutic-grade exosomes. And Evox emphasises the GMP compliant, scalable, commercially viable manufacturing platform it has developed.

At Exopharm, the manufacturing technique that has allowed the company to leap ahead of the pack and into human clinical trials is its proprietary LEAP platform. Overcoming the exosome production and isolation bottleneck was exactly the problem the companys scientists set out to solve when Exopharm formed in 2013.

In addition to the Plexaris exosomes, isolated from platelets, currently being tested in human clinical trials, Exopharm is progressing toward human clinical trials of its second product, Cevaris, which are exosomes isolated from stem cells.

Exosomes are now under development by around 20 companies across the world. The leaders in the field are now entering clinical trials with both nave exosome products and engineered exosome products. A number of cell therapy companies are also moving across into the promising exosome product space.

The coming years promise dynamic changes, with partnerships and eventually product commercialization. Exopharm is a clear leader in this emerging field.

(Featured image by Darko Stojanovic from Pixabay)

DISCLAIMER: This article was written by a third party contributor and does not reflect the opinion of Born2Invest, its management, staff or its associates. Please review our disclaimer for more information.

This article may include forward-looking statements. These forward-looking statements generally are identified by the words believe, project, estimate, become, plan, will, and similar expressions. These forward-looking statements involve known and unknown risks as well as uncertainties, including those discussed in the following cautionary statements and elsewhere in this article and on this site. Although the Company may believe that its expectations are based on reasonable assumptions, the actual results that the Company may achieve may differ materially from any forward-looking statements, which reflect the opinions of the management of the Company only as of the date hereof. Additionally, please make sure to read these important disclosures.

Read more here:
Biotech companies leading the way with exosome human clinical trials - Born2Invest

Colombian Wound Care Market Research Report: By Product, Wound Type, End – User, Distribution Channel – Industry Analysis and Forecast to 2024 -…

DUBLIN--(BUSINESS WIRE)--The "Colombian Wound Care Market Research Report: By Product, Wound Type, End - User, Distribution Channel - Industry Analysis and Forecast to 2024" report has been added to ResearchAndMarkets.com's offering.

Registering a CAGR of 3.6% during the forecast period (2019-2024), the Colombian wound care market is predicted to reach $93.9 million by 2024, witnessing a substantial increase in its revenue from $76.1 million in 2018.

Taking the geography of the country into consideration, the largest market share in the Colombian wound care market is expected to be held by the state of Cundinamarca. This is mainly ascribed to the increasing research & development activities and rising expenditure on healthcare due to supportive government policies and initiatives. Other states, such as Bolivar, Atlntico, Valle del Cauca, Santander, and Antioquia also hold significant shares in the market on account of the surging incidence of traumatic injuries, burns, and diabetic wounds as well as rising geriatric population.

The Colombian wound care market is witnessing growth due to the rising focus on healthcare services. The wound care facilities in Colombia are witnessing a surge in demand as both the public and private organizations are increasing healthcare coverage. An article published in the Health and Human rights journal in 2016, mentioned that in the country, the healthcare coverage witnessed a remarkable increase during 1991-2016; starting from 25% population in 1992, the health cover facilities were available to 96% population in 2016. This is indicative of the rising focus of the government on providing excellent healthcare facilities and means to the residents of the country.

Stem cell therapy in wound management is becoming the trend in the Colombian wound care market. Extensive research on stem cells has established their remarkable regenerative abilities, which may help in speeding up the wound healing process. A biotechnology company, BioXcellerato LLC, has its treatment center in Colombia by the name of Torre Medica El Tesoro that provides stem cell treatment for various cosmetic and other conditions. Further, it is involved in stem cell therapy and regenerative medicine research for finding prospective treatments for wound and other skin disorders.

Key Topics Covered:

Chapter 1. Research Background

1.1 Research Objectives

1.2 Market Definition

1.3 Research Scope

1.3.1 Market Segmentation by Type

1.3.2 Market Segmentation by Wound Type

1.3.3 Market Segmentation by End User

1.3.4 Market Segmentation by Distribution Channel

1.3.5 Market Segmentation by Geography

1.3.6 Analysis Period

1.3.7 Market Data Reporting Unit

1.3.7.1 Value

1.3.7.2 Volume

1.4 Key Stakeholders

Chapter 2. Research Methodology

2.1 Secondary Research

2.2 Primary Research

2.2.1 Breakdown of Primary Research Respondents

2.2.1.1 By industry participant

2.2.1.2 By company type

2.3 Market Size Estimation

2.4 Data Triangulation

2.5 Assumptions for the Study

Chapter 3. Executive Summary

Chapter 4. Introduction

4.1 Market Definition

4.2 Regulatory Overview

4.3 Market Dynamics

4.3.1 Trends

4.3.2 Drivers

4.3.3 Restraints

4.3.4 Opportunities

4.4 Porter's Five Forces Analysis

Chapter 5. Colombia Wound Care Market

5.1 By Type

5.2 By Wound Type

5.3 By End User

5.4 By Distribution Channel

5.5 By State

5.6 By City

Chapter 6. Competitive Landscape

6.1 Company Benchmarking

6.2 Strategic Developments of Key Players

Chapter 7. Company Profiles

7.1 B. Braun Melsungen AG

7.2 BSN medical GmbH

7.3 Coloplast A/S

7.4 3M Company

7.5 Acelity L.P. Inc.

7.6 Smith & Nephew PLC

7.7 ConvaTec Group PLC

7.8 Paul Hartmann AG

7.9 Mlnlycke Health Care AB

7.10 Hollister Incorporated

7.11 Tecnoquimicas SA

7.12 Beiersdorf AG

7.13 Johnson & Johnson

For more information about this report visit https://www.researchandmarkets.com/r/p28fze

More:
Colombian Wound Care Market Research Report: By Product, Wound Type, End - User, Distribution Channel - Industry Analysis and Forecast to 2024 -...

Patients guide to stem cell treatments top 10 list …

For better or worse, I am in the unique position of being a stem cell scientist and also a former cancer patient. Looking on the bright side this gives me a unique perspective on things compared to many of my colleagues.

I know there are thousands of people out there looking for more practical information about stem cell therapies and treatments. These folks understandably are using the Internet to look for some clear, good info on stem cell treatments either for themselves or their loved ones. Too often the info that is out there is either wrong, partially misleading, biased, or overly complex.

So in this post I want to address this need for trustworthy factual information and no-nonsense perspectives. I am speaking as a scientist, patient advocate and cancer survivor in the form of 10 key realties list belowto help you guide your way through the jungle of stuff out there about stem cells. As mentioned above, I have now updated this post for 2016 as some things have changed in big waysin just the past few years. Keep in mind this is not medical advice and you should absolutely talk to your personal doctor with whom you should make your own decisions.

1) Stem cells are often essentially a type of drug and possibly permanent in your body after a transplant.Yeah, stem cells can be extremely unusual drugs, but they are often drugs even if some argue they arent. The FDA considers them drugs in many cases. In other cases, such as the use of bone marrow stem cells used for orthopedic conditions, stem cells may not be drugs. Unlike other drugs, once a patient receives a stem cell drug, it will not necessarily simply go away like other drugs because a stem cell drug consists of living cells that often behave in unpredictable ways. What this means is if the stem cells are doing bad things your doctor has no way to stop it. You have no way to stop it. Also because stem cells are alive they can grow inside your body, move around, and change. This can be helpful or harmful, but the big point is that it is not something that is controllable or reversible.

2) Side effects.Like any medical product, even aspirin,stem cells treatments will have side effects. Not maybe. Definitely. Our hope is the side effects will be relatively mild and so mild that you dont even notice. Different kinds of stem cells have variable risk profiles, but if someone tells you that the stem cell treatment they are selling has no risks then that is a big red flag and I would walk away. They are either woefully lacking in knowledge or arent being honest with you. Sometimes clinics will either on their websites or in person acknowledge risks almost as sort of a disclaimer, but then theyll tell more casually that there arent really any risks. A common statement is The only risk is that it wont work. Thats false.

3)The only stem cell treatment explicitly approved by the FDA for use in the U.S. consists of versions of bone marrow/hematopoietic stem cell transplantation.What this means is that any other stem cell treatment you see advertised on Facebook or Google or elsewhere that indicates it will be given to you inside the U.S. is not FDA approved. The exceptions to this are if it is part of an FDA-approved clinical trial or it is using stem cells in a procedure that meets other criteria (e.g. being both homologous use and minimally manipulatedyeah I know these are jargon terms).

4)If you venture outside the U.S. for a stem cell treatment, use extra caution, but in 2016 also be very careful inside the U.S.Whether you travel abroad or closer to home, have a knowledgeable physician inside the U.S. guiding you, preferably your primary care doctor who mot often are not going to buy into hype. We have to avoid the trap of thinking that only the U.S. can offer advanced medical treatments and these days many American patients get their stem cell transplants here in the U.S. from dubious clinics.

5)Stem cells are not a cure-all.I am as excited as anybody about the potential of stem cells to treat a whole bunch of diseases and injuries, but they are not some kind of miracle cure for everything. When a doctor offers to inject some kind of stem cells into a patient either into the bloodstream or into a specific place that is injured such as a shoulder, we just do not know at this point if it will do any good with the exception of bone marrow transplant. You should start getting worried if the clinic tells you that one kind of stem cell such as fat, bone marrow, or amniotic stem cells can treat many different conditions. Theres no science behind that kind of claim. Stem cells are not a panacea.

Patients often mention to me that the doctors offering stem cell treatments told them that the treatments are proven safe.or that your own stem cells cannot harm youor that adult stem cells are harmless. I often tell people to think about how much research and how many questions they ask when looking to get a new car. You should bring at least that level of intensity (ideally much more) to getting info about stem cell transplants too as the stakes are even higher.Be skeptical. Ask many questions and if you arent convinced, then dont do it.

6)Dont let celebrities be your guide to medical care.The number of famous people getting stem cell treatments is increasing including sports stars and politicians. Dont let what these folks do influence what you decide to do about your health. Just because they are famous do not believe for one minute that they are any more informed than you or your personal doctor about medical treatments or stem cells. If anything I think sometimes famous people are more reckless with their health than average people like you and me.

7)Reach out to scientists as a source of info.As a scientist I am always happy to hear from people outside the scientific community with questions about stem cells and other research. I cant speak for all stem cell scientists but you might be surprised at how likely it is that if you send them a very short, clear email with one or two questions that they will respond and be helpful. We cant or shouldnt offer medical advice, but we can give our perspectives on stem cell research and its clinical potential, etc. Just do not cold call scientists as you are unlikely to find them that way and even if you do, they may be cranky. Email. If they dont reply try someone else and dont be offended they we didnt answer. Often times we may not answer because we are super busy. For instance, I often get more than 100 emails a day.

8)The people selling you non-FDA approved stem cell treatments want your money.As such they will do their best to convince you that their treatment is safe and effective. The more convincing they are then the more money they make. They may offer patient testimonials either from patients who truly believe they were helped or from people who are paid to say the treatment helped them. The bottom line is that the sellers of dubious stem cell treatments are generally in it for the big bucks. Admittedly I do think that some of these providers truly believe stem cells are helpful, but youll never see even them offering to give patients the cells at cost. These are instead very much for-profit operations.

9) NEWJust because something is called a stem cell clinical trial doesnt mean it really is and being listed on clinicaltrials.gov means a lot less than it used to.I am contacted weekly or even daily at times by patients or their families and they are rightly focused on getting information that they can trust. Many stem cell clinics call the treatments that they offer by the name clinical trial and thats often misleading. In the standard meaning of clinical trial the experimental therapy being tested has the FDAs approval to be used in the study, there are data supporting the study, and those doing the trial do not charge patients to be in it. You shouldnt have to pay to be a guinea pig. I think thats almost always going to be unethical on the part of those giving it. I often suggest that people turn to the federal website clinicaltrials.gov for information and that is still a great resource, but be aware that many pseudo-clinical trials are popping up on there that are really mostly about making money. They do not have FDA approval in many cases and there are other issues of concern. So even on that website use caution.

10)The most important thing is information/data and you have a right to see it before treatment.Before you or a loved one get a stem cell treatment, ask two key questions. First, is the treatment FDA approved and if not, why not? Second, can you please show me the data that proves your treatment is safe and effective? See what kind of answer you get. If they demonize the FDA or invoke a plot by big pharma to block stem cells then that is a warning flag. If they refuse to show you data, then that is a big red warning flag. They may say it is confidential or that it is not published yet, but as a patient you have a right to see the data, assuming they have any data at all.

These facts will likely change over the coming years, but right now I think they represent reality. I know as patients we need hope, but these unapproved stem cell treatments will at best take your money for nothing, and at worst will endanger you or your loved ones.

The post above is for information only and is not medical advice. All medical decisions should be made by patients in consultation with their personal physicians.

Originally posted here:
Patients guide to stem cell treatments top 10 list ...

Blood In The Joint – Economic Times

When a major injury occurs, the joint swells. Part of the swelling is good, and part is bad. Lets look at what can be done to optimize the outcome.

Joint swelling after an injury is usually due to blood vessels being broken as tissue tears. These tears leak blood into the joint, which already holds about a milliliter of synovial (joint) fluid. Blood contains both healing factors and inflammatory agents, the latter mainly white blood cells. The swollen joint becomes inflamed, heated by the rush of blood into the joint spaces, and additionally swollen with the extracellular fluid that surrounds cells in normal tissue. This chicken soup of bioactive factors sends siren calls to the stem cells located throughout the body. These stem cells mobilize to the joint, fulfilling a range of key functions to stimulate the healing response.

So: What are the fluids that we want to have in the joint and which ones do we not want there?

As with most of biology, there are positive and negative aspects to each response. The white blood cells are primarily responsible for the inflammatory response and produce pain and more swelling. On the positive side, however, white cells are scavengers. They consume any foreign body or bacteria, clearing our injured tissues of some of the detritus produced when collagen tissue is ruptured.

The red blood cells carry oxygen to the damaged and healing tissue. Oxygen is required for most tissues to repair themselves. Sometimes, as with hyperbaric chambers, additional oxygen is provided to accelerate the healing. Red blood cells, however, have a toxic effect on articular cartilage, which is normally avascular (i.e., lacking blood vessels). Repeated exposure to these cells (hemarthrosis) becomes toxic to articular cartilage, leading to arthritic joints. People suffering from hemophilia, for example, have frequent episodes of bleeding into their joints, due to their deficient clotting mechanism, and unfortunately, frequently get joint arthritis.

Still smaller particles, called platelets, are packed with granules that contain potent growth factors. The platelets release their growth factor packets at the site of collagen injury. These factors stimulate the healing response, much as anabolic steroids stimulate muscle building. Other bioactive factors in the platelet granules are chemotacticmeaning they send out signals that recruit other cell types, such as macrophages, which eat the torn tissues and damaged cells. They induce the first type of macrophage to become Type II macrophages, which are directly involved in tissue repair. Several of these bioactive factors are the most potent stem cell recruitment compounds ever discovered. Since everyone has billions of stem cells living on their blood vessels, these factors do a great job of ramping up the healing response.

Now the question becomes: When you injure your joint and the joint swells, should the doctors draw off the blood and fluid? The answer is sometimes yesif it makes you feel better and lessens the pain from the swelling. But your doctor should then spin the aspirate down in a centrifuge, removing the white and red blood cells and concentrating the platelets. These platelets, with their multiple growth factor packets, can then be reinjected into the joint.

The next question is: Should all injured joints be injected with bioactive factors to accelerate healing? The answer is coming, as our research in this field continues. My intuition is yes: We will not let injured joints become arthritic if we can change the course of the injury from devastating to just inconvenient with a rapid return to normal. If we aim to reach age 100 playing the sports we love, we cant afford to let sports injuries become fatal for the joints.

DISCLAIMER : Views expressed above are the author's own.

Read the original post:
Blood In The Joint - Economic Times

Omeros: 2 Major Catalysts On The Horizon – Seeking Alpha

Back in the thirties we were told we must collectivize the nation because the people were so poor. Now we are told we must collectivize the nation because the people are so rich. William F. Buckley Jr.

Today, we revisit a 'Tier 3' biotech stock whose stock has been under some recent pressure. However, it has two potential significant catalysts on the horizon. We update our investment case on this intriguing small-cap concern in the paragraphs below.

Omeros Corporation (OMER) is a Seattle based commercial-stage biopharmaceutical concern focused on the development of small molecule and protein therapeutics for the treatment of inflammation, complement-mediated diseases, central nervous system disorders, and immune-related diseases, including cancer. The company has one commercial asset, one late-stage candidate being evaluated for three indications, and several early and preclinical compounds. Omeros was formed in 1994 and went public in 2009, raising net proceeds of $61.8 million at $10 a share. The company completed a secondary offering at $13.10 in December 2019 following the release of positive data on its late-stage candidate, OMS721 (narsoplimab). The current market capitalization of OMER is just under $700 million.

Product:

Omidria. Omeros revenue is generated from Omidria, a phenylephrine and ketorolac intraocular solution that is approved for use during cataract surgery or intraocular lens replacement to maintain pupil size by preventing intraoperative miosis (pupil constriction) and reducing postoperative pain. Omidria was launched in 2015 and in 2017 generated net revenue of $64.8 million. However, the Centers for Medicare and Medicaid Services (CMS) determined to let its separate reimbursement under Medicare Part B expire on January 1, 2018, causing sales to plummet ~90%. Fortunately for Omeros, an act of Congress circumvented the CMS and reinstated its pass-through status for two years starting October 1, 2018. Omidria sales rebounded, likely eclipsing $110 million in 2019.

The reason for the pushback from the CMS regarding Omidria has to do with the fact that its active ingredients (phenylephrine and ketorolac) have been around for decades and a similar solution can be prepared by surgeons at a fraction of Omidrias cost. Omeros continues to pursue permanent separate reimbursement for Omidria and the CMS left the door open, indicating a need to find non-opioid alternatives. However, despite the company providing evidence demonstrating Omidria use reduced the need for fentanyl by nearly 80%, the CMS own study suggested otherwise, and it declined to grant Omidria separate payment status. News of this rejection sent shares 16% lower on November 4, 2019.

The CMS continues to analyze and monitor Omidria, and Omeros will exhaust all legislative and administrative avenues to secure permanent or similar status before the September 2020 expiration, including bipartisan anti-opioid legislation that could grant Omidria separate payment status for up to an additional five years. Management remains confident in its ability to gain permanent or similar status beyond September 2020. If it does not prevail, the blow to its top line will be harsh but not likely as severe as in 2018, owing to Omidria receiving its own J-Code in October 2019, which expands separate payment across commercial Med Advantage and Medicaid insurers, as well as in the office setting.

It goes without saying that Omidrias status will alter by a number of years how fast the company will achieve cash-flow positive levels.

Pipeline:

OMS721. In the meantime, Omeros has initiated a rolling BLA for OMS721, its monoclonal antibody (MAB) targeting mannan-binding lectin-associated serine protease-2 (MASP-2), a protein involved in the activation of the complement system, a branch of the bodys immune system that destroys and removes foreign particles and is engaged in the bodys inflammatory response. OMS721 is currently being evaluated in the treatment of three diseases that are all the result of complement system dysfunction.

The indication for which Omeros is filing a BLA is hematopoietic stem cell transplant-associated thrombotic microangiopathy (HSCT-TMA), a multifactorial disorder induced by systemic vascular endothelial injury that can be triggered by several mechanisms during the transplant process. It occurs in ~40% of the ~60,000 patients undergoing allogenic HSCT in the U.S. and EU annually and is characterized by aggressive blood clotting usually resulting in acute renal failure. Severe cases have a mortality rate north of 90%. There are currently no approved therapies for HSCT-TMA.

That may change as the FDA was impressed enough with February 2018 interim data from OMS721s Phase 2 HSCT-TMA trial, in which median overall survival in 19 patients improved to 347 days versus the historical norm of 21 days (p<0.0001), to treat the small proof-of-concept study as registrational. Omeros released additional data on December 4, 2019, showing OMS721 demonstrated a 68% complete responder rate and a 100-day mortality rate of 19% versus the historical norm of 53% in HSCT-TMA patients who received at least four weeks of dosing. This prompted a 6% rally in shares of OMER, the trading session before the secondary offering was announced.

It should be noted that there are other candidates in the clinic for the HSCT-TMA indication, including Alexions (ALXN) already approved (for other indications) C5 inhibitor Ultomiris. However, Alexion is well behind, planning to initiate a Phase 3 trial (pending FDA feedback) in 1H20. The same can be said regarding Akari Therapeutics (AKTX) nomacopan, which plans to initiate a Phase 3 pediatric study in 1Q20. These schedules should give OMS721 a significant jump on any competition, which should have its BLA completed in 1H20. In addition to Breakthrough Therapy designation from FDA, OMS721 has Orphan drug status in both the U.S. and Europe and will likely receive a priority review from the FDA for HSCT-TMA.

OMS721's second most advanced indication is Immunoglobulin A (IGA) nephropathy, an ailment characterized by inflammation and kidney damage due to a buildup of the IgA antigen that affects 130,000150,000 people in the US and ~200,000 people in Europe with no approved remedies. After positive data from a very small Phase 2 study in which OMS721 reduced proteinuria in IgA nephropathy patients by 50-90%, Omeros finalized the particulars of a Phase 3 trial with the FDA in January 2019. The trials primary endpoint is the same: the relatively novel reduction in proteinuria levels at week 36. By obtaining approval on this endpoint (versus say renal function as measured by estimated glomerular filtration rate), it could potentially shorten the approval process by several years. Enrollment in the ~280-patient study is ongoing and accelerating. For this indication, OMS721 has received Breakthrough Therapy designation from the FDA and Orphan status in both the U.S. and EU.

To date, OMS721 has not been menaced by any significant safety or tolerability issues, which will help it in its pursuit of approval in the treatment of atypical hemolytic uremic syndrome (aHUS), a very rare disorder characterized by uncontrolled activation of the bodys complement system, manifesting itself in strokes, heart attacks, and kidney failures. Approximately 65% of patients diagnosed with aHUS die, require dialysis, or incur permanent renal damage within one year after diagnosis. The only approved treatment on the market is Alexions mAb Soliris, which has a Black Box warning due to risk of fatal infections as a result of suppression of the immune system. In most instances, patients must be immunized with a meningococcal vaccine at least two weeks prior to first administration of Soliris.

Armed with Fast Track and Orphan designations, Omeros only needs to conduct a 40-patient, single-arm (i.e., no control group), open-label Phase 3 trial to satisfy both the FDA and EMA for accelerated and full approvals, respectively. To achieve full approval in the U.S., OMS721 will need to add ~40 patients to the study. The issue confronting Omeros is that the trial began enrollment in 4Q16 and three years later management has not provided any definitive timetable regarding the trials progress, providing a frustrating connotation of accelerated approval for investors.

OMS527. Omeros other clinical asset is OMS527, which is being investigated in patients with addictions and compulsive disorders. After a successful Phase 1 study readout in 3Q19, OMS527 is expected to enter a Phase 2a trial in 2020 with a focus on nicotine addiction.

OMS906 and GPR174. The company also has assets that have demonstrated promise in the pre-clinic. OMS906 is a MASP-3 inhibitor for paroxysmal nocturnal hemoglobinuria and other alternative pathway disorders. Pre-clinical research on GPR174 inhibition has displayed promise in immuno-oncology. OMS906 is expected to enter the clinic in 1H20; GPR174 inhibitors will see the clinic when the company has more resources.

On that front, Omeros raised net proceeds of $54.5 million in a December 2019 secondary, which should leave it with ~$70 million at YE19. It has convertible debt with a face value of $210 million ($155 million carrying value) due 2023. The company also has an untapped vehicle through which it can borrow 85% of its receivables up to $50 million. Its cash runway will be contingent on securing separate payment status for Omidria post-September 2020 and the cadence of its development programs.

Like the investment community, Street analysts are somewhat split on Omeros prospects with one outperform rating sandwiched in between two buys and two holds. Their median twelve-month price target, however, is around $25 a share.

There are some unknowns regarding Omeros. Besides Omidrias status, the timing surrounding the completion of two of its pivotal OMS721 trials is still unclear in one instance, after three years. What does seem clear is that the FDA wants to approve OMS721. Given the lack of approved remedies for these complement systems diseases, OMS721 has relatively low hurdles to jump. If eventually approved for all three indications, OMS721 has blockbuster potential. If Omidria obtains five years of separate payment status, it will pave the way for Omeros to finance its own R&D without any more trips to the capital markets. With many shots on goal and what appears to be a helping hand from the FDA, continued investment in the shares of OMER is merited.

Idealism is fine, but as it approaches reality, the costs become prohibitive. William F. Buckley

Bret Jensen is the Founder of and authors articles for the Biotech Forum, Busted IPO Forum, and Insiders Forum

The Biotech Forum sports one of the liveliest collections of seasoned biotech investors on Seeking Alpha along with a 20-stock model portfolio. Join us during every trading day on Live Chat where the community swaps trading ideas, breaking news and opinions around all things Biotech. Initiate your risk-free, two week trial into The Biotech Forum by clicking HERE.

Disclosure: I am/we are long ALXN,OMER. I wrote this article myself, and it expresses my own opinions. I am not receiving compensation for it (other than from Seeking Alpha). I have no business relationship with any company whose stock is mentioned in this article.

Read more here:
Omeros: 2 Major Catalysts On The Horizon - Seeking Alpha

PRACTICALLY ACTIVE: Screening is a smart way to start a healthier life – NWAOnline

I've been endeavoring to eat healthfully these days, but sometimes it seems like an uphill battle. I'm eating fewer carbohydrates and have noticed an improvement in my blood glucose levels. But there are those times i check "my sugars," and when they are too high, I can usually trace it back to something i ate.

I try not to eat too late at night, and if I do, I try to go for something that offers a good amount of protein. But there are other times that I get into something I shouldn't. Thankfully, after all these years, I've finally let it sink in that beating myself up for that does not help. I'm too old to deprive myself and old enough to know I need to do better for my health, my family and my future.

I had a physical a few years ago from stem to stern. I had a mammogram as well and got a pretty good report, considering I'm diabetic. I've worked to clean up my cholesterol. I do have blood pressure concerns, but at least I know about it and can work to improve my situation.

Insurance is expensive and out-of-pocket costs can stop us cold. How many people just endure health problems because they don't have the funds or insurance coverage? How many people have high insurance premiums and high deductibles to the point that their policy is basically something to have in case of a catastrophic event? Millions.

If you can't afford a full physical, there are options. It takes some investigative work and diligence, but there are clinics and nonprofit hospitals that could help.

While watching TV the other day, I saw a commercial for free health screenings courtesy of the Arkansas Minority Health Commission (arminorityhealth.com). It's part of the Arkansas Department of Health. They screen for blood pressure, body mass index and blood glucose. Screening is a good place to start to get a grip on your health.

The screenings, which are open to everyone, are offered on the first Wednesday of every month from 10 a.m. to 2 p.m. at 1501 S. Main St., Suite A, Little Rock. For information, call (501) 686-2720.

I always wished I was a person who loved to exercise. As children, my sisters and I played outside for hours on end. But that was playing, I wanted to do it. These days I don't want to exercise, and I don't enjoy it. Some days I'm worn out by the time I get home. But I'm trying to let it sink in that for my health and well-being, I need to stop being so sedentary.

I know how important health care, exercise and healthful eating are to longevity. But it takes effort, and I have to really work on my motivation.

One aspect of health that I often don't consider is mental, especially in regard to aging. While diseases like Parkinson's or Alzheimer's might affect us regardless of our physical health, there are other problems that could beset us because we get stagnant and, dare I say it, lazy.

I ran across an article on the Mayo Clinic website about the association between cardiorespiratory fitness and brain health, particularly in gray matter and total brain volume, loss of which is involved in cognitive decline and aging.

Brain tissue is made up of gray matter, or nerve cell bodies, and nerve filaments, called white matter, that extend from the cells. It was found that increases in peak oxygen uptake were strongly associated with more gray matter volume.

According to Dr. Ronald Petersen, a Mayo Clinic neurologist, there is indirect evidence that regular aerobic exercise can have a positive impact on cognitive function, in addition to physical conditioning.

Cardiorespiratory fitness is a measure of how well your body is able to transport oxygen to your muscles during prolonged exercise, and how your muscles are able to absorb and use oxygen.

The experts recommend moderate and regular exercise about 150 minutes a week. The recommended exercises include things like running/jogging, swimming, cycling, aerobics and jumping rope. Choose an exercise that involves fast movements for an extended period of time. You can choose a variety of types to keep your training routine from growing stale.

Now, I'm on to finding workouts to suit my mobility limits. I've had results from chair workouts that include weight-bearing exercises too. I'll share what I find with you.

Email me at:

rboggs@adgnewsroom.com

Style on 02/10/2020

Read more from the original source:
PRACTICALLY ACTIVE: Screening is a smart way to start a healthier life - NWAOnline

Arthritis treatment: A controversial treatment promoted by a certain royal could help – Express

Arthritis is an umbrella term for a number of conditions that cause swelling and tenderness of one or more of the joints. Osteoarthritis and rheumatoid arthritis are the two most common types of arthritis. There's no cure for arthritis, but there are many treatments that can help slow it down and maintain quality of life, including this unusual one.

Osteoarthritis mainly affects the hands, spine, knees and hips, whereas rheumatoid arthritis usually affects the hands, feet and wrists.

Experts are researching ways to use stem cells therapy to help treat arthritis in the knee and other joints.

Many doctors already use stem cell therapy to treat arthritis, but it is not considered standard practice, with some even calling the treatment controversial.

READ MORE: Joe Swash health: I had to learn everything again Actors scary virus

There is a lot of debate around stem cell treatment and it is helpful for potential patients to understand what stem cells are and the issues surrounding their use in arthritis therapy.

How the treatment could help is by reducing inflammation in the body.

In arthritis, the immune system mistakenly attacks the tissue that lines the joints, which causes pain, inflammation, swelling and stiffness.

By reducing inflammation, stem cell therapy increases the presence of healthy cells in the body.

DONT MISS

And it would seem that stem cell therapy has sparked some interest from the royal family.

Princess Michael of Kent, the wife of the Queens cousin Prince Michael, recently appeared in a slick promotional video for a clinic in the Bahamas that offers similar joint therapy.

Look at that, the Princess declares proudly in the five-minute film, holding her right arm high above her head after stem-cell injections for a painful shoulder.

"Its amazing I think stem cells are the future, theres no doubt in my mind."

A stem cell is a type of cell not specialised to perform a specific role.

Instead, it has the unique ability to develop into one of many different types of cell. Stem cell therapy uses stem cells to replace dead and diseased cells within the body.

The human body contains over 200 different types of cell. Usually, each type has certain characteristics that allow it to preform a specific role.

Cells with similar roles group together to form tissues, which then organise to form the bodys organs.

Scientists source the stem cells from body tissue, either from an embryo or an adult human and isolate them in the laboratory.

After manipulating the cells to develop into specific types, they then inject the cells into the recipients blood or tissue.

Researchers are still investigating ways of using stem cells to control inflammation and regenerate damaged tissues.

Mesenchymal stem cells (MSCs) are types of stem cell that can develop into cartilage and bone. Synovial MSC therapy involves injecting these cells directly int the tissues surrounding the affected joints.

Some research shows that MSCs are also able to suppress the immune system and reduce the bodys inflammatory response.

This makes MSC therapy a promising treatment option for autoimmune conditions such as arthritis.

But for all the positive evidence supporting the treatment, it remains hugely controversial.

Most specialists say there is little robust evidence to show it works and it has not been approved by the UK medicines regulator, the National Institute for Health and Care Excellence. Leading health experts most standard approaches to treating arthritis is advising patients to lose weight and get more exercise.

In the US, Google has banned all advertising for products that contain stem cells or another regenerative therapy which uses blood cells, known as platelet-rich plasma, or PRP, because regulators describe the treatments as "new and exploratory".

And in the UK, experts have rubbished claims that Lipogems can treat arthritis.

Professor Chinmay Gupte, consultant orthopaedic surgeon and senior lecturer in knee surgery at Imperial College London, warns: These are extremely expensive treatments, and largely unproven. The problem is when youre desperate, youll try anything.

Read the original here:
Arthritis treatment: A controversial treatment promoted by a certain royal could help - Express

Research could be step toward lab-grown eggs and sperm to treat… – ScienceBlog.com

A new study on how and when the precursors to eggs and sperm are formed during development could help pave the way for generating egg and sperm cells in the lab to treat infertility.

The study, publishedin the journal Cell Reports, describes the way in which human stem cells evolve into germ cells, the precursors for egg and sperm cells.

Right now, if your body doesnt make germ cells then theres no option for having a child thats biologically related to you, said Amander Clark, the studys lead author, a member of theEli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. What we want to do is use stem cells to be able to generate germ cells outside the human body so that this kind of infertility can be overcome.

It is estimated that infertility affects 10% of the U.S. population, and infertility rates have increased over the past several decades because more people are waiting longer to have children. Many forms of infertility can be treated using procedures that join egg and sperm together outside the body, such as in vitro fertilization and intracytoplasmic sperm injection. But for people whose bodies dont produce eggs or sperm because of chemotherapy, radiation, genetics or other unexplained causes those treatments arent an option unless a donor provides the eggs or sperm.

With donated eggs and sperm, the child is not genetically related to one or both parents, said Clark, who also is a UCLA professor and chair of molecular cell and developmental biology. To treat patients who want a child who is genetically related, we need to understand how to make germ cells from stem cells, and then how to coax those germ cells into eggs or sperm.

In developing male and female embryos, a subset of pluripotent stem cells cells that have the potential to become nearly every type of cell in the body become germ cells that will later generate eggs or sperm. Researchers previously demonstrated the ability to make similar stem cells in a laboratory, called induced pluripotent stem cells, or iPS cells, from a persons own skin or blood cells.

Clark and her colleagues used technology that enables them to measure the active genes in more than 100,000 embryonic stem cells and iPS cells as they generated germ cells. Collaborators at the Massachusetts Institute of Technology developed new algorithms to analyze the massive amounts of data.

The experiments revealed a detailed timeline for when germ cells form: They first become distinct from other cells of the body between 24 and 48 hours after stem cells start differentiating into cell types that will ultimately make up all the specialized cells in the adult body.

Clark said that information would help scientists focus their efforts on that particular timeframe in future studies, in order to maximize the number of germ cells they can create.

The study also revealed that the germ cells come from two different populations of stem cells amnion cells, which are located in the fluid and membrane that surrounds the embryo during pregnancy, as well as gastrulating cells from the embryo itself.

When the researchers compared the germ cells derived from embryonic stem cells with those derived from iPS cells in the lab, they found that the patterns by which genes were activated were nearly identical.

This tells us that the approach were using to begin the process of making germ cells is on the right track, Clark said. Now were poised to take the next step of combining these cells with ovary or testis cells.

That next step is critical because molecular signals from ovary or testis tissue are what signal germ cells to mature into eggs and sperm.

If the approach were to be incorporated into a future treatment for infertility, scientists might eventually be able to use a patients own skin cells to form stem cells that can be coaxed into both germ cells and ovarian or testis tissue and those cell types might be able to be used to generate a persons own eggs or sperm in the lab.

Were going in the right direction but it will take a lot of new innovations to solve infertility related to the loss of germ cells, Clark said.

The techniques described above were used in laboratory tests only and have not been tested in humans or approved by the Food and Drug Administration as safe and effective for use in humans.

The research was supported by the National Institutes of Health and a Broad Stem Cell Research Center Innovation Award.

Media Contact

Mirabai Vogt-James310-983-1163mvogt@mednet.ucla.edu

Continue reading here:
Research could be step toward lab-grown eggs and sperm to treat... - ScienceBlog.com