Colleagues are registering as donors and raising funds to help Trowbridge firefighter Guy Tadman and the charities supporting him – Wiltshire Times

A Trowbridge firefighter is hoping his battle against leukaemia will lead to other cancer sufferers receiving life-saving treatment.

Watch Manager Guy Tadman was diagnosed with acute myeloid leukaemia at the end of November and has spent most of the last two months in the Royal United Hospital in Bath.

He has just finished his second round of chemotherapy and is now awaiting a decision by his doctors about the next steps in his treatment. However, it seems most likely he will need a stem cell transplant, possibly via a partial match from a family member.

Guy said: Finding a good stem cell match is really difficult, so getting more people registered as potential donors improves the odds for everyone in the situation Im in.

"Im incredibly lucky to have so many friends and colleagues who want to help, and it would be amazing if one of them proved to be the golden ticket for someone with cancer.

The Fire Brigades Union is leading the push for donors, and dozens of Mr Tadmans colleagues from Trowbridge fire station and elsewhere in Dorset & Wiltshire Fire and Rescue Service have already registered to become donors with the charity DKMS at http://www.dkms.org.uk.

Kate Scott, from the FBU, said: Guy is a good friend to so many people in our service but also in the wider fire family.

"Everyone wants to step up and do something, and hopefully one of the new donors will be a match for him or someone else. "Were also encouraging people to contribute financially, as every new donor swab kit costs the charity 40.DWFRS road safety manager Christine Sharma has already raised 1,930 for the Bloodwise charity by going #DryforGuy in a sponsored dry January - 1,114 of this came from Pewsey fire station, who held a car wash on January 4, supported by colleagues from Marlborough.

Fundraising events, including car washes, a ladder climb and an equipment carry challenge, are being planned across the service in support of the charities helping Guy and his family.

Read more here:
Colleagues are registering as donors and raising funds to help Trowbridge firefighter Guy Tadman and the charities supporting him - Wiltshire Times

Someone You Should Know: The Relentless Pledge – KSFY

SIOUX FALLS, S.D. (Dakota News Now) - A Mitchell boy is defying one of the darkest times in his family's life, his dad's battle with cancer. He's turning it into a message of inspiration for others.

On that exact day maybe three hours later, that's when I started going door to door.

Floyd Korzan is a motivated kid. That's easy to see. It's also evident that he's caring and loves his dad very much.

"I remember some nights, they'd literally bring over a bed and I'd just sleep with him there.

His dad Matt spent a lot of time at the Mayo Clinic in Rochester, Minnesota battling leukemia from 2012 to 2017. It came back twice.

"The doctors at the Mayo Clinic told our family that the only thing more deadly than leukemia is relapsed leukemia, said Matt.

But Matt was relentless in his fight, a keyword in their family to this day.

"I'm a high-energy guy, this was crushing and devastating, said Matt. I'd never been sick a day in my life before this happened, it was crazy. But, my mindset is you got to be relentless. That's what I told Floyd. You got to fight, you got to get up, and you got to gut it out, you've got to be relentless.

Now that Matt has made it more than two years cancer-free thanks to a stem cell transplant they're doing something special.

But the impact it's had already, they did not expect.

Less than a month ago, Floyd, who's just 13 years old, started a nonprofit with his parents' help.

Its centered on that word, relentless.

"After I saw what struggle me, my dad and the rest of my family went through, I thought that that would've been a great motivator for some people to try to achieve their goals and overcome obstacles, said Floyd.

People can go online and take the relentless pledge, purchase a wristband, or nominate someone in their community to receive one for free whether that's a cancer patient or local heroes like police and firefighters.

"They have to risk their lives almost every day just to try to help people and I feel like that takes some relentlessness, said Floyd.

The Korzans have a website and social media pages for their relentless pledge. Thanks to the reach of their Facebook, it's already become a global movement.

"Floyd has had pledges and we've shipped these relentless wristbands to folks in 36 different states and three continents, these are people we've never heard of, we've received emails that would make you tear up, I'm really proud of it, said Matt.

Their goal is big.

"The goal is to get our relentless wristbands to every single cancer patient in America, said Matt.

But then again, they have a plan.

"To be relentless.

See the original post:
Someone You Should Know: The Relentless Pledge - KSFY

Cedars-Sinai Study Indicates That Parkinson’s Disease May Start Before Birth – Equities.com

Image: Nur Yucer, PhD, a project scientist, and Clive Svendsen, PhD, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute and Professor of Biomedical Sciences and Medicine at Cedars-Sinai. Photo by Cedars-Sinai.

Parkinson's disease is a neurodegenerative disorder that affects predominately dopamine-producing neurons in the brain. Nearly one million will be living with Parkinson's disease in the US this year, according to the Parkinson's Foundation. This is more than the number of people diagnosed with multiple sclerosis, muscular dystrophy and Lou Gehrig's diseasecombined.

About 60,000 Americans are diagnosed with Parkinson's disease each year, and more than 10 million people worldwide are living with it. Incidence of Parkinsons disease increases with age, but an estimated 10 percent of people with Parkinson's disease are diagnosed before age 50. This is called young-onset Parkinson's.

Researchers at Cedars-Sinai, led by Clive Svendsen, PhD, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute and Professor of Biomedical Sciences and Medicine at Cedars-Sinai, reported in a study published in Nature Medicine that they found that patients who develop young-onset Parkinsons disease may have been born with dysfunctional brain cells that go undetected for decades.

The research team generated special stem cells, known as induced pluripotent stem cells (iPSCs), from cells of patients suffering from young-onset Parkinsons disease. These iPSCswhich can produce any cell type of the human body, all genetically identical to the patients own cellswere used to produce dopamine neurons from each patient to analyze their functions.

Two key abnormalities were observed in these neurons:

- Dr. Clive Svendsen

After testing a number of drugs on the abnormal dopamine neurons, the researchers discovered that a drug called PEP005 (ingenol mebutate) reduced the elevated levels of alpha-synuclein in both the dopamine neurons in the dish and in laboratory mice. A gel formulation of PEP005 is marketed by LEO Pharma as Picato and is FDA-approved for the treatment of actinic keratosis, a scaly skin patch that develops from years of exposure to the sun. According to the Mayo Clinic, a small percentage of actinic keratosis lesions can eventually become skin cancer.

Michele Tagliati, PhD, Director of the Movement Disorders Program and Vice Chair and Professor in the Department of Neurology at Cedars-Sinai, said the research team next will study how PEP005 might be delivered to the brain and whether or not the abnormalities found in young-onset Parkinson's patients also exist in other forms of Parkinsons.

- Dr. Michele Tagliati.

Edward Kim is Managing Editor of Equities.com.

_____

Sources: Equities News, Cedars-Sinai

DISCLOSURE:The views and opinions expressed in this article are those of the authors, and do not represent the views of equities.com. Readers should not consider statements made by the author as formal recommendations and should consult their financial advisor before making any investment decisions. To read our full disclosure, please go to: http://www.equities.com/disclaimer.

Read more from the original source:
Cedars-Sinai Study Indicates That Parkinson's Disease May Start Before Birth - Equities.com

Stem Cell and Primary Cell Culture Medium Market: Size, Share, Analysis, Region – News by aeresearch

Latest Market Research Report on Stem Cell and Primary Cell Culture Medium Market size | Industry Segment by Applications (Biopharmaceutical Manufacturing, Tissue Engineering & Regenerative Medicine, Gene Therapy and Other), by Type (Liquid Media and Powder Media), Regional Outlook, Market Demand, Latest Trends, Infrared Temperature Measurement Instruments Industry Share & Revenue by Manufacturers, Company Profiles, Growth Forecasts 2025. Analyzes current market size and upcoming 5 years growth of this industry.

A basic outline of the competitive landscape:

This research report delivers a collective study on the Stem Cell and Primary Cell Culture Medium Industry, that also contains an intricate valuation of this business vertical. Also, segments of the Stem Cell and Primary Cell Culture Medium market have been clearly explained in this report, in addition to a basic overview of this market with respect to its present-day status as well as market size, in terms of returns and volume parameters.

Request Sample Copy of this Report @ https://www.aeresearch.net/request-sample/62644

A crisp outline of the market segmentation:

The report is a pervasive account of the important insights regarding the regional spectrum of this industry as well as the companies that have effectively established their standing in the Stem Cell and Primary Cell Culture Medium market.

How far does the scope of the Stem Cell and Primary Cell Culture Medium market traverse?

A complete outline of the regional spectrum:

Key Questions Answered in this Report

Request Customization on This Report @ https://www.aeresearch.net/request-for-customization/62644

Read the rest here:
Stem Cell and Primary Cell Culture Medium Market: Size, Share, Analysis, Region - News by aeresearch

Global Gene Therapy Market is Growing to Reach 6892 Million By 2027 – Market Research News 24

Facts and Factors Market Researchhas published a new report titled Gene Therapy Market By Type (Germ Line Gene Therapy and Somatic Gene Therapy), By Vector Type (Viral Vectors, Non-Viral Vectors, and Human Artificial Chromosome), and By Therapy Area (Cancer, Neurological Diseases, Infectious Diseases, Genetic Disorders, Rheumatoid Arthritis, and Others): Global Industry Perspective, Comprehensive Analysis, and Forecast, 2018 2027.

According to the report, the globalgene therapy market was valued at approximately USD 919 million in 2018 and is expected to reach a value of around USD 6,892 million by 2027, at a CAGR of around 25.1% between 2019 and 2027.

Gene therapy is the kind of experimental method that makes use of genes for treating or preventing disease by inserting foreign genetic material like DNA or RNA into the persons cells. Scientists are studying gene therapy for treating various kinds of immuno-deficiencies, Parkinsons disease, HIV, and cancer by using myriad approaches. Today, many of the approaches to gene therapy are undergoing most intensive & rigorously testing. This includes replacing the mutated gene causing disease with the healthy gene copy. Another approach includes knocking out or inactivating a mutated gene operating improperly. Yet another approach includes a new gene into the body to combat the disease.

Request Free Sample Copy of Research Report @ https://www.fnfresearch.com/sample/gene-therapy-market-by-type-germ-line-gene

(The sample of this report is readily available on request. The free sample report on the Wheelchair Accessible Vehicle Converters market consists of data regarding the competitive terrain as well as analysis of the competitive scope of this industry.)

New product approval & commercialization to drive the market trends

Between the periods from 2012 to 2018, nearly five single-use gene treatments received approval from the U.S. FDA for treating a rare form of genetic disorders. Moreover, gene treatments that have received approval are being tested by pharmaceutical firms in the market. Apart from this, current approvals of gene therapy products across the U.S., as well as European countries for treating a plethora of life-threatening diseases, are anticipated to steer the growth of gene therapy industry over the forecast timeline. Moreover, gene therapy can also be used for treating neurodegenerative disorders like Alzheimer, amyotrophic lateral sclerosis, and spinal muscular atrophy.

Furthermore, many of the reputed pharma firms like Bristol-Myers Squibb, BioMarin, and Pfizer are investing massively into the research activities pertaining to gene therapy. Apart from this, a rise in the occurrence of cancer is prompting the demand to treat the disease. Gene therapy is one of the key treatment kinds that will propel the market growth over the forecast period. However, inadequate reimbursement policies pertaining to the one-time gene treatments will downgrade market expansion.

Inquire more about this report before purchase @ https://www.fnfresearch.com/inquiry/gene-therapy-market-by-type-germ-line-gene

(You may enquire a report quote OR available discount offers to our sales team before purchase.)

In addition to this, conducting of randomized controlled trials can pose a threat to the expansion of the gene therapy industry as a result of the gene therapy features & projected patient population. Nevertheless, the ability of the gene therapy to eliminate the number of ailments with faulty or missing genes like hemophilia A will promote the market growth over the forecast period and thereby nullify the negative impact of hindrances on the business growth.

Somatic gene therapy to dominate the type segment

The growth of the segment over the forecast timeline is credited to the ability to treat the targeted cells in the patient population. The treatment is not passed to future generations and is restricted to only the patient who receives the somatic gene therapy. Moreover, it is used for treating a huge number of disorders like cystic fibrosis, cancer, and muscular dystrophy.

Cancer to lead the therapy area segment over the forecast period

The segmental expansion is attributed to a large number of pipeline drugs registered over the past few years along with increasing occurrence of cancer as a result of genetic changes.

North America to dominate the overall regional market share during the forecast timespan

North American market, which accrued revenue of USD 380 million in 2018, is set to contribute majorly towards the overall market revenue by 2027. The regional market surge is credited to robust healthcare amenities, high per capita healthcare spending, and improvement in the reimbursement policies.

Request customized copy of report @ https://www.fnfresearch.com/customization/gene-therapy-market-by-type-germ-line-gene

(We customize your report according to your research need. Ask our sales team for report customization)

The key players included in this market are Advanced Cell & Gene Therapy, Audentes Therapeutics, Benitec Biopharma, Biogen, Blubird Bio, Inc., Bristol-Myers Squibb Company, CHIESI Farmaceutici SPA, Eurofins Scientific, Geneta Science, Genzyme Corporation, Gilead, GlaxoSmithKline PLC, Human Stem Cells institute, Novartis AG, Orchard Therapeutics, Pfizer Inc., Sangamo therapeutics, Spark therapeutics, and Voyager Therapeutics.

This report segments the gene therapy market as follows:

Global Gene Therapy Market: By Type Segment Analysis

Global Gene Therapy Market: By Vector Type Segment Analysis

Global Gene Therapy Market: By Therapy Area Segment Analysis

Global Gene Therapy Market: Regional Segment Analysis

About Us:

Facts & Factors is a leading market research organization offering industry expertise and scrupulous consulting services to clients for their business development. The reports and services offered by Facts and Factors are used by prestigious academic institutions, start-ups, and companies globally to measure and understand the changing international and regional business backgrounds. Our clients/customers conviction on our solutions and services has pushed us in delivering always the best. Our advanced research solutions have helped them in appropriate decision-making and guidance for strategies to expand their business.

Contact Us:

Facts & Factors

Global Headquarters

Level 8, International Finance Center, Tower 2,8 Century Avenue, Shanghai,Postal 200120, ChinaTel: +86 21 80360450

Email:sales@fnfresearch.com

Web:https://www.fnfresearch.com

Sorry! The Author has not filled his profile.

See the article here:
Global Gene Therapy Market is Growing to Reach 6892 Million By 2027 - Market Research News 24

Lab-grown heart cells implanted into human patient for the first time – New Atlas

In what is a world-first and potentially the dawn of a new medical technology to treat damaged hearts, scientists in Japan have succeeded in transplanting lab-grown heart cells into a human patient for the first time ever. The procedure is part of a cutting-edge clinical trial hoped to open up new avenues in regenerative medicine, with the treatment to be given to a further nine patients over the coming years.

The clinical trial harnesses the incredible potential of induced pluripotent stem cells (IPSCs), a Nobel Prize-winning technology developed at Kyoto University in 2006. These are created by first harvesting cells from donor tissues and returning them to their immature state by exposing them to a virus. From there, they can develop into essentially any cell type in the body.

Professor Yoshiki Sawa is a cardiac surgeon at Osaka University in Japan, who has been developing a technique to turn IPSCs into sheets of 100 million heart muscle cells, which can be grafted onto the heart to promote regeneration of damaged muscles. This was first tested on pigs and was shown to improve organ function, which led Japans health ministry to conditionally approve a research plan involving human subjects.

The first transplantation of these cells is a huge milestone for the researchers, with the operation taking place earlier this month and the patient now recovering in the general ward of the hospital. The sheets are biodegradable, and once implanted on the surface of the heart are designed to release growth factors that encourage new formation of healthy vessels and boost cardiac function.

The team will continue to monitor the first patient over the coming year, and over the next three years aims to carry out the procedure on a total of 10 patients suffering from ischemic cardiomyopathy, a condition caused by a heart attack or coronary disease that has left the muscles severely weakened.

I hope that [the transplant] will become a medical technology that will save as many people as possible, as Ive seen many lives that I couldnt save, Sawa said at a news conference on Tuesday, according to The Japan Times.

Source: The Japan Times

Read more:
Lab-grown heart cells implanted into human patient for the first time - New Atlas

GIOSTAR Announces Medical Breakthrough in Biotechnology and Lifesciences To Manufacture Abundant, Safe Red Blood Cells From Stem Cells – Benzinga

GIOSTAR/HEAMGEN has developed and secured patented technology to manufacture lifesaving mature red blood cells from stem cells. The red blood cells are made utilizing a bioreactor that permits the production of mature red blood cells, under strictly controlled conditions, for transfusion therapy and replaces the need for a human blood donor. GIOSTAR/HEAMGEN mature red blood cells are safe and not compromised by inadequate pathogen detection and inactivation of diseases such as hepatitis C, HIV, hepatitis B and syphilis. The red blood cells are O-Negative (Universal Donor) to eliminate incompatibility and allosensitization reactions.

ATLANTA (PRWEB) January 29, 2020

GIOSTAR/HEAMGEN has developed and secured patented technology to manufacture lifesaving mature red blood cells from stem cells. The red blood cells are made utilizing a bioreactor that permits the production of mature red blood cells, under strictly controlled conditions, for transfusion therapy and replaces the need for a human blood donor. GIOSTAR/HEAMGEN mature red blood cells are safe and not compromised by inadequate pathogen detection and inactivation of diseases such as hepatitis C, HIV, hepatitis B and syphilis. The red blood cells are O-Negative (Universal Donor) to eliminate incompatibility and allosensitization reactions. Trauma situations often do not allow for adequate blood typing due to time restrictions, so the GIOSTAR/HEAMGEN red blood cells address that need effectively.

"There are three main problems for blood transfusions," stated Dr. Anand Srivastava, Founder and Chairman of GIOSTAR. "First we have to match the blood type. Second, there's not enough blood available every single time. And third, when we transfer blood from one person to another person, there is always a chance of the transfer of disease."

Watch a feature interview with Dr. Anand Srivastava on The DM Zone with host Dianemarie Collins.

The World Health Organization (WHO) published the first detailed analysis on the global supply and demand for blood in October 2019 and found that 119 out of 195 countries do NOT have enough blood in their blood banks to meet hospital needs. In those nations, which include every country in central, eastern, and western sub-Saharan Africa, Oceania (not including Australasia), and south Asia are missing roughly 102,359,632 units of blood, according to World Health Organization (WHO) goals. While total blood supply around the world was estimated to be around 272 million units, in 2017, demand reached 303 million units. That means the world was lacking 30 million units of blood, and in the 119 countries with insufficient supply, that shortfall reached 100 million units.

The global market opportunity for GIOSTAR/HEAMGEN technology presents not only a profitable and scalable business opportunity but also a significant social and environmental impact. The global market is estimated to be at least $ 85 Billion/year.

GIOSTAR/HEAMGEN has identified early entry global markets to include Military, Trauma, Asia (replace Hepatitis C contaminated blood products), Africa (AIDS contaminated blood), Newborns, Thalassemia patients, Allosensitized sickle cell disease patients. South Sudan was found to have the lowest supply of blood, at 46 units per 100,000 people. In fact, the country's need for blood was deemed 75 times greater than its supply. In India, which had the largest absolute shortage, there was a shortfall of nearly 41 million units, with demand outstripping supply by over 400 percent. Strategic investments are needed in many low-income and middle-income countries to expand national transfusion services and blood management systems. Oncology is a major user of blood transfusion but if countries don't have the capacity to manage the bulk of oncology, it will limit complex surgery options.

GIOSTAR/HEAMGEN has acquired the exclusive license to the patent for the technique for stem cell proliferation from University of California San Diego (UCSD). The founding team of GIOSTAR/HEAMGEN is comprised of the scientists and clinicians who were involved in creating the Intellectual Property at UCSD and has already achieved PROOF OF CONCEPT - the optimized lab scale proliferation of mature red blood cells - at UCSD as part of their research.

GIOSTAR/HEAMGEN is currently looking for strategic partnerships (Contact Doug@DMProductionsLLC.com) to accelerate the development of donor-independent red blood cells manufacturing capabilities and advance the proof of concept work already done (patented) around the manufacture of safe, universal donor, human red blood cells. GIOSTAR/HEAMGEN will also develop a full automated proprietary bioreactor using robotic technology to produce abundant quantities of red blood cells with a goal for cost-effective commercialization of fresh, human, universal donor Red Blood Cells (RBCs).

ABOUT GIOSTAR

Dr. Anand Srivastava is a Chairman and Cofounder of California based Global Institute of Stem Cell Therapy and Research (GIOSTAR) headquartered in San Diego, California, (U.S.A.). The company was formed with the vision to provide stem cell based therapy to aid those suffering from degenerative or genetic diseases around the world such as Parkinson's, Alzheimer's, Autism, Diabetes, Heart Disease, Stroke, Spinal Cord Injuries, Paralysis, Blood Related Diseases, Cancer and Burns. GIOSTAR is a leader in developing most advance stem cell based technology, supported by leading scientists with the pioneering publications in the area of stem cell biology. Company's primary focus is to discover and develop a cure for human diseases with the state of the art unique stem cell based therapies and products. The Regenerative Medicine provides promise for treatments of diseases previously regarded as incurable.

GIOSTAR is world's leading Stem cell research company involved with stem cell research work for over a decade. It is headed by Dr Anand Srivastava, who is a pioneer and a world-renowned authority in the field of Stem Cell Biology, Cancer and Gene therapy. Several governments and organizations including USA, India, China, Turkey, Kuwait, Thailand, Philippines, Bahamas, Saudi Arabia and many others seek his advice and guidance on drafting their strategic and national policy formulations and program directions in the area of stem cell research, development and its regulations. Under his creative leadership, a group of esteemed scientists and clinicians have developed and established Stem Cell Therapy for various types of autoimmune diseases and blood disorders, which are being offered to patients in USA and soon it will be offered on a regular clinical basis to the people around the globe.

For the original version on PRWeb visit: https://www.prweb.com/releases/giostar_announces_medical_breakthrough_in_biotechnology_and_lifesciences_to_manufacture_abundant_safe_red_blood_cells_from_stem_cells/prweb16854975.htm

Read more:
GIOSTAR Announces Medical Breakthrough in Biotechnology and Lifesciences To Manufacture Abundant, Safe Red Blood Cells From Stem Cells - Benzinga

Engineer the future of human health with a PhD in biomedical engineering – Study International News

Technological advancements have paved the way for many important breakthroughs in biomedical engineering. New methods are being developed, as are our understanding, diagnosing and treating of medical conditions.

Unsurprisingly, the job outlook for biomedical engineers looks promising. The US Bureau of Labor Statistics notes that employment of biomedical engineers is projected to grow four percent from 2018 to 2028, about as fast as the average for all occupations. It adds that the increasing number of technologies and applications to medical equipment and devices, along with the medical needs of a growing and ageing population, will further require the services of biomedical engineers.

If youre trained in biomedical engineering or are a graduate in a related field looking to enhance your qualifications or progress into a leadership role, you may want to consider enroling in doctoral studies in biomedical engineering.

A good place to start is Michigan State University (MSU), which has carved itself a strong reputation in the field.

Its Biomedical Engineering Department (BME) offers a competitive research-oriented doctoral programme with flexible and personalised curricula.

The department is housed in a state-of-the-art research facility and engages with faculty across several disciplines, departments and colleges to explore the intersection of medicine, human biology and engineering.

The BME department is housed within a new research facility, the Institute for Quantitative Health Science and Engineering (IQ). IQ consists of seven research divisions, i.e. biomedical devices, biomedical imaging, chemical biology, developmental and stem cell biology, neuroengineering, synthetic biology and systems biology.

The interdisciplinary research centre is devoted to basic and applied research at the interface of life sciences, engineering, information science and other physical and mathematical sciences.

Students have access to the stellar facilities and equipment at IQ, which foster extensive collaboration between researchers from different areas to solve some of the worlds most challenging biomedical problems.

This systems approach to biomedical research look set to lead to discoveries that are the first of their kind. IQ is connected to both the Clinical Center and Life Sciences buildings, establishing a biomedical research hub at MSU that holds the potential to transform medicine.

The BME department also boasts a range of expertise, including advanced imaging methods and nanotechnology in biomedical research.

Training PhD students in the biodesign process is a priority here whereby students identify significant needs for new biomedical technologies before developing commercialisable technologies that meet those needs.

MSU also provides a host of services to help students healthcare solutions make it to market.

The MSU Innovation Center houses MSU Technologies, Spartan Innovations and MSU Business CONNECT in support of entrepreneurship, facilitating technology transfer, and providing the educational and financial support to turn doctorate students research technologies into successful businesses.

Another major focus of the BME department is biomedical imaging, including the development of new nanoparticle-based combined imaging and therapeutic technologies. The IQ building has one of the few PET MRI systems in the world.

What differentiates MSU from other institutions is their new, two-semester course sequence on the development and translation of new biomedical technologies to meet clinical needs.

Named BioDesign IQ 1 and 2, these courses train BME PhD students and professional students from the colleges of medicine, law, and business to work together effectively in innovation teams. They shadow doctors, identify unmet medical needs that have significant market potential, prototype new technologies to meet those needs, and then develop intellectual property and a business plan to advance these new technologies towards commercialisation.

Apart from its stellar facilities, the university is also home to faculty with strong expertise.

For instance, inaugural IQ director and BME chairperson Christopher H Contag is a pioneer in molecular imaging and is developing imaging approaches aimed at revealing molecular processes in living subjects, including humans and the earliest markers of cancer. Through advances in detection, professionals in the field can greatly improve early detection of diseases and restoration of health. Contag was previously at Stanford University as a professor in the departments of Pediatrics, Radiology, Bioengineering, and Microbiology and Immunology.

Meanwhile, Dr Mark Worden, BME Associate Chair, has developed several interdisciplinary programmes that integrate research and education. His research on nanostructured biointerfaces and multiphase biocatalysis has resulted in over 10 patents issued or pending on technologies including microbiosensors, bioelectronics and multiphase bioreactors.

Source: Shutterstock

Other faculty members doing trailblazing work in the field include Dr Dana Spence, who is investigating and dening new roles for red blood cells in autoimmune diseases such as Type 1 diabetes and multiple sclerosis; Dr Aitor Aguirre, whose research focuses on investigating regeneration and tissue re-modelling in health and disease; and Dr Ripla Arora, who is working on understanding how hormones influence the uterine luminal and glandular epithelium to modulate receptivity and implantation, to name a few.

In addition to insightful guidance from a faculty of this calibre, PhD students also enjoy 100 percent funding, including stipend, tuition and healthcare. As a graduate student in biomedical engineering, they will have the valuable opportunity to work alongside graduate students from different departments across campus.

Without a doubt, a PhD in biomedical engineering from MSU will prove to be fulfilling endeavour, professionally and personally.

Follow Michigan State University on Facebook, Twitter, Instagram, YouTube and LinkedIn

4 leading North American universities for biomedical engineering

Humanitas MEDTEC School: Where science and biomedical engineering meet

Read more from the original source:
Engineer the future of human health with a PhD in biomedical engineering - Study International News

Study suggests Parkinson’s present from birth and may be preventable – New Atlas

Parkinsons disease is an illness that most often affects older people, but new research suggests it may actually be present in the brain right from birth and even earlier. Scientists from Cedars-Sinai have now found that in the brains of young-onset Parkinsons patients, malfunctioning neurons are always there but it takes 20 to 30 years for the symptoms to accumulate. Thankfully, a drug thats already on the market could help prevent the disease from taking hold if caught early enough.

Parkinsons disease primarily affects neurons in the brain that produce dopamine, eventually causing muscle weakness and stiffness, tremors, and balance problems. Most of the time, the disease is diagnosed in older people over the age of 60, but around 10 percent of cases occur in those aged between 21 and 50.

In a new study, scientists from Cedars-Sinai set out to investigate whether there were any early warning signs in the neurons of patients whod been diagnosed with Parkinsons before they turned 50. To do so, they created induced pluripotent stem cells (IPSCs) from young-onset Parkinsons patients, which can then be turned into almost any other cells in the body.

The researchers used the IPSCs to grow dopamine neurons in lab dishes. As they watched them develop, the team noticed that cell structures called lysosomes were malfunctioning. These structures are responsible for breaking down unneeded or worn-out proteins so when they dont work as well as they should, proteins begin to pile up. And one such protein that the team spotted in higher amounts is called alpha-synuclein, which is implicated in many forms of Parkinsons.

"Our technique gave us a window back in time to see how well the dopamine neurons might have functioned from the very start of a patients life, says Clive Svendsen, senior author of the study. "What we are seeing using this new model are the very first signs of young-onset Parkinsons. It appears that dopamine neurons in these individuals may continue to mishandle alpha-synuclein over a period of 20 or 30 years, causing Parkinsons symptoms to emerge.

Next up, the team investigated whether the condition could potentially be treated or even prevented. After testing a series of drugs, they found one that looked promising PEP005, which has already been approved by the FDA for use against skin precancers. The researchers found that PEP005 works to reduce the levels of alpha-synuclein, as well as another abnormally-abundant enzyme called protein kinase C, whose role in Parkinson's remains unclear.

The treatment looks promising, but for now its only been shown to work in mice and lab-grown cells, so it wont necessarily translate to human trials. The team plans to continue working on this, as well as figuring out how to adapt PEP005 for use in the brain at the moment, its only available as a topical gel, since it's for treating skin cancer.

The research was published in the journal Nature Medicine.

Source: Cedars-Sinai

Go here to see the original:
Study suggests Parkinson's present from birth and may be preventable - New Atlas

Actinium partners with UC Davis on gene therapy for HIV-related lymphoma – Healio

Mehrdad Abedi

Actinium Pharmaceuticals has forged an agreement with University of California, Davis for the use of its proprietary CD45 antibody radiation-conjugate, apamistamab-I-131, in the institutions ongoing phase 1/phase 2 clinical trial of stem cell gene therapy for patients with HIV-related lymphoma.

Apamistamab-I-131 (Iomab-B, Actinium Pharmaceuticals) will replace the chemotherapy conditioning used in the gene therapy trial, which will be the first of its kind to incorporate antibody radiation-conjugate (ARC)-based conditioning, according to the manufacturer. The overall goal of the collaboration is to develop an anti-HIV stem cell gene therapy that will simultaneously treat HIV-related lymphoma and develop immune cells that are resistant to HIV in a population of patients with relapsed or refractory HIV-related lymphoma.

Patients with HIV-related lymphoma face a dismal prognosis with few viable therapeutic options as they battle both cancer and HIV, Mehrdad Abedi, MD, professor of hematology and oncology at UC Davis Comprehensive Cancer Center and the studys primary investigator, told Healio.

The compromised state of these patients limits our ability to fully address their cancer or HIV, given the toxicities of current therapies, he added. We envisioned a future where a single treatment of our stem cell gene therapy can cure patients of their lymphoma and leave the patient with a new immune system that can fight, be resistant to and prevent the mutation of HIV.

Overcoming current treatment limitations

There are several limitations to current HIV treatment, as Abedi outlined.

Patients with HIV must take a combination of drugs daily for the rest of their lives to control the virus. If not taken regularly, HIV becomes resistant to the drugs and continues to destroy immune cells.

Production of the anti-HIV stem cell gene therapy entails genetically modifying autologous stem cells with a combination of three anti-HIV genes. Before receiving the gene therapy at UC Davis, patients must undergo conditioning, which involves depletion of their stem cells to enable the new anti-HIV cells to engraft and re-establish a healthy blood and immune system.

Currently, conditioning is accomplished with nontargeted chemotherapy and/or external radiation that can be too toxic for these compromised patients or not deplete all of their stem cells, which can lead to persistence of HIV reservoirs despite the gene therapy, Abedi explained. Pending regulatory approval, we are planning to add Actiniums ARC-targeted conditioning technology to address the limitations of current conditioning regimens. Actiniums ARC can not only selectively deplete stem cells by targeting a marker on their surface called CD45, but also lymphoma cancer cells, which also express the CD45 protein on their surface.

Joseph Anderson

The excitement behind gene therapy lies in its hypothesized ability to cure diseases with a single treatment, according to Joseph Anderson, PhD, MAS, associate professor in the department of internal medicine at UC Davis Health and one of the studys lead investigators.

It is amazing to see how rapidly this field is advancing across many disease indications previously thought to be untreatable and certainly not curable, he told Healio. To have a revolutionary technology like gene therapy be reliant on decades-old chemotherapies seems incredibly counterintuitive. Therefore, it is exciting to see new conditioning regimens emerge that can be used safely, predictably and reliably.

Abedi said that in previous clinical trials, all patients who received the CD45 ARC were able to tolerate a successful stem cell transplant.

This gave us strong interest to begin using an ARC-targeted conditioning regimen with our stem cell gene therapy, he said.

Our focus is on improving patient outcomes and we have a long-term vision of curing patients of their lymphoma and HIV, Anderson explained. He added that investigators will initially study the use of apamistamab-I-131 among six patients, with plans to expand the study if the results are promising.

We will be able to evaluate clinical signals such as the ability to receive a transplant, transplant engraftment and whether the transplant eliminated their lymphoma in just a few months after the transplant, Anderson said. We will also evaluate the presence of the anti-HIV genes and if the genes have created an HIV-resistant immune system.

Generating proof of concept

Dale Ludwig

Terms of the deal between Actinium and UC Davis, including its duration, had not been made available by the time of reporting. The initial focus of the agreement is to generate a clinical proof of concept for the use of Actiniums ARC conditioning technology in concert with UC Davis anti-HIV stem cell therapy, according to Dale Ludwig, PhD, chief medical officer at Actinium.

Based on established clinical proof of concept with our apamistamab-I-131 ARC for targeted conditioning, including in patients with lymphoma, we are confident the initial phase of this collaboration will be successful and we are excited by the prospect of further expanding the scope of this important work, he told Healio.

Ludwig asserted that apamistamab-I-131 has numerous advantages over current chemotherapy-based conditioning due to its antitumor activity, reduced toxicity and effectiveness in conditioning for transplantation.

Supported by extensive clinical investigation in 12 trials and over 300 patients, a single therapeutic dose of apamistamab-I-131 is sufficient for conditioning, and due to its dual activity, even a patient with active disease could expect to receive therapy within 2 weeks, which is anticipated to lead to better outcomes compared with chemotherapy, external beam radiation, or exploratory approaches such as naked antibodies or antibody-drug conjugates, he said. Given the potential of this ARC-targeted conditioning technology for bone marrow transplant, we are grateful to Dr. Abedi for the opportunity to advance the Iomab-ACT program into the promising field of gene stem cell therapy. by Drew Amorosi

For more information:

Mehrdad Abedi, MD, and Joseph Anderson, PhD, MAS, can be reached at UC Davis Comprehensive Cancer Center, 2279 45th St., Sacramento, CA 95817.

Dale Ludwig, PhD, can be reached at dludwig@actiniumpharma.com.

Disclosures: Ludwig reports employment by Actinium Pharmaceuticals. Abedi and Anderson report no relevant financial disclosures.

Mehrdad Abedi

Actinium Pharmaceuticals has forged an agreement with University of California, Davis for the use of its proprietary CD45 antibody radiation-conjugate, apamistamab-I-131, in the institutions ongoing phase 1/phase 2 clinical trial of stem cell gene therapy for patients with HIV-related lymphoma.

Apamistamab-I-131 (Iomab-B, Actinium Pharmaceuticals) will replace the chemotherapy conditioning used in the gene therapy trial, which will be the first of its kind to incorporate antibody radiation-conjugate (ARC)-based conditioning, according to the manufacturer. The overall goal of the collaboration is to develop an anti-HIV stem cell gene therapy that will simultaneously treat HIV-related lymphoma and develop immune cells that are resistant to HIV in a population of patients with relapsed or refractory HIV-related lymphoma.

Patients with HIV-related lymphoma face a dismal prognosis with few viable therapeutic options as they battle both cancer and HIV, Mehrdad Abedi, MD, professor of hematology and oncology at UC Davis Comprehensive Cancer Center and the studys primary investigator, told Healio.

The compromised state of these patients limits our ability to fully address their cancer or HIV, given the toxicities of current therapies, he added. We envisioned a future where a single treatment of our stem cell gene therapy can cure patients of their lymphoma and leave the patient with a new immune system that can fight, be resistant to and prevent the mutation of HIV.

Overcoming current treatment limitations

There are several limitations to current HIV treatment, as Abedi outlined.

Patients with HIV must take a combination of drugs daily for the rest of their lives to control the virus. If not taken regularly, HIV becomes resistant to the drugs and continues to destroy immune cells.

Production of the anti-HIV stem cell gene therapy entails genetically modifying autologous stem cells with a combination of three anti-HIV genes. Before receiving the gene therapy at UC Davis, patients must undergo conditioning, which involves depletion of their stem cells to enable the new anti-HIV cells to engraft and re-establish a healthy blood and immune system.

Currently, conditioning is accomplished with nontargeted chemotherapy and/or external radiation that can be too toxic for these compromised patients or not deplete all of their stem cells, which can lead to persistence of HIV reservoirs despite the gene therapy, Abedi explained. Pending regulatory approval, we are planning to add Actiniums ARC-targeted conditioning technology to address the limitations of current conditioning regimens. Actiniums ARC can not only selectively deplete stem cells by targeting a marker on their surface called CD45, but also lymphoma cancer cells, which also express the CD45 protein on their surface.

PAGE BREAK

Joseph Anderson

The excitement behind gene therapy lies in its hypothesized ability to cure diseases with a single treatment, according to Joseph Anderson, PhD, MAS, associate professor in the department of internal medicine at UC Davis Health and one of the studys lead investigators.

It is amazing to see how rapidly this field is advancing across many disease indications previously thought to be untreatable and certainly not curable, he told Healio. To have a revolutionary technology like gene therapy be reliant on decades-old chemotherapies seems incredibly counterintuitive. Therefore, it is exciting to see new conditioning regimens emerge that can be used safely, predictably and reliably.

Abedi said that in previous clinical trials, all patients who received the CD45 ARC were able to tolerate a successful stem cell transplant.

This gave us strong interest to begin using an ARC-targeted conditioning regimen with our stem cell gene therapy, he said.

Our focus is on improving patient outcomes and we have a long-term vision of curing patients of their lymphoma and HIV, Anderson explained. He added that investigators will initially study the use of apamistamab-I-131 among six patients, with plans to expand the study if the results are promising.

We will be able to evaluate clinical signals such as the ability to receive a transplant, transplant engraftment and whether the transplant eliminated their lymphoma in just a few months after the transplant, Anderson said. We will also evaluate the presence of the anti-HIV genes and if the genes have created an HIV-resistant immune system.

Generating proof of concept

Dale Ludwig

Terms of the deal between Actinium and UC Davis, including its duration, had not been made available by the time of reporting. The initial focus of the agreement is to generate a clinical proof of concept for the use of Actiniums ARC conditioning technology in concert with UC Davis anti-HIV stem cell therapy, according to Dale Ludwig, PhD, chief medical officer at Actinium.

Based on established clinical proof of concept with our apamistamab-I-131 ARC for targeted conditioning, including in patients with lymphoma, we are confident the initial phase of this collaboration will be successful and we are excited by the prospect of further expanding the scope of this important work, he told Healio.

Ludwig asserted that apamistamab-I-131 has numerous advantages over current chemotherapy-based conditioning due to its antitumor activity, reduced toxicity and effectiveness in conditioning for transplantation.

Supported by extensive clinical investigation in 12 trials and over 300 patients, a single therapeutic dose of apamistamab-I-131 is sufficient for conditioning, and due to its dual activity, even a patient with active disease could expect to receive therapy within 2 weeks, which is anticipated to lead to better outcomes compared with chemotherapy, external beam radiation, or exploratory approaches such as naked antibodies or antibody-drug conjugates, he said. Given the potential of this ARC-targeted conditioning technology for bone marrow transplant, we are grateful to Dr. Abedi for the opportunity to advance the Iomab-ACT program into the promising field of gene stem cell therapy. by Drew Amorosi

For more information:

Mehrdad Abedi, MD, and Joseph Anderson, PhD, MAS, can be reached at UC Davis Comprehensive Cancer Center, 2279 45th St., Sacramento, CA 95817.

Dale Ludwig, PhD, can be reached at dludwig@actiniumpharma.com.

Disclosures: Ludwig reports employment by Actinium Pharmaceuticals. Abedi and Anderson report no relevant financial disclosures.

See the rest here:
Actinium partners with UC Davis on gene therapy for HIV-related lymphoma - Healio