Animal Stem Cell Therapy Market Research Report 2020 by Detailed Segmentation, SWOT Analysis, Demand Analysis and Forecast To 2024 – Instant Tech News

Global Animal Stem Cell Therapy MarketThis research report provides detailed study accumulated to offer Latest insights about acute features of the Animal Stem Cell Therapy Market. The report contains different market predictions related to market size, revenue, production, CAGR, Consumption, gross margin, price, and other substantial factors. While emphasizing the key driving and restraining forces for this market, the report also offers a complete study of the future trends and developments of the market. It also examines the role of the leading market players involved in the industry including their corporate overview, financial summary and SWOT analysis.It presents the 360-degree overview of the competitive landscape of the industries. Animal Stem Cell Therapy Market is showing steady growthand CAGR is expected to improve during the forecast period.

Manufacturer DetailMedivet Biologics LLCVETSTEM BIOPHARMAJ-ARMU.S. Stem Cell, IncVetCell TherapeuticsCelavet Inc.Magellan Stem CellsKintaro Cells PowerAnimal Stem CareAnimal Cell TherapiesCell Therapy Sciences

Product Type SegmentationDogsHorses

Industry SegmentationVeterinary HospitalsResearch Organizations

Global Animal Stem Cell Therapy Market report provides you with detailed insights, industry knowledge, market forecasts and analytics. The report on the global Animal Stem Cell Therapy industry also clarifies economic risks and environmental compliance. Global Animal Stem Cell Therapy market report assists industry enthusiasts including investors and decision makers to make confident capital investments, develop strategies, optimize their business portfolio, innovate successfully and perform safely and sustainably.

Animal Stem Cell Therapy Market: Regional Analysis Includes:

Major Points Covered in TOC:

Key Questions Answered in the Report Include:

(*If you have any special requirements, please let us know and we will offer you the report as you want.)

About Us:

Qurate Business Intelligence delivers unique market research solutions to its customers and help them to get equipped with refined information and market insights derived from reports. We are committed to providing best business services and easy processes to get the same. Qurate Business Intelligence considers themselves as strategic partners of their customers and always shows the keen level of interest to deliver quality.

Contact Us:Web:www.qurateresearch.comE-mail:[emailprotected]Ph: US +13393375221, IN +919881074592

Qurate Business Intelligence delivers unique Market research solutions to its customers and help them to get equipped with refined information and Market insights derived from reports. We are committed to providing best business services and easy processes to get the same. Qurate Business Intelligence considers themselves as strategic partners of their customers and always shows the keen level of interest to deliver quality.

Excerpt from:
Animal Stem Cell Therapy Market Research Report 2020 by Detailed Segmentation, SWOT Analysis, Demand Analysis and Forecast To 2024 - Instant Tech News

GENE CORRECTED STEM CELL THERAPY TO TREAT CYSTIC FIBROSIS DEVELOPED AT STANFORD UNIVERSITY – NewsPatrolling

Chennai February 12, 2020:A team of researchers at Stanford University has used the gene editing tool commonly known as CRISPR to repair the gene that causes cystic fibrosis in airway stem cells, which they say is a critical step to develop a gene therapy for the disorder.

The researchers showed that the repaired airway stem cells could give rise to other airway cells and could produce functional cystic fibrosis transmembrane conductance regulator protein, which is faulty in cystic fibrosis patients. The study represents a proof of concept for the repair of genes that cause airway disorders. A study describing these results was published online inCell Stem Cellon December 12, 2019. Postdoctoral scholar Sriram Vaidyanathan, PhD is the first co-lead author and Matthew Porteus, MD, PhD, professor of pediatrics is the lead co-senior author. Other co-lead authors include Ameen Salahudeen, MD, PhD, Zachary Sellers, MD, PhD, Dawn Bravo PhD. Other co-senior authors include Tushar Desai, MD, Jayakar Nayak, MD, PhD and Calvin Kuo MD,PhD.

A devastating childhood disease:Cystic fibrosis affects about 75,000-100,000 people globally. CF patients suffer from chronic lung infections that eventually cause lung failure and death. In addition, patients may also suffer from problems in several other organs. CF patients have an average life expectancy of about 40 years. CF is a fatal disease caused by mutations in a single gene (the cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR gene encodes an ion channel that transports chloride in cells that express the gene. In CF patients, the channel is non-functional and chloride transport is blocked. This results in a build-up of thick mucus in the airways and also results in damage to other organs such as the pancreas.

The quest for a cure:Gene therapy has been attempted to treat several genetic diseases such as sickle cell disease and thalassemia over the past two decades with some individual successes. The discovery of CRISPR enabled the precise manipulation of genes and made it feasible to develop gene therapies for many more diseases. CRISPR was most readily applied to develop cures for blood disorders such as sickle cell disease because of our increased familiarity with blood stem cells and our ability to readily culture and transplant them into patients. Indeed, the first clinical trials to test the use of CRISPR to treat sickle cell disease, a blood disorder, have already started even though the technology is relatively new.

Although CF was one of the first diseases for which gene therapy was attempted, attempts have been unsuccessful so far. The development of CRISPR renewed hopes for a gene therapy for CF. The application of CRISPR to treat lung disorders such as CF was challenging because methods to apply CRISPR to effectively edit airway stem cells had not been developed. The team consisting of Dr. Vaidyanathan, Dr. Porteus and colleagues have developed a method to correct one CF causing mutation (DF508) which affects over 70% of patients in the US and Europe. This publication describes the correction of a commonly observed CF causing mutation with efficiencies over >40% in airway stem cells. This is over a 100-fold improvement over previous work correcting the same mutations in other cell types and makes it possible to correct CF causing mutations in a clinically applicable manner. Further work is necessary to perfect the transplantation of edited airway stem cells in the airways to develop a durable treatment for CF.

Not just a disease that affects Caucasians:In addition to Dr. Vaidyanathan, another co-first author and two of the co-corresponding authors leading this work are people of Indian origin. However, CF is not widely recognized as a disease that affects Indians. CF has been described in Indian patients previously.2,3However, the exact number of CF patients in India is still unknown and the mutations that affect them are also not well characterized. It is likely that India has the largest number of CF patients in the world. It is also likely that most of them are undiagnosed and die before the age of 5. One study quantified the presence of CF in people of Indian origin in Canada and estimated the prevalence to be 1 in 9200 compared to 1 in 6600 among the general population between the ages of 0-14 years.4In fact, Dr. Vaidyanathan has come across patients at Stanford University who received a diagnosis for CF after significant delay. In some cases, CF was even deemed unlikely because the patients were not of European origin. This is rather unfortunate because the quality of life and life expectancy of CF patients can be significantly improved if treatment is started early in life. This new gene therapy approach thus holds the promise to treat CF patients globally once a method to transplant airway stem cells is optimized.

Read more from the original source:
GENE CORRECTED STEM CELL THERAPY TO TREAT CYSTIC FIBROSIS DEVELOPED AT STANFORD UNIVERSITY - NewsPatrolling

Stem Cell Therapy Market 2020 Booming by Size, Revenue, Trend and Top Companies 2026 – Instant Tech News

New Jersey, United States, The report titled, Stem Cell Therapy Market Size and Forecast 2026 in Verified Market Research offers its latest report on the global Stem Cell Therapy market that includes comprehensive analysis on a range of subjects like competition, segmentation, regional expansion, and market dynamics. The report sheds light on future trends, key opportunities, top regions, leading segments, the competitive landscape, and several other aspects of the Stem Cell Therapy market. Get access to crucial market information. Market players can use the report back to peep into the longer term of the worldwide Stem Cell Therapy market and convey important changes to their operating style and marketing tactics to realize sustained growth.

Global Stem Cell TherapyMarketwas valued at USD 86.62 million in 2016 and is projected to reach USD 221.03million by 2025, growing at a CAGR of 10.97% from 2017 to 2025.

Get | Download Sample Copy @https://www.verifiedmarketresearch.com/download-sample/?rid=24113&utm_source=ITN&utm_medium=002

Top 10 Companies in the Global Stem Cell Therapy Market Research Report:

Global Stem Cell Therapy Market: Competitive Landscape

Competitive landscape of a market explains strategies incorporated by key players of the market. Key developments and shift in management in the recent years by players has been explained through company profiling. This helps readers to understand the trends that will accelerate the growth of market. It also includes investment strategies, marketing strategies, and product development plans adopted by major players of the market. The market forecast will help readers make better investments.

Global Stem Cell Therapy Market: Drivers and Restrains

This section of the report discusses various drivers and restrains that have shaped the global market. The detailed study of numerous drivers of the market enable readers to get a clear perspective of the market, which includes market environment, government policies, product innovations, breakthroughs, and market risks.

The research report also points out the myriad opportunities, challenges, and market barriers present in the Global Stem Cell Therapy Market. The comprehensive nature of the information will help the reader determine and plan strategies to benefit from. Restrains, challenges, and market barriers also help the reader to understand how the company can prevent itself from facing downfall.

Global Stem Cell Therapy Market: Segment Analysis

This section of the report includes segmentation such as application, product type, and end user. These segmentations aid in determining parts of market that will progress more than others. The segmentation analysis provides information about the key elements that are thriving the specific segments better than others. It helps readers to understand strategies to make sound investments. The Global Stem Cell Therapy Market is segmented on the basis of product type, applications, and its end users.

Global Stem Cell Therapy Market: Regional Analysis

This part of the report includes detailed information of the market in different regions. Each region offers different scope to the market as each region has different government policy and other factors. The regions included in the report are North America, South America, Europe, Asia Pacific, and the Middle East. Information about different region helps the reader to understand global market better.

Ask for Discount @ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=24113&utm_source=ITN&utm_medium=002

Table of Content

1 Introduction of Stem Cell Therapy Market

1.1 Overview of the Market 1.2 Scope of Report 1.3 Assumptions

2 Executive Summary

3 Research Methodology of Verified Market Research

3.1 Data Mining 3.2 Validation 3.3 Primary Interviews 3.4 List of Data Sources

4 Stem Cell Therapy Market Outlook

4.1 Overview 4.2 Market Dynamics 4.2.1 Drivers 4.2.2 Restraints 4.2.3 Opportunities 4.3 Porters Five Force Model 4.4 Value Chain Analysis

5 Stem Cell Therapy Market, By Deployment Model

5.1 Overview

6 Stem Cell Therapy Market, By Solution

6.1 Overview

7 Stem Cell Therapy Market, By Vertical

7.1 Overview

8 Stem Cell Therapy Market, By Geography

8.1 Overview 8.2 North America 8.2.1 U.S. 8.2.2 Canada 8.2.3 Mexico 8.3 Europe 8.3.1 Germany 8.3.2 U.K. 8.3.3 France 8.3.4 Rest of Europe 8.4 Asia Pacific 8.4.1 China 8.4.2 Japan 8.4.3 India 8.4.4 Rest of Asia Pacific 8.5 Rest of the World 8.5.1 Latin America 8.5.2 Middle East

9 Stem Cell Therapy Market Competitive Landscape

9.1 Overview 9.2 Company Market Ranking 9.3 Key Development Strategies

10 Company Profiles

10.1.1 Overview 10.1.2 Financial Performance 10.1.3 Product Outlook 10.1.4 Key Developments

11 Appendix

11.1 Related Research

Request Customization of Report Complete Report is Available @ https://www.verifiedmarketresearch.com/product/Stem-Cell-Therapy-Market/?utm_source=ITN&utm_medium=002

Highlights of Report

About Us:

Verified market research partners with clients to provide insight into strategic and growth analytics; data that help achieve business goals and targets. Our core values include trust, integrity, and authenticity for our clients.

Analysts with high expertise in data gathering and governance utilize industry techniques to collate and examine data at all stages. Our analysts are trained to combine modern data collection techniques, superior research methodology, subject expertise and years of collective experience to produce informative and accurate research reports.

Contact Us:

Mr. Edwyne Fernandes Call: +1 (650) 781 4080 Email: [emailprotected]

TAGS: Stem Cell Therapy Market Size, Stem Cell Therapy Market Growth, Stem Cell Therapy Market Forecast, Stem Cell Therapy Market Analysis, Stem Cell Therapy Market Trends, Stem Cell Therapy Market

See the rest here:
Stem Cell Therapy Market 2020 Booming by Size, Revenue, Trend and Top Companies 2026 - Instant Tech News

Astex Pharmaceuticals Announces US Food and Drug Administration (FDA) Acceptance for Review of an NDA for the Combination Oral Hypomethylating Agent…

DetailsCategory: Small MoleculesPublished on Wednesday, 12 February 2020 17:52Hits: 163

PLEASANTON, CA, USA I February 11, 2020 I Astex Pharmaceuticals, Inc., a wholly owned subsidiary of Otsuka Pharmaceutical Co. Ltd., based in Japan, today announced that the U.S. FDA has accepted for Priority Review its NDA for oral C-DEC (cedazuridine and decitabine) as a treatment for adults with previously untreated intermediate- and high-risk MDS including CMML. The NDA submission is based on data from the ASCERTAIN phase 3 study which evaluated the 5-day decitabine exposure equivalence of oral C-DEC and IV decitabine.

We are very pleased that the FDA has accepted our NDA for Priority Review, said Dr Mohammad Azab, MD, president & chief medical officer of Astex Pharmaceuticals, Inc. Subject to FDA review and regulatory approval, oral C-DEC may offer a new option for patients with MDS and CMML that saves them the burden of 5-day IV infusions every month during their treatment period. We are grateful to all the patients, investigators and other healthcare providers, and partner research and manufacturing organizations, who contributed to the clinical development program of oral C-DEC.

The FDA grants Priority Review to applications for drugs that, if approved, would provide significant improvements in the safety and effectiveness of the treatment, diagnosis or prevention of serious conditions. The Priority Review designation means FDAs goal is to take action on an NDA application within six months (compared to the ten months under standard review).

Oral C-DEC is an investigational compound and is not currently approved in any country.

Astexs parent company, Otsuka Pharmaceutical Co., Ltd., and Taiho Pharmaceutical Co., Ltd. previously announced that, subject to regulatory approvals, commercialization of oral C-DEC in the U.S. and Canada will be conducted by Taiho Oncology, Inc. and Taiho Pharma Canada, Inc. respectively. Astex, Otsuka and Taiho are all members of the Otsuka group of companies.

About C-DEC (Cedazuridine 100 mg and Decitabine 35 mg) Fixed-Dose Combination

C-DEC is a novel, orally administered fixed dose combination of cedazuridine, an inhibitor of cytidine deaminase,1 with the anti-cancer DNA hypomethylating agent, decitabine.2 By inhibiting cytidine deaminase in the gut and the liver, C-DEC is designed to allow for oral delivery of the approved DNA hypomethylating agent, decitabine, at exposures which emulate exposures achieved with the approved intravenous form of decitabine administered over 5 days.3

C-DEC has been evaluated in a phase 1/2 pharmacokinetics-guided dose escalation and dose confirmation study in patients with MDS and CMML (see https://www.clinicaltrials.gov NCT02103478) and a pivotal phase 3 study (ASCERTAIN) (see https://www.clinicaltrials.gov NCT03306264) conducted at investigator sites in the US and Canada and designed to confirm the results from the phase 1/2 study. The phase 3 study is now being extended to include patients with acute myeloid leukemia (AML) unsuitable to receive intensive induction chemotherapy.

In September 2019 Astex announced that C-DEC had received orphan drug designation for the treatment of MDS and CMML from the U.S. FDA.

The concept of using cedazuridine to block the action of cytidine deaminase is also being evaluated in a low dose formulation of cedazuridine and decitabine for the treatment of lower risk MDS (see https://www.clinicaltrials.gov NCT03502668).

About the Phase 3 ASCERTAIN Study

The study was designed as a randomized crossover study comparing oral C-DEC (cedazuridine 100 mg and decitabine 35 mg fixed-dose combination tablet given once daily for 5 days on a 28-day cycle) to IV decitabine (20 mg/m2 administered as a daily, 1-hour IV infusion for 5 days on a 28-day cycle) in the first 2 cycles with patients continuing to receive oral C-DEC from Cycle 3 onwards. The data from the ASCERTAIN study was presented at the American Society of Hematology (ASH) Meeting in Orlando, Florida in December 2019 by Dr Guillermo Garcia-Manero, MD, professor and chief of section of myelodysplastic syndromes, Department of Leukemia at The University of Texas MD Anderson Cancer Center, on behalf of the study investigators.4 The data demonstrated that the ASCERTAIN study met the primary endpoint of total 5-Day decitabine Area-Under-The-Curve (AUC) equivalence of oral C-DEC and IV decitabine. Safety findings from the study were consistent with those anticipated with IV decitabine, with no significant differences in the incidence of most common adverse events between oral C-DEC and IV decitabine in the first 2 randomized cycles. The most common adverse events of any grade >20% regardless of causality in patients in the first 2 randomized cycles who received oral C-DEC were thrombocytopenia (43.8%), neutropenia (35.4%), anemia (36.9%), and fatigue (23.8%). The ASH presentation can be downloaded from the Astex website at https://astx.com/media-center/presentations-and-publications/ASTX727 ASCERTAIN Presentation - ASH - December 2019

About Myelodysplastic Syndromes (MDS) and Chronic Myelomonocytic Leukemia (CMML)

Myelodysplastic syndromes are a heterogeneous group of hematopoietic stem cell disorders characterized by dysplastic changes in myeloid, erythroid, and megakaryocytic progenitor cells, and associated with cytopenias affecting one or more of the three lineages. U.S. incidence of MDS is estimated to be 10,000 cases per year, although the condition is thought to be under-diagnosed.5,6 The prevalence has been estimated to be from 60,000 to 170,000 in the U.S.7 MDS may evolve into acute myeloid leukemia (AML) in one-third of patients.8 The prognosis for MDS patients is poor; patients die from complications associated with cytopenias (infections and bleeding) or from transformation to AML. CMML is a clonal hematopoietic malignancy characterized by accumulation of abnormal monocytes in the bone marrow and in blood. The incidence of CMML in the U.S. is approximately 1,100 new cases per year,9 and CMML may transform into AML in 15% to 30% of patients.10 The hypomethylating agents decitabine and azacitidine are effective treatment modalities for hematologic cancers and are FDA-approved for the treatment of higher-risk MDS and CMML. These agents are administered by IV infusion, or by large-volume subcutaneous injections.

About Astex Pharmaceuticals, Inc.

Astex is a leader in innovative drug discovery and development, committed to the fight against cancer. Astex is developing a proprietary pipeline of novel therapies and has multiple partnered products in development under collaborations with leading pharmaceutical companies. Astex is a wholly owned subsidiary of Otsuka Pharmaceutical Co. Ltd., based in Tokyo, Japan.

Otsuka is a global healthcare company with the corporate philosophy: Otsukapeople creating new products for better health worldwide. Otsuka researches, develops, manufactures and markets innovative and original products, with a focus on pharmaceutical products for the treatment of diseases and nutraceutical products for the maintenance of everyday health.

For more information about Astex Pharmaceuticals, Inc. please visit: http://www.astx.com

For more information about Otsuka Pharmaceutical, please visit: http://www.otsuka.com/en/

For more information about Taiho Pharmaceutical, please visit: https://www.taihooncology.com/

References

SOURCE: Astex Pharmaceuticals

Read more here:
Astex Pharmaceuticals Announces US Food and Drug Administration (FDA) Acceptance for Review of an NDA for the Combination Oral Hypomethylating Agent...

Health: Is this company onto an alternative to stem cell therapy? – Stockhead

Many regenerative medicine companies on the ASX specialise in stem-cell therapies but Exopharm (ASX:EX1) is pursuing exosomes instead.

Exosomes, also known as Extra-corporeal Vesicles, are microscopic cellular couriers. These shift proteins and genetic information between cells and this can promote regeneration and healing of damaged cells.

In other words, they can tell cells they are a healthier, younger version of themselves successfully.

The challenge is that there are plenty of products on the black market but clinical research has been limited. But the research that has been done has shown exosomes can be lower risk, have higher scalability and even a superior therapeutic capacity.

This morning Exopharm announced BioMAP testing results of both its exosome products Plexaris and Cevaris.

These were compared with 4,500 experimental and sold medicines across a penal of 12 human primary cell-based systems.

Both products were deemed safe and had notable biological activity in tissue remodelling, inflammation and immune-modulatory related activities.

The results also showed that both products were not cytotoxic and did not cause anti-proliferative effects.

CEO Dr Ian Dixon declared the results were very positive.

The testing showed that both Plexaris and Cevaris had different and distinct activities to comparison drugs, he said.

This confirms our belief that exosomes are a distinct and potentially new class of medicine, different from existing medicines.

Exopharm recently began a phase one human clinical trial in Plexaris in a wound healing context. The company also has a technology (LEAP) that purifies exosomes for clinical purposes a necessary step to separate them from other biological fluids like serum.

Exopharm listed in December 2018 and rallied for a few months before a retreat in the second half of last year. But it is still above its IPO price and climbed 11.5 per cent this morning.

READ MORE:IPO Watch: Exopharm wants to raise $7m to help you live longer

National Veterinary Care (ASX:NVL) is about to be acquired but that hasnt stopped it adding four more vet clinics to its portfolio. Upon settlement of the deals, expected next month, it will own 107 clinics.

Get the latest Stock & Small Caps news and insights direct to your inbox.

Read more:
Health: Is this company onto an alternative to stem cell therapy? - Stockhead

Regenexx, First to Use Stem Cells in Orthopedic Therapy, Marks 15th Anniversary – Yahoo Finance

More than 90,000 procedures performed

BROOMFIELD, Colo., Feb. 12, 2020 /PRNewswire/ --Regenexx, the world's largest, cohesive physician group dedicated to practicing advanced orthobiologics and the first to use stem cells in the treatment of many orthopedic injuries, is celebrating its 15th year since inception.To date, more than 40,000 patients have been treated and the organization has performed more than 90,000 procedures.

In 2005, Dr. Chris Centeno and Dr. John Schultz, physicians in a small two-man pain management clinic in Colorado, were the first in the world to apply stem cells to treat many orthopedic injuries. Two years later they completed a 24 months, IRB-approved research study of the use of both culture-expanded and same-day stem cells to treat knee and hip arthritis as well as low-back degenerative disc disease. Today, there are more than 60 Regenexx affiliates worldwide, including India, Australia, the UK, China, Taiwan and the Cayman Islands.

"Today, Regenexx physicians, specializing in the use of orthobiologics for treating orthopedic injuries, are achieving results thought unimaginable 15 years ago," says Chris Centeno, MD, founder and Chief Medical Officer of Regenexx. "Fifteen years ago, this new specialty focused on using the most advanced regenerative protocols available as an alternative to many orthopedic surgeries and today our patented lab-processing and treatment protocols have allowed us to achieve unmatched results."

Regenexx Corporate is the only program where orthobiologics can get coverage through private health insurance plans. As of Jan 1, 2020, Regenexx Corporate added 50 new self-funded companies that pay for orthobiologic care delivered by Regenexx providers as a way to reduce their orthopedic costs. Regenexx also received the EHIR traction award at Cohort 3 for record number of matches in October of 2019.

Regenexx physiciansmust have specific qualifications around musculoskeletal careand only the most qualified physicians are accepted into the Regenexx network. Once accepted, Regenexx then provides the doctor with hundreds of hours of specialized, hands-on training in the Regenexx interventional orthopedics approach. Regenexx has more than 60 clinic locations worldwide with highly specialized musculoskeletal physicians trained in more than 90 different Regenexx procedures.

"Making the decision between the interventional orthobiologics route and surgery is a real choice for most patients, not something driven by how much they can afford out of pocket," says Dr. Centeno. "We will continue to support and perform the research to make that happen. In the meantime, we expect to save hundreds of millions for our self-funded health plans and disrupt healthcare delivery in the process."

Regenexx Milestones

For a full timeline visit https://regenexx.com/regenexx15/

About RegenexxRegenexx is the leader in advanced interventional orthobiologics through R&D, treatments, techniques, and training that reduce the reliance on surgical orthopedics. We strive to continuously innovate in regenerative advancements to get people better. Our commitment extends to lowering medical spending through our Regenexx Corporate Program, which provides less costly, less invasive, and less risky treatments than traditional orthopedic surgery.

View original content:http://www.prnewswire.com/news-releases/regenexx-first-to-use-stem-cells-in-orthopedic-therapy-marks-15th-anniversary-301003443.html

SOURCE Regenexx

See the original post here:
Regenexx, First to Use Stem Cells in Orthopedic Therapy, Marks 15th Anniversary - Yahoo Finance

What Drives the Domino Effect in Cancer Drug Resistance? – Technology Networks

KAIST researchers have identified mechanisms that relay prior acquired resistance to the first-line chemotherapy to the second-line targeted therapy, fueling a domino effect in cancer drug resistance. Their study featured in the February 7 edition of Science Advances suggests a new strategy for improving the second-line setting of cancer treatment for patients who showed resistance to anti-cancer drugs.

Resistance to cancer drugs is often managed in the clinic by chemotherapy and targeted therapy. Unlike chemotherapy that works by repressing fast-proliferating cells, targeted therapy blocks a single oncogenic pathway to halt tumor growth. In many cases, targeted therapy is engaged as a maintenance therapy or employed in the second-line after front-line chemotherapy.

A team of researchers led by Professor Yoosik Kim from the Department of Chemical and Biomolecular Engineering and the KAIST Institute for Health Science and Technology (KIHST) has discovered an unexpected resistance signature that occurs between chemotherapy and targeted therapy. The team further identified a set of integrated mechanisms that promotes this kind of sequential therapy resistance.

There have been multiple clinical accounts reflecting that targeted therapies tend to be least successful in patients who have exhausted all standard treatments, said the first author of the paper Mark Borris D. Aldonza. He continued, These accounts ignited our hypothesis that failed responses to some chemotherapies might speed up the evolution of resistance to other drugs, particularly those with specific targets.

Aldonza and his colleagues extracted large amounts of drug-resistance information from the open-source database the Genomics of Drug Sensitivity in Cancer (GDSC), which contains thousands of drug response data entries from various human cancer cell lines. Their big data analysis revealed that cancer cell lines resistant to chemotherapies classified as anti-mitotic drugs (AMDs), toxins that inhibit overacting cell division, are also resistant to a class of targeted therapies called epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs).

In all of the cancer types analyzed, more than 84 percent of those resistant to AMDs, representatively paclitaxel, were also resistant to at least nine EGFR-TKIs. In lung, pancreatic, and breast cancers where paclitaxel is often used as a first-line, standard-of-care regimen, greater than 92 percent showed resistance to EGFR-TKIs. Professor Kim said, It is surprising to see that such collateral resistance can occur specifically between two chemically different classes of drugs.

To figure out how failed responses to paclitaxel leads to resistance to EGFR-TKIs, the team validated co-resistance signatures that they found in the database by generating and analyzing a subset of slow-doubling, paclitaxel-resistant cancer models called persisters.

The results demonstrated that paclitaxel-resistant cancers remodel their stress response by first becoming more stem cell-like, evolving the ability to self-renew to adapt to more stressful conditions like drug exposures. More surprisingly, when the researchers characterized the metabolic state of the cells, EGFR-TKI persisters derived from paclitaxel-resistant cancer cells showed high dependencies to energy-producing processes such as glycolysis and glutaminolysis.

We found that, without an energy stimulus like glucose, these cells transform to becoming more senescent, a characteristic of cells that have arrested cell division. However, this senescence is controlled by stem cell factors, which the paclitaxel-resistant cancers use to escape from this arrested state given a favorable condition to re-grow, said Aldonza.

Professor Kim explained, Before this research, there was no reason to expect that acquiring the cancer stem cell phenotype that dramatically leads to a cascade of changes in cellular states affecting metabolism and cell death is linked with drug-specific sequential resistance between two classes of therapies.

He added, The expansion of our work to other working models of drug resistance in a much more clinically-relevant setting, perhaps in clinical trials, will take on increasing importance, as sequential treatment strategies will continue to be adapted to various forms of anti-cancer therapy regimens.

This study was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF-2016R1C1B2009886), and the KAIST Future Systems Healthcare Project (KAISTHEALTHCARE42) funded by the Korean Ministry of Science and ICT (MSIT). Undergraduate student Aldonza participated in this research project and presented the findings as the lead author as part of the Undergraduate Research Participation (URP) Program at KAIST.

Reference:Aldonza, et al. (2020) Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Science Advances DOI: 10.1126/sciadv.aav7416

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Here is the original post:
What Drives the Domino Effect in Cancer Drug Resistance? - Technology Networks

CRISPR, CAR-T, Consolidation: Top Advanced Therapy Milestones of 2019 – Xconomy

XconomyNational

CRISPR, capacity, and consolidation powered the cell and gene therapy space in 2019, but a proactive focus on patient access topped Falcon Therapeutics CEO Susan Nichols annual roundup.

In what has become one of the most anticipated presentations at the Phacilitate Leaders World Conference, Susan Nichols, CEO of private North Carolina-based cell therapy firm Falcon Therapeutics, laid out the top 10 events of the previous year that shaped the regenerative medicine space, driving conversation, investment, and innovation.

The top spot in 2019 focused on efforts to increase patient access to the life-changing therapies entering the market, withMays approval of Novartis/AveXis Zolgensma(onasemnogene abeparvovec) and its unprecedented $2.1 million (1.9 million) price tag being the catalyst for change.

Nichols number one spot in 2018 centered around reimbursement conversations. Sparks approval of gene therapy Luxturna (voretigene neparvovec) shook 2017, while Europes approval ofex-vivostem cell gene therapy Strimvelis significantly advanced the sector in 2016.

For further context,check out theTop 10 cell and gene therapy milestones of 2018here, but below in reverse order is the full list of the top 10 key events of the previous 12 months, as presented at the conference in Miami, FL:

In December, a jury found Kite Pharma owned by Gilead Sciences (NASDAQ: GILD) guilty of infringing a patent exclusively licensed by Juno Therapeutics owned by Bristol-Myers Squibb (NYSE: BMS) from researchers at the Memorial Sloan Kettering Cancer Center.

The 190 patentrelates to technology used in Kite/Gileads chimeric antigen receptor (CAR) T-cell therapy Yescarta (axicabtagene ciloleucel).

The jurys decision left Gilead to pay $585 million plus 27.6% in royalties, totaling $752 million, to Bristol and Sloan Kettering, resolving a case filed a day after Yescarta won approval in October 2017.

But in a post-script that could well feature on Nichols 2020 list,it has been suggested the emboldening of Bristol has led the firm to file a motion last month to include punitive damages that would raise Gileads penalty to $1.5 billion.

Vertex (NASDAQ: VRTX) and CRISPR Therapeutics (NASDQ: CRSP) opened clinical trials in b-thalassemia and sickle cell disease to replace the defective genes that case these disorders andin November, the firms announced positive efficacy data from the first two patients treated with the investigational therapy CTX001.

Meanwhile, Editas Medicine (NASDAQ: EDIT) and Allergan initiated clinical trials for their CRISPR-based candidate AGN-151587 (EDIT-101), aimed at treating Leber congenital amaurosis 10 (LCA10), an inherited form of blindness.

The significance is CRISPR therapies have finally arrived in the clinic, Nichols said.

8) Pharma and biotech inhouse manufacturing

With a lack of third-party capacity especially for viral vector production, 2019 saw numerous investments by major cell and gene therapy players to grow their internal networks. Some of the examples Nichols pointed out include:

Susan Nichols, CEO of Falcon Therapeutics, spoke at Phacilitate in Miami, Florida in January

Positive data from Decembers American Association of Hematology (ASH) meeting in San Diego, CA was a further boon for the sector, said Nichols.

Johnson & Johnsons (NYSE: JNJ) JNJ-4528, a CAR-T Cell Therapy Directed Against B-Cell Maturation Antigen (BCMA), reported a 100% remission rate and response from its Phase Ib/II CARTITUDE-1 trial. 69% of patients showed complete remission or better.

The candidate licensed fromNanjing Legend in a $350 million deal will move into a full Phase II study this year.

ASH also brought positive news from bluebird and Bristol-Myers Squibb, which saw a 73.4% overall response rate in a Phase II KarMMa trial of its BCMA-targeted CAR-T candidate idecabtagene vicleucel.

The $950 million deal,announced in September, adds Semma Therapeutics a firm focusing on using stem-cell derived human islets as a possible cure for type 1 diabetes to Vertex growing regenerative medicine portfolio.

For Vertex, the deal represented its entry into the cell therapy space, complementing its move into gene editing just months prior with theacquisition of Exonics and a research expansion with CRISPR Therapeutics.

But for the industry, the investment in a company developing a cell therapy for a large indication other than cancer is of major significance, said Nichols.

As mentioned before, Astellas acquired Audentes for $3 billion, but the Japanese pharma firm also bought South San Francisco-basedCAR technology developer Xyphos Biosciencesas part of an end-of-year buying spree.

According to Nichols, these deals by Astellas are a signifier that medium pharma may be using advanced therapies to grow and expand.

With a wealth of therapies moving through the clinic, capacity is at a premium and 2019 saw contract development and manufacturing organizations (CDMOs) scrabbling to secure capabilities.

Thermo Fisher Scientific (NYSE: TMO) acquiredBrammer Bio for $1.7 billion, then Catalent (NYSE: CTLT) paid $1.2 billion toadd Paragon Bioservicesto its CDMO offering. Both marked the first move into gene therapy services by the two large contract manufacturers. Nichols noted the size of the deals as being somewhat impressive.

In other signs of CDMO consolidation, Hitachi Chemical Advanced Therapeutics Solutions (HCATS) entered Europe byacquiring German cell therapy manufacturing firm apceth Biopharma, and Tennessee-based cell therapy firm Cognateacquired Swedish DNA and viral vector manufacturer Cobra Biologics.

2019 also saw a flood of licensing deals with large upfront payments.

Roche (OTCGX: RHHBY) is paying more than $1 billion upfrontfor the rights to Sarepta Therapeutics (NASDAQ: SRPT) Duchenne muscular dystrophy (DMD) gene therapy outside of the US.

Genentech entered a $300 million with Adaptive Bio (NASDAQ: ADPT) for access to its T-receptor discovery and immune profiling platform, though the deal could be worth up to $2 billion.

And Vertex, as previously mentioned, inked a $175 million deal with CRISPR Therapeutics for its gene therapy pipeline.

We saw medium pharma grow. We saw major licensing deals. We saw CDMO consolidation. But we also saw Big Pharmas buying power with the sector making a significant impact on the cell and gene therapy space in 2019.

The biggest deal sawBristol buy Celgenefor a whopping $74 billion, bringing with it several CAR-T programs.

But Roches $4.8 billionacquisition of Spark Therapeutics which has already seen commercial success with Luxturna was also significant, as was Biogens (NASDAQ: BIIB) $877 million purchase ofNightstar Therapeutics, Pfizers stake-in and optionto buy out Vivet, and Bayers acquisition of the remaining shares ofBlueRock Therapeutics.

These signal that Big Pharma is optimistic to M&A in the advance therapy space and the value that these therapies can bring, said Nichols.

The business model for this new breed of curative medicines is significantly different to that of traditional pharma and biologics, and patient access poses a challenge. With the arrival of Zolgensma and its $2.1 million price tag, the conversations have changed, and all elements of the industry have been forced to address how to manage patient access.

Zolgensma represents a life or death drug for 68% of pediatric patients with SMA1. The patients must be dosed before the age of two, yet only around ten states offer screening before this age.

We need to work as an industry to ensure reimbursement and access is in sync with approvals, said Nichols. However, she added, we must move the conversation to state level and bring state Medicaid and insurance companies to the core of the conversation.

The year saw positive signs that change is happening.

Nichols noted that patient advocacy voices are loud across all disease indications pushing for access to these next-generation medicines. Meanwhile Novartis suggested lottery-style free drug program despitesome criticism demonstrates industry itself is looking for innovative ways to improve access.

This article first appeared in Bioprocess Insider on January 27.

Image: iStock/PashaIgnatov

Dan Stanton is Xconomy's managing editor and is based in France. You can reach him at dan.stanton@knect365.com.

See the original post:
CRISPR, CAR-T, Consolidation: Top Advanced Therapy Milestones of 2019 - Xconomy

Science team designs a new CAR they say may work much better than BCMAs in fighting multiple myeloma – Endpoints News

Right now the big R&D play in the multiple myeloma field is centered around a raft of experimental BCMA approaches, including CAR-Ts. But a scientific team at the University of Utah says they may have found a better approach.

Focusing on the high rate of relapse using current therapies, as well as the waning efficacy of the clinical CAR-Ts, a team at the Huntsman Cancer Institute at the University of Utah built a new CAR focused on CD229.

That target, they say, goes after a molecule that endures through the course of the disease on the surface of cancer cells, including myeloma stem cells at the root of relapse.

We were dismayed that although some of our patients respond quite well to currently available immunotherapies, they relapsed as early as one year after treatment, says physician-scientist Djordje Atanackovic. We thought if we could target every last cancer cell in a patients body, including the cancer stem cell, this could make the critical difference and yield more durable, deeper responses to treatment.

The study was published in Nature Communications.

Working with a protein engineer, the team produced an antibody that could hook onto CD229, an essential part of their new CAR-T. And it checked out in preclinical animal and cell models leaving plenty of work ahead in the clinic if this ever gets to the marketplace.

Read more here:
Science team designs a new CAR they say may work much better than BCMAs in fighting multiple myeloma - Endpoints News

Health care professionals offer insight to stem cell injection claims – WOWT

OMAHA, Neb. (WOWT) -- Imagine the pain from nerve damage so severe you can hardly move, but hope for relief is being offered by a company pitching stem cell injections that dont come cheap

Ron Elliott may be willing to endure financial pain.

Elliott, a Neuropathy sufferer said, It could be $5,000 or so and whether insurance would cover any of it or not.

Thats the low-end cost of stem cell injections pitched by Vitality Nebraska in advertised seminars at metro area hotel conference rooms.

Vitality Nebraska presentation said, The reason this works so well is because of the source of the stem cells were using, very young vital capable cells from Dr. Riordans lab.

Neil Riordans resume lists a leading stem cell laboratory in Panama.

Many pain sufferers, mostly senior citizens attend the seminars and our request to record was denied, so Dr. James Billups wore a hidden camera.

The next day after the needle went in there it made me feel better, read the presentation.

Dr. James Billups said, They make broad claims on the ability to do this. Everything they presented was anecdotal and anecdotal is not science.

In a statement to Six on Your Side Vitality, Nebraska states, each patient is evaluated by a licensed practitioner to see if regenerative medicine is a viable option. We do not make any promises or guarantees.

Some of the worlds leading research in the use of stem cells for treatment is being done here at the University of Nebraska Medical Center. We brought the seminar video here to get a second and third opinion.

Dr. James Armtage an Oncologist said, You need to know for example with stem cells how are the cells being made, there are standards for the use of these things.

Dr. Lynell Klassen an Immunologist said, Its hard for me to understand how those cells would actually stay around long enough to repurpose itself and transform and reprogram in order to be a functioning cell.

See the original post here:
Health care professionals offer insight to stem cell injection claims - WOWT