Everyone’s favourite police dog Stella the Staffie has successful stem cell treatment and will return to work – Gloucestershire Live

Award-winning police dog Stella the staffie has undergone successful stem cell treatment on a shoulder injury to allow her to return to work.

The Staffordshire Bull Terrier, public service animal of the year at the 2015 Animal Hero Awards, damaged her shoulder while doing a demonstration at St James School in Tredworth, Gloucester.

The dog had successful stem cell treatment on Wednesday, December 19, at Vale Vets, in Dursley, and is currently recovering after the operation.

Stellas handler, PC Claire Todd, said: The surgery went really well and Stella is now back to her normal self.

The hardest thing now is trying to keep her quiet. She isnt allowed to exercise for two days, and after that can only go on ten minute long walks each day but she wants to do everything straight away.

Vet Rachel Mowbray, who is the veterinary surgeon for the British agility dog team, carried out the stem cell treatment. Gloucestershire Constabulary helped to pay for the treatment and will welcome Stella back to the drug squad in due course.

PC Todd added: It is amazing to have Stella back to normal and after six weeks she will be able to do everything she used to be able to do, and re-join the force.

I would like to thank Gloucestershire police for the support they have given to Stella and myself.

They have been fully supportive throughout and we are both very grateful.

Stella will undergo laser treatment on Monday, December 23, to assist the recovery process and will need to wear dog goggles as part of the procedure.

Sign up to our daily newsletter- To get the latest headlines direct to your email inbox every day, click here.

Follow Gloucestershire Live on Facebook -Like our Facebook page to get the latest news in your feed and join in the lively discussions in the comments. Click here to give it a like.

Follow us on Twitter -For breaking news and the latest stories, click here to follow Gloucestershire Live on Twitter.

Follow us on Instagram -On the Gloucestershire Live Instagram page we share gorgeous pictures of our stunning county - and if you tag us in your posts, we could repost your picture on our page. Our Instagram Stories are also full of the best things happening in the county. Click here to follow Gloucestershire Live on Instagram.

Download our app - it's completely free and you'll be the first to know about any breaking news. Search 'Gloucestershire Live' in your Apple App Store or Google Play Store.

More:
Everyone's favourite police dog Stella the Staffie has successful stem cell treatment and will return to work - Gloucestershire Live

CytoDyn Reports Early, But Strong Positive Clinical Responses for Two Patients, One in Metastatic Breast Cancer and One in Metastatic Triple-Negative…

VANCOUVER, Washington, Dec. 23, 2019 (GLOBE NEWSWIRE) -- CytoDyn Inc. (OTC.QB: CYDY), (CytoDyn or the Company"), a late-stage biotechnology company developing leronlimab (PRO 140), a CCR5 antagonist with the potential for multiple therapeutic indications, announced today continued promising clinical responses from its metastatic triple-negative breast (mTNBC) Phase1b/2 trial and its trial investigating leronlimab for the treatment of metastatic breast cancer (MBC).

Further data from the first mTNBC cancer patient continues to show no detectable circulating tumor cells (CTC) or putative metastatic tumor cells in the peripheral blood and additional reductions in CCR5 expression on cancer-associated cells at 11 weeks of treatment with leronlimab. Additional data in an emergency IND protocol involving one MBC patient demonstrated shrinkage of tumor (via MRI) after three weeks of treatment with leronlimab.

In the first patient, were encouraged to see that after 11 weeks these additional data provide further preliminary evidence of efficacy, as demonstrated by sustained undetectable levels of CTCs and a reduction of cancer-associated macrophage like cells (CAMLs), said Bruce Patterson, M.D., Chief Executive Officer of IncellDx. Thus far, the data have been consistent with previous studies evaluating leronlimab as a long-term therapy for HIV+ patients, with no serious adverse effects reported in the mTNBC trial.

CytoDyns second patient enrolled is a stage 4 MBC patient. The metastasis progressed to the liver, lung and brain. This patient was enrolled through an emergency IND. The patient was on Herceptin and Perjita for over 1.5 years. Herceptin is known to stop working after about 12 months, while Perjita is effective for approximately 1.5 years. This patient received her first injection of leronlimab on November 25, with one 700 mg dose each week.

Regarding the second patient, Nader Pourhassan, Ph.D., president and chief executive officer of CytoDyn, stated: It is very exciting to see ongoing results that demonstrate leronlimabs potential as a therapeutic option to treat patients with mTNBC and MBC with HER2+ condition. This second patient was enrolled in an emergency IND.

Added Dr. Patterson, The results from two subsequent scans of the metastatic lesions for this second patient demonstrated shrinkage of the tumors at both timepoints following the first leronlimab injection, reduction in brain edema, and remarkably, disappearance of several metastatic tumors.

Dr. Pourhassan continued, Due to these very promising clinical data, we feel that the 98% inhibition of metastasis shown by our animal studies may soon become a reality for many cancer patients throughout the world. We are cautiously optimistic and believe we have enough results in an unmet medical need population to justify filing for Breakthrough Therapy Designation in January 2020.

About Triple-Negative Breast CancerTriple-negative breast cancer (TNBC) is a type of breast cancer characterized by the absence of the three most common types of receptors in the cancer tumor known to fuel most breast cancer growthestrogen receptors (ER), progesterone receptors (PR) and the hormone epidermal growth factor receptor 2 (HER-2) gene.1TNBC cancer occurs in about 10 to 20 percent of diagnosed breast cancers and can be more aggressive and more likely to spread and recur.2,3Since the triple-negative tumor cells lack these receptors, common treatments for breast cancer such as hormone therapy and drugs that target estrogen, progesterone, and HER-2 are ineffective.4Currently, there are no targeted therapies approved to treat triple-negative breast cancer.5About Leronlimab (PRO 140)The U.S. Food and Drug Administration (FDA) has granted a Fast Track designation to CytoDyn for two potential indications of leronlimab for deadly diseases. The first as a combination therapy with HAART for HIV-infected patients and the second is for metastatic triple-negative breast cancer (mTNBC). Leronlimab is an investigational humanized IgG4 mAb that blocks CCR5, a cellular receptor that is important in HIV infection, tumor metastases, and other diseases including NASH. Leronlimab has successfully completed nine clinical trials in over 800 people, including meeting its primary endpoints in a pivotal Phase 3 trial (leronlimab in combination with standard anti-retroviral therapies in HIV-infected treatment-experienced patients).

In the setting of HIV/AIDS, leronlimab is a viral-entry inhibitor; it masks CCR5, thus protecting healthy T cells from viral infection by blocking the predominant HIV (R5) subtype from entering those cells. Leronlimab has been the subject of nine clinical trials, each of which demonstrated that leronlimab can significantly reduce or control HIV viral load in humans. The leronlimab antibody appears to be a powerful antiviral agent leading to potentially fewer side effects and less frequent dosing requirements compared with daily drug therapies currently in use.

In the setting of cancer, research has shown that CCR5 plays an important role in tumor invasion and metastasis. Increased CCR5 expression is an indicator of disease status in several cancers. Published studies have shown that blocking CCR5 can reduce tumor metastases in laboratory and animal models of aggressive breast and prostate cancer. Leronlimab reduced human breast cancer metastasis by more than 98 percent in a murine xenograft model. CytoDyn is therefore conducting aPhase 2 human clinical trial in metastatic triple-negative breast cancer and was granted Fast Track designation in May 2019. Additional research is being conducted with leronlimab in the setting of cancer and NASH with plans to conduct additionalclinical studies when appropriate.

The CCR5 receptor appears to play a central role in modulating immune cell trafficking to sites of inflammation and may be important in the development of acute graft-versus-host disease (GvHD) and other inflammatory conditions. Clinical studies by others further support the concept that blocking CCR5 using a chemical inhibitor can reduce the clinical impact of acute GvHD without significantly affecting the engraftment of transplanted bone marrow stem cells. CytoDyn is currently conducting a Phase 2 clinical study with leronlimab to further support the concept that the CCR5 receptor on engrafted cells is critical for the development of acute GvHD and that blocking this receptor from recognizing certain immune signaling molecules is a viable approach to mitigating acute GvHD. The FDA has granted orphan drug designation to leronlimab for the prevention of graft-versus-host disease (GvHD).

About CytoDynCytoDyn is a biotechnology company developing innovative treatments for multiple therapeutic indications based on leronlimab, a novel humanized monoclonal antibody targeting the CCR5 receptor. CCR5 appears to play a key role in the ability of HIV to enter and infect healthy T-cells. The CCR5 receptor also appears to be implicated in tumor metastasis and in immune-mediated illnesses, such as graft-vs.-host disease (GvHD) and NASH. CytoDyn has successfully completed a Phase 3 pivotal trial with leronlimab in combination with standard anti-retroviral therapies in HIV-infected treatment-experienced patients. CytoDyn plans to seek FDA approval for leronlimab in combination therapy and plans to complete the filing of a Biologics License Application (BLA) in 2019 for that indication. CytoDyn is also conducting a Phase 3 investigative trial with leronlimab (PRO 140) as a once-weekly monotherapy for HIV-infected patients and, plans to initiate a registration-directed study of leronlimab monotherapy indication, which if successful, could support a label extension. Clinical results to date from multiple trials have shown that leronlimab (PRO 140) can significantly reduce viral burden in people infected with HIV with no reported drug-related serious adverse events (SAEs). Moreover, results from a Phase 2b clinical trial demonstrated that leronlimab monotherapy can prevent viral escape in HIV-infected patients, with some patients on leronlimab monotherapy remaining virally suppressed for more than four years. CytoDyn is also conducting a Phase 2 trial to evaluate leronlimab for the prevention of GvHD and has received clearance to initiate a clinical trial with leronlimab in metastatic triple-negative breast cancer. More information is at http://www.cytodyn.com.

Forward-Looking StatementsThis press releasecontains certain forward-looking statements that involve risks, uncertainties and assumptions that are difficult to predict. Words and expressions reflecting optimism, satisfaction or disappointment with current prospects, as well as words such as believes, hopes, intends, estimates, expects, projects, plans, anticipates and variations thereof, or the use of future tense, identify forward-looking statements, but their absence does not mean that a statement is not forward-looking. The Companys forward-looking statements are not guarantees of performance, and actual results could vary materially from those contained in or expressed by such statements due to risks and uncertainties including: (i)the sufficiency of the Companys cash position, (ii)the Companys ability to raise additional capital to fund its operations, (iii) the Companys ability to meet its debt obligations, if any, (iv)the Companys ability to enter into partnership or licensing arrangements with third parties, (v)the Companys ability to identify patients to enroll in its clinical trials in a timely fashion, (vi)the Companys ability to achieve approval of a marketable product, (vii)the design, implementation and conduct of the Companys clinical trials, (viii)the results of the Companys clinical trials, including the possibility of unfavorable clinical trial results, (ix)the market for, and marketability of, any product that is approved, (x)the existence or development of vaccines, drugs, or other treatments that are viewed by medical professionals or patients as superior to the Companys products, (xi)regulatory initiatives, compliance with governmental regulations and the regulatory approval process, (xii)general economic and business conditions, (xiii)changes in foreign, political, and social conditions, and (xiv)various other matters, many of which are beyond the Companys control. The Company urges investors to consider specifically the various risk factors identified in its most recent Form10-K, and any risk factors or cautionary statements included in any subsequent Form10-Q or Form8-K, filed with the Securities and Exchange Commission. Except as required by law, the Company does not undertake any responsibility to update any forward-looking statements to take into account events or circumstances that occur after the date of this press release.

CONTACTS

Media:Grace FotiadesLifeSci Public Relationsgfotiades@lifescipublicrelations.com(646) 876-502

Investors: ir@cytodyn.com

Link:
CytoDyn Reports Early, But Strong Positive Clinical Responses for Two Patients, One in Metastatic Breast Cancer and One in Metastatic Triple-Negative...

Scientists Take Stem Cells and Convert Them to Heart Pacemaker Cells – Technology Networks

University of Houston associate professor of pharmacology Bradley McConnell is helping usher in a new age of cardiac pacemakers by using stem cells found in fat, converting them to heart cells, and reprogramming those to act as biologic pacemaker cells. He is reporting his work in theJournal of Molecular and Cellular Cardiology.

The new biologic pacemaker-like cell will be useful as an alternative treatment for conduction system disorders, cardiac repair after a heart attack and to bridge the limitations of the electronic pacemaker.

"We are reprogramming the cardiac progenitor cell and guiding it to become a conducting cell of the heart to conduct electrical current," said McConnell.

McConnell's collaborator, Robert J. Schwartz, Hugh Roy and Lillian Cranz Cullen Distinguished Professor of biology and biochemistry, previously reported work on turning the adipogenic mesenchymal stem cells, that reside in fat cells, into cardiac progenitor cells. Now those same cardiac progenitor cells are being programmed to keep hearts beating as a sinoatrial node (SAN), part of the electrical cardiac conduction system (CCS).

The SAN is the primary pacemaker of the heart, responsible for generating the electric impulse or beat. Native cardiac pacemaker cells are confined within the SAN, a small structure comprised of just a few thousand specialized pacemaker cells. Failure of the SAN or a block at any point in the CCS results in arrhythmias.

More than 600,000 electronic pacemakers are implanted in patients annually to help control abnormal heart rhythms. The small mechanical device is placed in the chest or abdomen and uses electrical pulses to prompt the heart to beat normally. In addition to having the device regularly examined by a physician, over time an electronic pacemaker can stop working properly.

"Batteries will die. Just look at your smartphone," said McConnell. "This biologic pacemaker is better able to adapt to the body and would not have to be maintained by a physician. It is not a foreign object. It would be able to grow with the body and become much more responsive to what the body is doing."

To convert the cardiac progenitor cells, McConnell infused the cells with a unique cocktail of three transcription factors and a plasma membrane channel protein to reprogram the heart cells in vitro.

"In our study, we observed that the SHOX2, HCN2, and TBX5 (SHT5) cocktail of transcription factors and channel protein reprogrammed the cells into pacemaker-like cells. The combination will facilitate the development of cell-based therapies for various cardiac conduction diseases," he reported.

Reference: Raghunathan et al. (2019).Conversion of human cardiac progenitor cells into cardiac pacemaker-like cells. Journal of Molecular and Cellular Cardiology. DOI: https://doi.org/10.1016/j.yjmcc.2019.09.015.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Original post:
Scientists Take Stem Cells and Convert Them to Heart Pacemaker Cells - Technology Networks

5 Things to Know About Hair loss and Scalp Care Centre Papilla Haircare – Singapore Tatler

By Gerald Tan December 23, 2019 Tatler Focus

The centre offers the latest scalp innovations that address all your hair thinning woes by getting to the root cause

While you are pampering your skin with the most luxurious creams and lotions, dont forget to show your crowning glory some tender loving care, too. Beautiful tresses require plenty of effort and dedication to upkeep, but when you are faced with unfortunate scalp ailments or hair-loss issues, however, maintaining its volume and healthy shine can seem like anuphill task.

Enter hair loss and scalp care centre Papilla Haircare, which might have the solution for all your hair woes.

From state-of-the-art equipment to medicallybacked technologies, here are five things to know about the brand:

Thankfully, advances in science and technology can help alleviate many hairrelated problems. Papilla Haircare has the latest innovative solutions. Located at Ngee Ann City, it is a one-stop hub that utilises the latest medicallybacked technologies. The centre collaborates with doctors and scientists to concoct serums rich in stem cells in its own Korean laboratory to ensure the highest safety standards.

(Related: 7 Natural Beauty Products Your Skin Will Love You For)

Boasting sleek black and gold accents, Papilla Haircares contemporary interiors are a reflection of its cutting-edge services. Its clinically proven programmes are the result of extensive scientific research, meticulously developed by a group of Korean dermatologists and hair transplant surgeons. Thanks to their efficacies, these remedies have also been adopted for post-procedure use at top hair transplant centres in South Korea.

(Related: 5 Foods To Eat For Healthy Hair And Nails)

See the article here:
5 Things to Know About Hair loss and Scalp Care Centre Papilla Haircare - Singapore Tatler

Making advanced therapies takes industrializing personalization – STAT

Whats the best way to measure the real rate of progress in personalized cell therapies, gene therapies, and other advanced therapies?

Ive been tracking the ever-growing flow of reports about these therapies in scientific journals and press releases for 15 years, ever since I co-led the passage of Californias $3 billion Stem Cell Research and Cures Act in 2004.

But to truly gauge who will benefit from todays innovations, Ive learned I also need to study the stream of business and technology announcements that runs in parallel. That might seem more mundane but to veterans of advanced therapies, making the science work actually signals success for these gene-, tissue-, and cell-based advanced therapies.

advertisement

The reason is simple. My experience working with advanced therapies has taught me, time and again, that true next-generation medicine requires the industrialization of personalization. That sounds like an oxymoron, but it isnt. To create individualized therapeutics in a sustainable way, we need to deliver even if it seems counterintuitive mass customization.

Breakthroughs such as CAR-T cell therapies are inspiring. They are also unsustainably expensive, difficult to manufacture, and complicated to deliver. We can change this by creating a more focused cross-collaborative production and delivery ecosystem.

The Food and Drug Administration anticipates that it will approve 10 to 20 advanced therapies a year beginning in 2025. It also expects to receive up to 200 clinical trial applications for cell and gene therapies per year, starting now. The more than 1,000 advanced therapy clinical trials now underway worldwide could enroll almost 60,000 patients, according to the Alliance for Regenerative Medicine. That pace wont be possible without new systems and networks that reduce cost, simplify manufacturing, and streamline delivery.

I can see some of these on the horizon when I read the biotech and pharma partnerships reported in BioSpace and BioCentury. Of the 100 most recent, almost 10% were dedicated to cell- and gene-therapy companies and organizations. These partnership announcements are typically viewed as opportunities to highlight new business deals or contract wins. But they are also daily snapshots of the infrastructure of an evolving next-generation health care system forming from within. Here are just a few examples from 2019:

Its encouraging to see biopharma manufacturing, logistics, transport, and other partners in the cell- and gene-therapy ecosystem coming together in new ways to ensure the successful and reliable delivery of advanced therapies for individual patients. But much more evolution is needed to provide sustainable patient access to advanced therapies.

We need even more industry collaboration to overhaul and connect existing health care systems, so production and delivery of cell- and gene-based therapies can be more automated and affordable. According to estimates from credible industry colleagues and leaders, end-to-end automation can shave costs by at least 20% to 30%, and at the same time greatly improve predictability and patient safety.

We must also make this new world simpler for health care providers. Doctors and nurses must not only understand how advanced therapies work medically, but be able to order and deliver them safely with a minimum of delay or hassle. As noted in the New Yorker, CAR-T requires bringing a manufacturing lens to medicine. Supporting health care providers means creating true collaboration between digital technology providers, hospitals, logistics providers, biotech and pharma companies, and manufacturing, like the Boston initiative I described earlier.

Standardization is often decried as cookie-cutter medicine. In this space, however, it is the wave of the future.

While patient biology is unique, and each patients cells may produce a one-of-a-kind manufacturing batch, essential parts of the production and delivery process should be as predictable and easy as possible. One key place to start is in-process drug labeling. When patients cells become the raw material for advanced therapies, these labels become more complex and more necessary: When a patient is about to receive a cell therapy infusion, its essential that the name on the bag of genetically re-engineered cells is his or hers. The Standards Coordinating Body, an FDA-funded but independent nonprofit, is now leading an industry-wide labeling initiative for cell and gene therapies.

There are other clear signs that the advanced therapies field gets it when it comes to infrastructure needs, such as the inclusion of digital health and handling of patient data as categories of focus in the federal Cures 2.0 initiative currently circulating in Washington. But much remains to be done.

In centers caring for individuals with cancer and rare diseases, thousands of patients are today receiving advanced therapies that are transforming their lives. We need to make that possible for many, many more by working together to industrialize and personalize in parallel.

Amy DuRoss is the CEO and co-founder of Vineti, a digital technology company that provides next-generation software platforms for advanced therapies. Before that she was managing director for new business creation for GE Ventures, chief business officer at Navigenics, the co-founder and executive director of Proposition 71, Californias $3 billion stem cell research initiative that passed in 2004, and chief of staff at the resulting California Institute for Regenerative Medicine.

Read the original here:
Making advanced therapies takes industrializing personalization - STAT

Global Allogeneic Stem Cells Market 2020-2024 | Evolving Opportunities with Biosolution Co. Ltd. and Cynata Therapeutics Ltd. | Technavio – Yahoo…

Technavio has been monitoring the global allogeneic stem cells market and the market is poised to grow by USD 1.24 billion during 2020-2024 at a CAGR of over 12% during the forecast period. Request Free Sample Pages

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20191218005455/en/

Technavio has announced its latest market research report titled global allogeneic stem cells market 2020-2024. (Graphic: Business Wire)

Read the 131-page research report with TOC on "Allogeneic Stem Cells Market Analysis Report by geography (Asia, Europe, North America, and ROW), by application (regenerative therapy and drug discovery and development), and segment forecasts, 2020-2024".

https://www.technavio.com/report/allogeneic-stem-cells-market-industry-analysis

The new product approvals and special drug designations are anticipated to boost the growth of the market. Based on the application, the allogeneic stem cells market has been segmented into regenerative therapy and drug discovery and development. Manufacturers are increasingly emphasizing innovations and improvisation in the development of regenerative therapies. Many of the regenerative therapeutic candidates have obtained approval for clinical trials in the US, Europe, and APAC due to the efficacy of allogeneic stem cell therapeutics. This is encouraging market players to launch new product lines to stimulate the overall product demand for stem or regenerative therapy using allogeneic stem cell therapeutics and provide better options for their customers. Thus, new product approvals are expected to drive market growth during the forecast period.

Buy 1 Technavio report and get the second for 50% off. Buy 2 Technavio reports and get the third for free.

View market snapshot before purchasing

Major Five Allogeneic Stem Cells Market Companies:

Biosolution Co. Ltd.

Biosolution Co. Ltd. is headquartered in South Korea (Republic of Korea) and operates the business under its Unified business segment. The company offers an allogeneic keratinocyte spread medication, Keraheal-Allo, that promotes skin regeneration.

Cynata Therapeutics Ltd.

Cynata Therapeutics Ltd. is engaged in the discovery, development, licensing, manufacturing, marketing, distribution, and sales of innovative therapeutics for the treatment of various diseases. The company provides a mesenchymal stem cell product, Cymerus, which is used to treat graft-versus-host disease.

JCR Pharmaceuticals Co. Ltd.

JCR Pharmaceuticals Co. Ltd. is headquartered in Japan and operates under two business segments, namely Pharmaceuticals, and Medical Devices and Laboratory Equipment. The company offers a regenerative medical product, TEMCELL HS Injection, which uses human mesenchymal stem cells for the treatment of acute graft-versus-host disease.

Lineage Cell Therapeutics Inc.

Lineage Cell Therapeutics Inc. is headquartered in the US and offers products through its Unified business segment. The company provides OpRegen, which is currently being tested in a Phase I/IIa clinical trial. This product is intended for the treatment of dry AMD.

MEDIPOST Co. Ltd.

MEDIPOST Co. Ltd. is headquartered in South Korea (Republic of Korea) and offers products through its Unified business segment. The company provides an allogeneic umbilical cord blood-derived mesenchymal stem cell drug, CARTISTEM, which is used for the treatment of knee cartilage defects.

Story continues

Register for a free trial today and gain instant access to 17,000+ market research reports. Technavio's SUBSCRIPTION platform

Allogeneic Stem Cells Application Outlook (Revenue, USD Million, 2020-2024)

Allogeneic Stem Cells Regional Outlook (Revenue, USD Million, 2020-2024)

Technavios sample reports are free of charge and contain multiple sections of the report, such as the market size and forecast, drivers, challenges, trends, and more. Request a free sample report

Related Reports on Health Care include:

Cancer Stem Cell Therapeutics Market Global Cancer Stem Cell Therapeutics Market by type (allogeneic stem cell transplant and autologous stem cell transplant) and geography (Asia, Europe, North America, and ROW).

About Technavio

Technavio is a leading global technology research and advisory company. Their research and analysis focus on emerging market trends and provides actionable insights to help businesses identify market opportunities and develop effective strategies to optimize their market positions.

With over 500 specialized analysts, Technavios report library consists of more than 17,000 reports and counting, covering 800 technologies, spanning across 50 countries. Their client base consists of enterprises of all sizes, including more than 100 Fortune 500 companies. This growing client base relies on Technavios comprehensive coverage, extensive research, and actionable market insights to identify opportunities in existing and potential markets and assess their competitive positions within changing market scenarios.

View source version on businesswire.com: https://www.businesswire.com/news/home/20191218005455/en/

Contacts

Technavio ResearchJesse MaidaMedia & Marketing ExecutiveUS: +1 844 364 1100UK: +44 203 893 3200Email: media@technavio.com Website: https://www.technavio.com

See the original post here:
Global Allogeneic Stem Cells Market 2020-2024 | Evolving Opportunities with Biosolution Co. Ltd. and Cynata Therapeutics Ltd. | Technavio - Yahoo...

Stem Cell Market SWOT Analysis 2019 | Industry Leading Players by Size, Share, Industry Revenue, and Regional Forecast to 2024 – Ankeny Observer

The Stem Cell Market report 2019 is a comprehensive, professional and in-depth research of keyword that delivers significant data for those who are seeking information for the Stem Cell industry. The keyword market report delivers the product specification, key strategies, future prospect and cost structure of the industry. The report also highlighted the future trends in the Stem Cell market that will impact the demand during the forecast period.

Report Highlights:

In this study, the years considered to estimate the market size of Stem Cell :

For More Information or Query or Customization Before Buying, Visit at https://www.industryresearch.co/enquiry/pre-order-enquiry/13999718

Key Market Trends:

Oncology Disorders Segment is Expected to Exhibit Fastest Growth Rate Over the Forecast Period

Cancer has a major impact on society in the United States and across the world. As per the estimation of National Cancer Institute, in 2018, 1,735,350 new cases of cancer were anticipated to get diagnosed in the United States, and 609,640 deaths were expected from the disease. This increasing medical burden is due to population growth. Bone marrow transplant or stem cell transplant is a treatment for some types of cancers, like leukemia, multiple myeloma, multiple myeloma, neuroblastoma, or some types of lymphoma.

Embryonic stem cells (ESC) are the major source of stem cells for therapeutic purposes, due to their higher totipotency and indefinite lifespan, as compared to adult stem cells with lower totipotency and restricted lifespan. However, the use of ESCs for research and therapeutic purposes is restricted and prohibited in many countries throughout the world, due to some ethical constraints. Scientists from the University of California, Irvine, created the stem cell-based approach to kill cancerous tissue while preventing some toxic side effects of chemotherapy by treating the disease in a more localized way.

Although the market shows positive growth, due to the growing focus of stem cell-based research that can further strengthen the clinical application, its expensive nature for stem cell therapy may still hamper its growth.

North America Captured The Largest Market Share and is Expected to Retain its Dominance

North America dominated the overall stem cell market with the United States contributing to the largest share in the market. In 2014, the Sanford Stem Cell Clinical Center at the University of California, San Diego (UCSD) Health System, announced the launch of a clinical trial, in order to assess the safety of neural stem cell-based therapy in patients with chronic spinal cord injury. Researchers hoped that the transplanted stem cells may develop into new neurons that could replace severed or lost nerve connections, and restore at least some motor and sensory functions. Such numerous stem cell studies across the United States have helped in the growth of the stem cell market.

The Report Covers:

Purchase this Report (Price 4250 USD for single user license) https://www.industryresearch.co/purchase/13999718

Detailed TOC of Stem Cell Market Report 2019-2024:

1 INTRODUCTION1.1 Study Deliverables1.2 Study Assumptions1.3 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS4.1 Market Overview4.2 Market Drivers4.2.1 Increased Awareness about Umbilical Stem Cell4.2.2 Increase in the Approval for Clinical Trials in Stem Cell Research4.2.3 Growing Demand for Regenerative Treatment Option4.2.4 Rising R&D Initiatives to Develop Therapeutic Options for Chronic Diseases4.3 Market Restraints4.3.1 Expensive Procedures4.3.2 Regulatory Complications4.3.3 Ethical and Moral Framework4.4 Industry Attractiveness- Porters Five Forces Analysis4.4.1 Threat of New Entrants4.4.2 Bargaining Power of Buyers/Consumers4.4.3 Bargaining Power of Suppliers4.4.4 Threat of Substitute Products4.4.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION5.1 By Product Type5.1.1 Adult Stem Cell5.1.2 Human Embryonic Cell5.1.3 Pluripotent Stem Cell5.1.4 Other Product Types5.2 By Therapeutic Application5.2.1 Neurological Disorders5.2.2 Orthopedic Treatments5.2.3 Oncology Disorders5.2.4 Diabetes5.2.5 Injuries and Wounds5.2.6 Cardiovascular Disorders5.2.7 Other Therapeutic Applications5.3 By Treatment Type5.3.1 Allogeneic Stem Cell Therapy5.3.2 Auto logic Stem Cell Therapy5.3.3 Syngeneic Stem Cell Therapy5.4 By Banking Service and Technology5.4.1 Stem Cell Acquisition and Testing5.4.2 Cell Production5.4.3 Expansion5.4.4 Sub-culture5.4.5 Cryopreservation5.5 By Type of Banking5.5.1 Public5.5.2 Private5.6 Geography5.6.1 North America5.6.1.1 US5.6.1.2 Canada5.6.1.3 Mexico5.6.2 Europe5.6.2.1 UK5.6.2.2 Germany5.6.2.3 France5.6.2.4 Italy5.6.2.5 Spain5.6.2.6 Rest of Europe5.6.3 Asia-Pacific5.6.3.1 China5.6.3.2 Japan5.6.3.3 India5.6.3.4 Australia5.6.3.5 South Korea5.6.3.6 Rest of Asia-Pacific5.6.4 Middle East & Africa5.6.4.1 GCC5.6.4.2 South Africa5.6.4.3 Rest of Middle East & Africa5.6.5 South America5.6.5.1 Brazil5.6.5.2 Argentina5.6.5.3 Rest of South America

6 COMPETITIVE LANDSCAPE6.1 Company Profiles6.1.1 Osiris Therapeutics Inc.6.1.2 Pluristem Therapeutics Inc.6.1.3 Thermo Fisher Scientific6.1.4 Qiagen NV6.1.5 Sigma Aldrich Corporation6.1.6 Becton, Dickinson and Company6.1.7 Stem Cell Technologies Inc.6.1.8 AllCells LLC6.1.9 Miltenyi Biotec6.1.10 International Stem Cell Corporation

7 MARKET OPPORTUNITIES AND FUTURE TRENDS

Contact Us:

Name: Ajay More

Phone: US +14242530807/ UK +44 20 3239 8187

Email: [emailprotected]

Our Other Reports:

Steam Autoclave Market Share, Size 2019|Global Industry Analysis with Current Trends, Future Growth, Competition Strategies, Application, Region and Forecast to 2025

Global Tinted Float Glass Market Size 2019: Significant Trends and Factors Driving the Market Development Forecast to 2025

Global Vertical Lift Module Market Size 2019: Research Methodology, Top Manufactures and Market Size Estimate 2025

Hybrid Imaging System Market 2020 Global Industry Demand, Industry News, Business Updates by Size, Share, Sales Revenue Forecast by 2025 Industry Research.co

Global Fragrance and Perfume Market 2019 Size & Share, Regional Demand, Future Scope, Challenges, Key Players, Business Development Opportunity and Forecast to 2023,

Continued here:
Stem Cell Market SWOT Analysis 2019 | Industry Leading Players by Size, Share, Industry Revenue, and Regional Forecast to 2024 - Ankeny Observer

BeiGene Announces Acceptance of a Supplemental New Drug Application in China for REVLIMID in Relapsed or Refractory Indolent Lymphoma – BioSpace

BEIJING, China and CAMBRIDGE, Mass., Dec. 22, 2019 (GLOBE NEWSWIRE) -- BeiGene, Ltd. (NASDAQ: BGNE; HKEX: 06160), a commercial-stage biopharmaceutical company focused on developing and commercializing innovative molecularly-targeted and immuno-oncology drugs for the treatment of cancer, today announced that the China National Medical Products Administration (NMPA) has accepted a supplemental new drug application (sNDA) for REVLIMID (lenalidomide), in combination with rituximab, for the treatment of patients with relapsed or refractory indolent lymphoma (follicular lymphoma or marginal zone lymphoma). REVLIMID was first approved in China in 2013 for the treatment of multiple myeloma in combination with dexamethasone, in adult patients who have received at least one prior therapy, and the label for the combination was expanded in 2018 to include adult patients with newly-diagnosed multiple myeloma (NDMM) who are not eligible for transplant. It is currently marketed in China by BeiGene under an exclusive license from Celgene Logistics Sarl, a Bristol-Myers Squibb company.

This milestone for REVLIMID marks another step in the expansion of our hematology franchise into non-Hodgkins lymphoma (NHL) in China, where significant unmet medical needs remain. Together with the pending approvals of tislelizumab for Hodgkins lymphoma and zanubrutinib for mantle cell lymphoma and chronic lymphocytic leukemia as well as Revlimid for multiple myeloma, Vidaza for myelodysplastic syndromes and acute myeloid leukemia and additional products from the collaboration we have announced with Amgen, we are working to build a market-leading presence in the treatment of hematological cancers in China, said Dr. Xiaobin Wu, General Manager of China and President of BeiGene. We are excited about this opportunity and look forward to working closely with Bristol-Myers Squibb and the NMPA to bring this chemotherapy-free treatment option to patients with relapsed or refractory follicular lymphoma or marginal zone lymphoma in China as soon as possible.

The sNDA is supported by a clinical, non-clinical, and chemistry, manufacturing and control (CMC) data package, including the results from the pivotal Phase 3 AUGMENT study (NCT01938001) sponsored and conducted by Bristol-Myers Squibb. AUGMENT is a randomized, double-blind, multicenter trial in which a total of 358 patients with relapsed or refractory follicular or marginal zone lymphoma were randomized 1:1 to receive REVLIMID and rituximab (R2) or rituximab and placebo. With a median follow-up of 28.3 months (range: 0.1 to 51.3 months), R2 demonstrated clinically meaningful and statistically significant improvement in progression-free survival (PFS), evaluated by an independent review committee (IRC), relative to the control arm with a 54% reduction in the risk of progression or death (hazard ratio [HR] = 0.46; 95% confidence interval [CI]: 0.34, 0.62; p < 0.0001). The median PFS was 39.4 months for the R2 arm and 14.1 months for the control arm with an improvement by more than 2 years. Overall response rate (ORR), a secondary endpoint, was 78% in the R2 arm vs. 53% in the control arm, as assessed by the IRC. Duration of response (DoR) was significantly improved for R2 vs. control with median DoR of 37 vs. 22 months, respectively (P =0.0015; HR: 0.53; 95% CI, 0.36-0.79). The most frequent adverse event (AE) in the R2 arm was neutropenia (58%), vs. 22% in the control arm. Additional commonly observed AEs in more than 20% of patients included diarrhea (31% in the R2 arm vs. 23% in the control arm), constipation (26% vs. 14%), cough (23% vs. 17%), and fatigue (22% vs. 18%). Adverse events that were reported at a higher rate (>10%) in the R2 arm were neutropenia, constipation, leukopenia, anemia, thrombocytopenia and tumor flare.

About follicular lymphoma (FL) and marginal zone lymphoma (MZL)

FL and MZL are two major types of indolent lymphomas;1 FL is the most common subtype, constituting approximately 20% to 25% of all NHL,2 followed by MZL (approximately 5% to 17% of all NHLs).3 NHL incidence in China is 88,090 according to the World Health Organizations Globocan 2018 database.4 Given the incurable nature of relapsed or refractory FL/MZL, the efficacy and safety limitations of current treatment options, and the fact that patients are typically older and with comorbidities, a high unmet medical need exists for the development of novel treatment options with new differentiated mechanisms of action and a more tolerable safety profile that can improve the quality of response and PFS in the setting of previously treated FL/MZL.

About REVLIMID

In China, REVLIMID was approved in combination with dexamethasone for the treatment of adult patients with newly diagnosed multiple myeloma (MM) who are not eligible for transplant in 2018. It received approval in China in 2013 for the treatment of multiple myeloma in combination with dexamethasone in adult patients who have received at least one prior therapy.

REVLIMID is approved in Europe and the United States as monotherapy, indicated for the maintenance treatment of adult patients with newly diagnosed MM who have undergone autologous stem cell transplantation. REVLIMID as combination therapy is approved in Europe, in the United States, in Japan and in around 25 other countries for the treatment of adult patients with previously untreated MM who are not eligible for transplant. REVLIMID is also approved in combination with dexamethasone for the treatment of patients with MM who have received at least one prior therapy in nearly 70 countries, encompassing Europe, the Americas, the Middle-East and Asia, and in combination with dexamethasone for the treatment of patients whose disease has progressed after one therapy in Australia and New Zealand.

REVLIMID is also approved in the United States, Canada, Switzerland, Australia, New Zealand and several Latin American countries, as well as Malaysia and Israel, for transfusion-dependent anaemia due to low- or intermediate-1-risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities and in Europe for the treatment of patients with transfusion-dependent anemia due to low- or intermediate-1-risk MDS associated with an isolated deletion 5q cytogenetic abnormality when other therapeutic options are insufficient or inadequate.

In addition, REVLIMID is approved in Europe for the treatment of patients with mantle cell lymphoma (MCL) and in the United States for the treatment of patients with MCL whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib. In Switzerland, REVLIMID is indicated for the treatment of patients with relapsed or refractory MCL after prior therapy that included bortezomib and chemotherapy/rituximab.

REVLIMID is not indicated and is not recommended for the treatment of patients with chronic lymphocytic leukemia (CLL) outside of controlled clinical trials.

U.S. Indications for REVLIMID

REVLIMID (lenalidomide) in combination with dexamethasone (dex) is indicated for the treatment of adult patients with multiple myeloma (MM).

REVLIMID is indicated as maintenance therapy in adult patients with MM following autologous hematopoietic stem cell transplantation (auto-HSCT).

REVLIMID is indicated for the treatment of adult patients with transfusion-dependent anemia due to low-or intermediate-1risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities.

REVLIMID is indicated for the treatment of adult patients with mantle cell lymphoma (MCL) whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib.

REVLIMID in combination with a rituximab product is indicated for the treatment of adult patients with previously treated follicular lymphoma (FL).

REVLIMID in combination with a rituximab product is indicated for the treatment of adult patients with previously treated marginal zone lymphoma (MZL).

REVLIMID is not indicated and is not recommended for the treatment of patients with chronic lymphocytic leukemia (CLL) outside of controlled clinical trials.

REVLIMID is only available through a restricted distribution program, REVLIMID REMS.

Important Safety Information

WARNING: EMBRYO-FETAL TOXICITY, HEMATOLOGIC TOXICITY, and VENOUS and ARTERIAL THROMBOEMBOLISM

Embryo-Fetal Toxicity

Do not use REVLIMID during pregnancy. Lenalidomide, a thalidomide analogue, caused limb abnormalities in a developmental monkey study. Thalidomide is a known human teratogen that causes severe life-threatening human birth defects. If lenalidomide is used during pregnancy, it may cause birth defects or embryo-fetal death. In females of reproductive potential, obtain 2 negative pregnancy tests before starting REVLIMID treatment. Females of reproductive potential must use 2 forms of contraception or continuously abstain from heterosexual sex during and for 4 weeks after REVLIMID treatment. To avoid embryo-fetal exposure to lenalidomide, REVLIMID is only available through a restricted distribution program, the REVLIMID REMS program.

Information about the REVLIMID REMS program is available at http://www.celgeneriskmanagement.com or by calling the manufacturers toll-free number 1-888-423-5436.

Hematologic Toxicity (Neutropenia and Thrombocytopenia)

REVLIMID can cause significant neutropenia and thrombocytopenia. Eighty percent of patients with del 5q MDS had to have a dose delay/reduction during the major study. Thirty-four percent of patients had to have a second dose delay/reduction. Grade 3 or 4 hematologic toxicity was seen in 80% of patients enrolled in the study. Patients on therapy for del 5q MDS should have their complete blood counts monitored weekly for the first 8 weeks of therapy and at least monthly thereafter. Patients may require dose interruption and/or reduction. Patients may require use of blood product support and/or growth factors.

Venous and Arterial Thromboembolism

REVLIMID has demonstrated a significantly increased risk of deep vein thrombosis (DVT) and pulmonary embolism (PE), as well as risk of myocardial infarction and stroke in patients with MM who were treated with REVLIMID and dexamethasone therapy. Monitor for and advise patients about signs and symptoms of thromboembolism. Advise patients to seek immediate medical care if they develop symptoms such as shortness of breath, chest pain, or arm or leg swelling. Thromboprophylaxis is recommended and the choice of regimen should be based on an assessment of the patients underlying risks.

CONTRAINDICATIONS

Pregnancy: REVLIMID can cause fetal harm when administered to a pregnant female and is contraindicated in females who are pregnant. If this drug is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential risk to the fetus.

Severe Hypersensitivity Reactions: REVLIMID is contraindicated in patients who have demonstrated severe hypersensitivity (e.g., angioedema, Stevens-Johnson syndrome, toxic epidermal necrolysis) to lenalidomide.

WARNINGS AND PRECAUTIONS

Embryo-Fetal Toxicity: See Boxed WARNINGS.

REVLIMID REMS Program: See Boxed WARNINGS. Prescribers and pharmacies must be certified with the REVLIMID REMS program by enrolling and complying with the REMS requirements; pharmacies must only dispense to patients who are authorized to receive REVLIMID. Patients must sign a Patient-Physician Agreement Form and comply with REMS requirements; female patients of reproductive potential who are not pregnant must comply with the pregnancy testing and contraception requirements and males must comply with contraception requirements.

Hematologic Toxicity: REVLIMID can cause significant neutropenia and thrombocytopenia. Monitor patients with neutropenia for signs of infection. Advise patients to observe for bleeding or bruising, especially with use of concomitant medications that may increase risk of bleeding. Patients may require a dose interruption and/or dose reduction. MM: Monitor complete blood counts (CBC) in patients taking REVLIMID + dexamethasone or REVLIMID as maintenance therapy, every 7 days for the first 2 cycles, on days 1 and 15 of cycle 3, and every 28 days thereafter. MDS: Monitor CBC in patients on therapy for del 5q MDS, weekly for the first 8 weeks of therapy and at least monthly thereafter. See Boxed WARNINGS for further information. MCL: Monitor CBC in patients taking REVLIMID for MCL weekly for the first cycle (28 days), every 2 weeks during cycles 2-4, and then monthly thereafter. FL/MZL: Monitor CBC in patients taking REVLIMID for FL or MZL weekly for the first 3 weeks of Cycle 1 (28 days), every 2 weeks during Cycles 2-4, and then monthly thereafter.

Venous and Arterial Thromboembolism: See Boxed WARNINGS. Venous thromboembolic events (DVT and PE) and arterial thromboses (MI and CVA) are increased in patients treated with REVLIMID. Patients with known risk factors, including prior thrombosis, may be at greater risk and actions should be taken to try to minimize all modifiable factors (e.g., hyperlipidemia, hypertension, smoking). Thromboprophylaxis is recommended and the regimen should be based on the patients underlying risks. ESAs and estrogens may further increase the risk of thrombosis and their use should be based on a benefit-risk decision.

Increased Mortality in Patients With CLL: In a clinical trial in the first-line treatment of patients with CLL, single-agent REVLIMID therapy increased the risk of death as compared to single-agent chlorambucil. Serious adverse cardiovascular reactions, including atrial fibrillation, myocardial infarction, and cardiac failure, occurred more frequently in the REVLIMID arm. REVLIMID is not indicated and not recommended for use in CLL outside of controlled clinical trials.

Second Primary Malignancies (SPM): In clinical trials in patients with MM receiving REVLIMID and in patients with FL or MZL receiving REVLIMID + rituximab therapy, an increase of hematologic plus solid tumor SPM, notably AML, have been observed. In patients with MM, MDS was also observed. Monitor patients for the development of SPM. Take into account both the potential benefit of REVLIMID and risk of SPM when considering treatment.

Increased Mortality With Pembrolizumab: In clinical trials in patients with MM, the addition of pembrolizumab to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with MM with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials.

Hepatotoxicity: Hepatic failure, including fatal cases, has occurred in patients treated with REVLIMID + dexamethasone. Pre-existing viral liver disease, elevated baseline liver enzymes, and concomitant medications may be risk factors. Monitor liver enzymes periodically. Stop REVLIMID upon elevation of liver enzymes. After return to baseline values, treatment at a lower dose may be considered.

Severe Cutaneous Reactions: Severe cutaneous reactions including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS) have been reported. These events can be fatal. Patients with a prior history of Grade 4 rash associated with thalidomide treatment should not receive REVLIMID. Consider REVLIMID interruption or discontinuation for Grade 2-3 skin rash. Permanently discontinue REVLIMID for Grade 4 rash, exfoliative or bullous rash, or for other severe cutaneous reactions such as SJS, TEN, or DRESS.

Tumor Lysis Syndrome (TLS): Fatal instances of TLS have been reported during treatment with REVLIMID. The patients at risk of TLS are those with high tumor burden prior to treatment. Closely monitor patients at risk and take appropriate preventive approaches.

Tumor Flare Reaction (TFR): TFR has occurred during investigational use of REVLIMID for CLL and lymphoma. Monitoring and evaluation for TFR is recommended in patients with MCL, FL, or MZL. Tumor flare may mimic the progression of disease (PD). In patients with Grade 3 or 4 TFR, it is recommended to withhold treatment with REVLIMID until TFR resolves to Grade 1. REVLIMID may be continued in patients with Grade 1 and 2 TFR without interruption or modification, at the physicians discretion.

Impaired Stem Cell Mobilization: A decrease in the number of CD34+ cells collected after treatment (>4 cycles) with REVLIMID has been reported. Consider early referral to transplant center to optimize timing of the stem cell collection.

Thyroid Disorders: Both hypothyroidism and hyperthyroidism have been reported. Measure thyroid function before starting REVLIMID treatment and during therapy.

Early Mortality in Patients With MCL: In another MCL study, there was an increase in early deaths (within 20 weeks); 12.9% in the REVLIMID arm versus 7.1% in the control arm. Risk factors for early deaths include high tumor burden, MIPI score at diagnosis, and high WBC at baseline (10 x 109/L).

Hypersensitivity: Hypersensitivity, including angioedema, anaphylaxis, and anaphylactic reactions to REVLIMID has been reported. Permanently discontinue REVLIMID for angioedema and anaphylaxis.

ADVERSE REACTIONS

Multiple Myeloma

Myelodysplastic Syndromes

Mantle Cell Lymphoma

Follicular Lymphoma/Marginal Zone Lymphoma

DRUG INTERACTIONS

Periodically monitor digoxin plasma levels due to increased Cmax and AUC with concomitant REVLIMID therapy. Patients taking concomitant therapies such as erythropoietin-stimulating agents or estrogen-containing therapies may have an increased risk of thrombosis. It is not known whether there is an interaction between dexamethasone and warfarin. Close monitoring of PT and INR is recommended in patients with MM taking concomitant warfarin.

USE IN SPECIFIC POPULATIONS

Please see full Prescribing Information, including Boxed WARNINGS, for REVLIMID.

Please see the rituximab full Prescribing Information for Important Safety Information at http://www.rituxan.com.

About BeiGene

BeiGene is a global, commercial-stage, research-based biotechnology company focused on molecularly-targeted and immuno-oncology cancer therapeutics. With a team of over 3,000 employees in the United States, China, Australia, and Europe; BeiGene is advancing a pipeline consisting of novel oral small molecules and monoclonal antibodies for cancer. BeiGene is also working to create combination solutions aimed to have both a meaningful and lasting impact on cancer patients. In the United States, BeiGene markets and distributes BRUKINSA (zanubrutinib) and in China, the Company markets ABRAXANE (paclitaxel for injection [albumin bound]), REVLIMID (lenalidomide), and VIDAZA (azacitidine) under a license from Celgene Logistics Sarl, a Bristol-Myers Squibb company.5

Forward-Looking Statements

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 and other federal securities laws, including statements regarding BeiGenes plans and expectations for further development and commercialization of REVLIMID in China and the potential implications for patients. Actual results may differ materially from those indicated in the forward-looking statements as a result of various important factors, including BeiGene's ability to demonstrate the efficacy and safety of its drug candidates; the clinical results for its drug candidates, which may not support further development or marketing approval; actions of regulatory agencies, which may affect the initiation, timing and progress of clinical trials and marketing approval; BeiGene's ability to achieve commercial success for its marketed products and drug candidates, if approved; BeiGene's ability to obtain and maintain protection of intellectual property for its technology and drugs; BeiGene's reliance on third parties to conduct drug development, manufacturing and other services; BeiGenes limited operating history and BeiGene's ability to obtain additional funding for operations and to complete the development and commercialization of its drug candidates, as well as those risks more fully discussed in the section entitled Risk Factors in BeiGenes most recent quarterly report on Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in BeiGene's subsequent filings with the U.S. Securities and Exchange Commission. All information in this press release is as of the date of this press release, and BeiGene undertakes no duty to update such information unless required by law.

______________________1 Bello C, Zhang L, Naghashpour M. Follicular lymphoma: current management and future directions. Cancer Control. 2012;19:187-95.

2 Sousou T, Friedberg J. Rituximab in indolent lymphomas. Semin Hematol. 2010; 47(2):133-42.

3 Zinzani, P. L. (2012). The many faces of marginal zone lymphoma. Hematology, 2012(1), 426432.

4 https://gco.iarc.fr/

5 ABRAXANE is registered trademark of Abraxis Bioscience LLC, a Bristol-Myers Squibb company; REVLIMID and VIDAZA are registered trademarks of Celgene Corporation, a Bristol-Myers Squibb company.

Read the original here:
BeiGene Announces Acceptance of a Supplemental New Drug Application in China for REVLIMID in Relapsed or Refractory Indolent Lymphoma - BioSpace

Skip the mall this Christmas. Your organ-donation consent is the best gift you can give – The Globe and Mail

Margaret Lynch is an MFA student in the creative non-fiction program at the University of Kings College in Halifax.

'Tis the season for gift shopping. That time of year when we flock online, a Pavlovian response to slick advertising. We search shopping malls and stalk special one-day-only sale racks, spending hours seeking the perfect gift. But what if we didnt have to search? What if we already carried the perfect gift within us?

Less than one-quarter of Canadians have registered to donate organs, but 90 per cent of Canadians say they support organ donation. Presumed consent is a potential solution to increase donors, meaning that people need to opt out if they dont want their organs donated. Nova Scotia has already passed this legislation, to take effect in 2020. Alberta, Quebec and Prince Edward Island seem poised to follow suit.

Story continues below advertisement

The decision to donate is complicated, but all I can think about are the eight people whose lives I might save.

I was 30 years old in January, 1988. One minute, I was in my office on a frigid day where skyscraper vents exhaled plumes of white smoke that rearranged themselves against a wintry-grey Toronto sky. The next, I was at a walk-in clinic listening to the young doctor with long, blonde hair speak the words that forever changed my life.

You have acute leukemia, she said. You need to go to a hospital today. At least I had an answer for my sluggish performance on the squash court.

Within an hour, I was admitted to Toronto General Hospital, wheeled into a room with two single beds and hooked up to a bag of blood, my first transfusion. Leukemia is a blood cancer. Abnormal cells produced in the bone marrow suppress the production of normal blood cells. Transfusions are critical for people with this and other blood disorders.

I watched winter unfold like a silent movie projected through the windows of my room. Swirling snow and howling winds raged outside. Inside, there was a sameness to the days. Blood tests and transfusions, doctors and drugs.

From January to June that year, I was transfused almost every second day. Months of chemotherapy decimated my bone marrow, causing collateral damage to my cells. I learned a lot about biology that year. Mustard-yellow platelets helped my blood to clot, so I wouldnt hemorrhage while I waited for my own to recover. Crimson-coloured packed cells increased my hemoglobin and iron levels to improve my bodys oxygenation. Greenish-yellow plasma transported essential nutrients, hormones and proteins throughout my body.

I received 157 units of packed red blood cells, platelets, fresh frozen plasma and albumin. Each unit represented a blood donation from someone I did not know. I am beyond grateful to each and every person who generously donated their blood to me.

Story continues below advertisement

Though blood transfusions kept me alive, clinical trials and chemotherapy had failed to put me in remission. In May, 1988, I received another type of transfusion. On that day, my sisters ruby-red liquid bone marrow hung from an IV pole. Its contents dripped into a central vein in my chest through a Hickman line. I watched it and felt something I hadnt felt in four months: hope.

A bone-marrow transplant is the stuff of science fiction. Bone marrow is the soft tissue inside bones that produces blood-forming stem cells. The stem cells retrieved from my sisters marrow navigated into my own marrow where they regenerated as healthy blood cells. Im always reminded of the submarine crew in the 1966 movie, Fantastic Voyage, who were shrunk to microscopic size and ventured into the body of an injured scientist to repair damage.

Incredibly, the procedure cured my leukemia. To my sister, Mary: Thank you for giving me back my life.

I was lucky in 1988, still early days for the science of bone-marrow transplantation. Much has changed in the intervening years. Today, we know that stem-cell transplants can treat more than eighty diseases and disorders.

Three decades ago, I could only obtain a transplant because Id sourced my own matching sibling donor. Today, less than 25 per cent of people who require transplants will find a matching donor within their family. The rest rely on the generosity of unrelated donors. Canada participates in an international network of stem-cell registries with access to 36 million potential donors worldwide.

Because of my medical history, Im not an eligible blood donor, nor can I register for the stem-cell registry. But I can donate my organs, knowing my gift will be perfect for the person who needs it.

Story continues below advertisement

This year, I skipped the mall. Instead, I registered my consent to help save lives by becoming an organ and tissue donor.

Go here to read the rest:
Skip the mall this Christmas. Your organ-donation consent is the best gift you can give - The Globe and Mail

adult stem cells: the history of the research

Anadult stem cellis anundifferentiatedcell, found among differentiated cells in tissue or an organ. The adult stem cell can renew itself and can differentiate to yield some or all of the major specialized cell types of the tissue or organ. The primary role of adult stem cells in a living organism is to maintain and repair the tissue in which they are found. Scientists also use the termsomatic stem cellto describe adult stem cells, where somatic refers to cells of the body (not the germ cells, sperm or eggs). Unlikeembryonic stem cells, which are defined by their origin (cells from the preimplantation-stage embryo), the origin of adult stem cells in some mature tissues is still under investigation.

Research on adult stem cells has generated a great deal of excitement. Scientists have found adult stem cells in many more tissues than they once thought possible. This finding has led researchers and clinicians to consider whether adult stem cells could be used for transplants. In fact, adult hematopoieticor blood-formingstem cells from bone marrow have been used in transplants for more than 40 years. Scientists now have evidence that stem cells exist in the brain and the heart, two locations where adult stem cells were not at firstexpected to reside. If the differentiation of adult stem cells can be controlled in the laboratory, these cells may become the basis of transplantation-based therapies.

The history of research on adult stem cells began more than 60 years ago. In the 1950s, researchers discovered that the bone marrow contains at least two kinds of stem cells. Hematopoietic stem cells form all the types of blood cells in the body. Bone Marrow stromal stem cells are a multipotent subset of bone marrow stromal cells that are able to form bone, cartilage, stromal cells that support blood formation, fat, and fibrous tissue.

Bone marrow stem cells are also called mesenchymal stem cells, and were discovered a few years later. These non-hematopoietic stem cells make up a small proportion of thestromal cellpopulation in the bone marrow and can generate bone, cartilage, and fat cells that support the formation of blood and fibrous connective tissue.

In the 1960s, scientists who were studying rats discovered two regions of the brain that contained dividing cells that ultimately become nerve cells, but despite these reports most scientists believed that the adult brain could not generate new nerve cells. It was not until the 1990s that scientists agreed that the adult brain does contain stem cells that are able to generate the brains three major cell typesastrocytesand oligodendrocytes, which are non-neuronal cells, andneurons, or nerve cells.

Adult stem cells have been identified in many organs and tissues, including brain, bone marrow, peripheral blood, blood vessels, skeletal muscle, skin, teeth, heart, gut, liver, ovarian epithelium, and testis. They are thought to reside in a specific area of each tissue (called a stem cell niche). In many tissues, current evidence suggests that some types of stem cells are pericytes, cells that compose the outermost layer of small blood vessels. Stem cells may remain quiescent (non-dividing) for long periods of time until they are activated by a normal need for more cells to maintain tissues, or by disease or tissue injury.

Scientists often use one or more methods to identify adult stem cells: Label the cells in a living tissue with molecular markers and then determine the specialized cell types they generate; Remove the cells from a living animal, label them in cell culture, and transplant them back into another animal to determine whether the cells replace (or repopulate) their tissue of origin.

Importantly, scientists must demonstrate that a single adult stem cell can generate a line of genetically identical cells that then gives rise to all the appropriate differentiated cell types of the tissue. To confirm experimentally that a putative adult stem cell is indeed a stem cell, scientists show either that the cell can give rise to these genetically identical cells in culture, and/or that a purified population of these candidate stem cells can repopulate or reform the tissue after transplant into an animal.

Continue reading here:
adult stem cells: the history of the research