Patent Granted To Lineage & AgeX – Anti Aging News

Lineage Cell Therapeutics and AgeX Therapeutics have been awarded a United States Patent and Trademark Office patent for Methods Of Reprogramming Animal Somatic Cells.

The issuance of this patent highlights Lineages dominant position in the field of cell therapy, stated Brian M. Culley, CEO of Lineage. Our efforts to develop new treatments rely on well-characterized and NIH-approved human cell lines. These lines are not genetically manipulated, which avoids the safety concerns associated with genetic aberrations arising from the creation of iPS cells. We believe the Lineage cell lines provide the safest option for our current clinical-stage programs, particularly in immune-privileged anatomical sites such as the eye (OpRegen for the treatment of dry AMD) and spinal cord (OPC1, for the treatment of spinal cord injury). However, the vast intellectual property estate which underlies our cell therapy platform has never been limited to these particular cell lines. As one example, this newly-issued patent provides us with proprietary methods for producing induced pluripotent stem cells, or, as it was practiced by us prior to Yamanaka, Analytical Reprogramming Technology (ART). In certain settings, an ART/iPS approach might offer important advantages, such as for an autologous treatment or when the selection of preferential attributes from a series of iPS lines is desirable. Questions as to which stem cell technology is preferred ultimately will be answered by clinical safety and efficacy and likely will be indication-specific, so we believe it is in the best interest of our shareholders to generate patented technology which enables us to pursue programs in either or both formats which we believe will ensure the highest probability of success.

This patent broadly describes multiple techniques for reprogramming cells of the body back to the all-powerful stem cell state, said Dr Michael D West, CEO of AgeX and first inventor on the patent. Perhaps more significantly, it includes certain factors that address some of the difficulties currently encountered with iPS cells. It also reflects the foundational work our scientists have undertaken to apply reprogramming technology to age-reversal, specifically, induced Tissue Regeneration (iTR) which is currently a focus of AgeX product development.

Patent 10,501,723 covers induced pluripotent stem cells which includes methods to manufacture iPSs cells that are capable of becoming any cell within the body. This patent has an early priority date having been filed before the first scientific publication, and was assigned to Advanced Cell Technology of Marlborough, Massachusetts and licenced to Lineage as well as being sublicensed to Age X for defined fields of use.

More:
Patent Granted To Lineage & AgeX - Anti Aging News

Charles River Announces Strategic Partnership with Bit Bio, Increasing Portfolio of Translational Drug Discovery Technologies – BioSpace

Dec. 10, 2019 13:00 UTC

WILMINGTON, Mass.--(BUSINESS WIRE)-- Charles River Laboratories International, Inc. (NYSE: CRL) today announced that it has entered into an exclusive Discovery and Safety Services partnership with Bit Bio, a company that offers consistent and efficient reprogramming of human cells for use in research, drug discovery, and cell therapies.

By applying an engineering approach to synthetic and stem cell biology, Bit Bio has developed proprietary technologies for the efficient, consistent, and scalable reprogramming of induced pluripotent stem cells.

Cellular Reprogramming

Cellular reprogramming is the process by which human stem cells, given a precise set of genetic instructions, differentiate into a desired cell type. Current cellular reprogramming approaches are inefficient, with low cell yields, creating a gap for applications requiring high quality, consistent, and pure human cells.

To overcome this hurdle, Bit Bio has developed a gene engineering approach, opti-ox (optimised inducible over-expression). This platform, validated on both muscle and brain cells, enables precise, controllable stem cell reprogramming. According to Bit Bio, the process is more efficient and scalable than available technologies in transforming stem cells into desired cell types.

By combining the purity, scale, and speed of the opti-ox platform with deep learning algorithms, Bit Bio has the potential to accelerate the discovery and application of every single human cell type.

Partnering for Translational Drug Development

By partnering with Bit Bio, Charles River plans to offer clients access to an expanding suite of authentic human cells through their use in target discovery, validation and screening services. In drug discovery and safety, the use of high quality, authentic human cells at scale will enable the development of therapies with a higher chance of success in patients. Additionally, through the partnership, Charles River will contribute to the development and validation of novel cell lines.

Approved Quotes

About Charles River

Charles River provides essential products and services to help pharmaceutical and biotechnology companies, government agencies and leading academic institutions around the globe accelerate their research and drug development efforts. Our dedicated employees are focused on providing clients with exactly what they need to improve and expedite the discovery, early-stage development and safe manufacture of new therapies for the patients who need them. To learn more about our unique portfolio and breadth of services, visit http://www.criver.com.

View source version on businesswire.com: https://www.businesswire.com/news/home/20191210005520/en/

Continue reading here:
Charles River Announces Strategic Partnership with Bit Bio, Increasing Portfolio of Translational Drug Discovery Technologies - BioSpace

Fate Therapeutics Presents its First Off-the-shelf, iPSC-derived CAR T-Cell Cancer Immunotherapy Program at ASH Annual Meeting – GlobeNewswire

FT819 Exhibits Enhanced Tumor Clearance In Vivo Compared to Primary CAR T Cells in Preclinical Leukemia Model

Master Engineered iPSC Line for FT819 Fully Characterized for Complete Elimination of TCR Expression and Integration of Novel 1XX CAR into TRAC Locus with No Evidence of Off-target Effects

Company Plans to Submit an IND Application for FT819 during 1H20

SAN DIEGO, Dec. 10, 2019 (GLOBE NEWSWIRE) -- Fate Therapeutics, Inc. (NASDAQ: FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for cancer and immune disorders, announced new in vivo preclinical data for FT819, its first off-the-shelf, iPSC-derived chimeric antigen receptor (CAR) T-cell product candidate, at the 61st American Society of Hematology (ASH) Meeting and Exposition in Orlando, Florida.

FT819 is derived from a clonal master engineered induced pluripotent stem cell (iPSC) line with complete elimination of T-cell receptor (TCR) expression and a novel 1XX CAR targeting CD19 inserted into the T-cell receptor alpha constant (TRAC) locus. The cell product candidate is being developed under a collaboration with Memorial Sloan Kettering Cancer Center (MSK) led by Michel Sadelain, M.D., Ph.D. The Company has now selected a single engineered iPSC clone, and generated and fully-characterized the master engineered iPSC bank for GMP production of FT819.

CAR T-cell therapy continues to deliver remarkable outcomes for patients with hematologic malignancies, and next-generation approaches are needed to enable broad and timely patient access and reduce the cost and complexity of therapy, said Scott Wolchko, President and Chief Executive Officer of Fate Therapeutics. With early evidence of clinical activity for our off-the-shelf, iPSC-derived NK cell programs, we are excited to lead in bringing next-generation CAR T-cell therapies to patients and plan to submit an IND for FT819 in the first half of 2020.

The Companys iPSC product platform unites stem cell biology and precision genetic engineering to create renewable master engineered iPSC lines that can be repeatedly used to mass produce cancer-fighting immune cells, replacing the high production costs, weeks of manufacturing time, and complex engineering processes required for current-generation CAR T-cell immunotherapies with an off-the-shelf product that has the potential to reach many more patients.

At ASH, scientists from the Company and MSK presented new in vivo preclinical data demonstrating that FT819 exhibits durable tumor control and extended survival. In a stringent xenograft model of disseminated lymphoblastic leukemia, FT819 demonstrated enhanced tumor clearance and control of leukemia as compared to primary CAR19 T cells. At Day 35 following administration, a bone marrow assessment showed that FT819 persisted and continued to demonstrate tumor clearance, whereas primary CAR T cells, while persisting, were not able to control tumor growth. Over the past twelve months, the collaboration team has worked to optimize its processes for making T cells from iPSCs, and has now shown the production of pure T-lymphocytes consisting of both CD8+ and CD4+ T cells having a global gene expression profile that is highly-similar to primary T cells based on a principal component analysis.

As proof-of-principle for the unique advantages arising from selecting a single engineered iPSC clone for the production of CAR T-cell therapy, the scientists assessed 747 clones after engineering a pool of cells using CRISPR. It was found that only about 2% of clones met the Companys standards for overall quality including containing both bi-allelic disruption of the TCR, proper insertion of the CAR into the TRAC locus without random transgene integrations, and no evidence of off-target genomic modifications or translocations. The Company selected the top-performing clone for generation of the master engineered iPSC bank for GMP production of FT819.

Fate Therapeutics has exclusively licensed from MSK foundational intellectual property covering the production and composition of iPSC-derived T cells. In August, the Company announced that the U.S. Patent and Trademark Office issued U.S. Patent No. 10,370,452 covering compositions and uses of effector T cells expressing a CAR, where such T cells are derived from a pluripotent stem cell, including an iPSC. The foundational patent, which expires in 2034, is owned by MSK and is licensed exclusively to Fate Therapeutics for all human therapeutic uses.

About Fate Therapeutics iPSC Product PlatformThe Companys proprietary induced pluripotent stem cell (iPSC) product platform enables mass production of off-the-shelf, engineered, homogeneous cell products that can be administered with multiple doses to deliver more effective pharmacologic activity, including in combination with cycles of other cancer treatments. Human iPSCs possess the unique dual properties of unlimited self-renewal and differentiation potential into all cell types of the body. The Companys first-of-kind approach involves engineering human iPSCs in a one-time genetic modification event and selecting a single engineered iPSC for maintenance as a clonal master iPSC line. Analogous to master cell lines used to manufacture biopharmaceutical drug products such as monoclonal antibodies, clonal master iPSC lines are a renewable source for manufacturing cell therapy products which are well-defined and uniform in composition, can be mass produced at significant scale in a cost-effective manner, and can be delivered off-the-shelf for patient treatment. As a result, the Companys platform is uniquely capable of overcoming numerous limitations associated with the production of cell therapies using patient- or donor-sourced cells, which is logistically complex and expensive and is subject to batch-to-batch and cell-to-cell variability that can affect clinical safety and efficacy. Fate Therapeutics iPSC product platform is supported by an intellectual property portfolio of over 250 issued patents and 150 pending patent applications.

About Fate Therapeutics, Inc.Fate Therapeutics is a clinical-stage biopharmaceutical company dedicated to the development of first-in-class cellular immunotherapies for cancer and immune disorders. The Company has established a leadership position in the clinical development and manufacture of universal, off-the-shelf cell products using its proprietary induced pluripotent stem cell (iPSC) product platform. The Companys immuno-oncology product candidates include natural killer (NK) cell and T-cell cancer immunotherapies, which are designed to synergize with well-established cancer therapies, including immune checkpoint inhibitors and monoclonal antibodies, and to target tumor-associated antigens with chimeric antigen receptors (CARs). The Companys immuno-regulatory product candidates include ProTmune, a pharmacologically modulated, donor cell graft that is currently being evaluated in a Phase 2 clinical trial for the prevention of graft-versus-host disease, and a myeloid-derived suppressor cell immunotherapy for promoting immune tolerance in patients with immune disorders. Fate Therapeutics is headquartered in San Diego, CA. For more information, please visit http://www.fatetherapeutics.com.

Forward-Looking StatementsThis release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995 including statements regarding the safety and therapeutic potential of the Companys cell product candidates, including FT819, its ongoing and planned clinical studies, and the expected clinical development plans for FT819. These and any other forward-looking statements in this release are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that the Company may cease or delay planned development and clinical trials of any of its product candidates for a variety of reasons (including any delay in enrolling patients in current and planned clinical trials, requirements that may be imposed by regulatory authorities on the conduct of clinical trials or to support regulatory approval, difficulties in manufacturing or supplying the Companys product candidates for clinical testing, or the occurrence of any adverse events or other negative results that may be observed during development), the risk that results observed in preclinical studies of its product candidates, including FT819, may not be replicated in future clinical trials or studies, and the risk that its product candidates may not produce therapeutic benefits or may cause other unanticipated adverse effects. For a discussion of other risks and uncertainties, and other important factors, any of which could cause the Companys actual results to differ from those contained in the forward-looking statements, see the risks and uncertainties detailed in the Companys periodic filings with the Securities and Exchange Commission, including but not limited to the Companys most recently filed periodic report, and from time to time in the Companys press releases and other investor communications.Fate Therapeutics is providing the information in this release as of this date and does not undertake any obligation to update any forward-looking statements contained in this release as a result of new information, future events or otherwise.

Contact:Christina TartagliaStern Investor Relations, Inc.212.362.1200christina@sternir.com

Read the original post:
Fate Therapeutics Presents its First Off-the-shelf, iPSC-derived CAR T-Cell Cancer Immunotherapy Program at ASH Annual Meeting - GlobeNewswire

StemGenex – Stem Cell Therapy, Stem Cell Treatments, Stem …

Multiple sclerosis (or MS) is a degenerative disease involving the deterioration of nerve cells. MS attacks the central nervous system (CNS), which is made up of the brain, spinal cord, and optic nerves.

Autoimmune diseases are conditions in which the patients immune system generates cellular and antibody responses to substances and tissues normally present in the body.

In each condition there is chronic obstruction of the flow of air through the airways and out of the lungs, and the obstruction generally is permanent and may be progressive over time.

Rheumatoid Arthritis is an autoimmune disease that attacks the bodys own tissues, specifically the synovium, a thin membrane lining the joints. As a result, joint fluid builds up, causing pain in the joints and inflammation thats systemic.

Parkinson's disease is a chronic progressive neurological disease that affects nerve cells (neurons) in an area of the brain known as the substantia nigra.

Osteoarthritis, or degenerative joint disease, is the most common type of arthritis. It is caused by the degradation of a joints cartilage.

With the onset of Alzheimers disease, information transfer at the synapses (the connection between the nerve cells and extensions) starts to break down, and the number of synapses decreases significantly.

Diabetes is the condition in which the body does not properly process food for use as energy. When you have diabetes, your body either doesn't make enough insulin or can't use its own insulin as well as it should.

Original post:
StemGenex - Stem Cell Therapy, Stem Cell Treatments, Stem ...

Cutting Edge Exosome Regenerative Therapy Comes to Yelm’s AM Medical – ThurstonTalk

When embryonic Stem Cell therapy was first discovered in 1998, it changed the face of medicine. The idea of being able to regenerate and replace damaged cells seemed futuristic at the time, yet today such treatments are commonplace. Now, science has taken another quantum leap this time into the nano-sized world of exosomes, tiny bubbles that grow out of cell walls and contain much of the information contained within the cell including Growth factors, microRNA and messenger RNA. Mesenchymal stem cell (MSC) exosome therapy is currently one of the hottest trends in regenerative medicine, one that patients at AM Medical in Yelm can now experience.

Everyone has heard of stem cell therapy, but it turns out that its not the stem cells that are doing the work, says Dr. Ana Mihalcea, President of AM Medical. Its the exosomes that carry the information of regeneration. Infused stem cells, attach to blood vessel walls, and then give off exosomes.

Exosomes have several key differences from stem cells; they do not get removed from the circulation like stem cells, which are in the body for less than 72 hours before they get destroyed by the immune system; they do not produce a rejection reaction because they are not a cell and contain no DNA, and they pass the blood brain barrier, Mihalcea notes. In a study on stroke scientists fluorescently tagged exosomes, and the infused exosomes went exactly to the region where the stroke had occurred, she adds. The same was not true of stem cells as they do not cross the blood brain barrier.

As a result of their powerful cargo, exosomes can be used to address a multitude of conditions, including arthritis, autoimmune disorders, cardiovascular and neurogenerative diseases like Parkinsons and Alzheimers. Old cells can be reprogrammed by MSC exosomes as the target cells can transcribe the microRNA into functional proteins. Just like a virus, the exosome information of the young stem cells can infect the old cells with Youth, explains Mihalcea.

Spinal cord injuries are an area in which exosomes have produced dramatic results. Mihalcea cites the example of Dr. Douglas J. Spiels Interventional Pain Specialty Practice in NJ. Dr. Spiel has been able to rehabilitate spinal cord injuries with Exosome infusions into the spine and intravenously, she says. After several weeks, hes had patients regain muscle strength and sensation. These are prolonged, ongoing regenerative effects that continued to improve for months after the infusion.

When it comes to autoimmune diseases, inflammation plays a key role. Again, exosomes are able to reduce the problem by downregulating inflammation. TGF Beta 3 [Transforming growth factor beta-3] is the most important anti-inflammatory protein in the body and is abundant in MSC exosomes says Mihalcea. Many more Growth factors for blood vessel growth, neuronal and other tissue growth are present, allowing regenerative effects in all organ systems including skin wounds and burns.

The exosomes at AM Medical come from a laboratory in Florida that conducted pioneering research in the field. They come from perinatal mesenchymal stem cells and are scanned for any possible viruses to ensure their safety. Once harvested, the exosomes are concentrated so they can be infused in large doses.

For patients who qualify, the infusion process takes 10 to 15 minutes. Already, its been producing results for AM Medical patients. Weve had people with arthritis and chronic pain who had great responses, Mihalcea notes. There is an overall increase in wellbeing and sense of rejuvenation that is definitely noticeable.

Perhaps one of the largest sources of excitement over exosomes has to do with their anti-aging effects. Recently, ideas about the root causes of aging have been evolving, according to Mihalcea. Its been thought that aging occurs due to multiple different reasons like stem cell exhaustion, epigenetic changes, telomere shortening and others, she explains. It turns out that exosomes can modify almost all the hallmarks of aging. Theyre changing epigenetic expression to youthful function, and there are many potential applications. This is a new frontier in regenerative medicine that can help many people.

Learn more by watching Dr. Ana Mihalceas video on Exosomes The New Frontier Part 1: Longevity and Age reversal or reading further on the AM Medical website.

Sponsored

Read the original post:
Cutting Edge Exosome Regenerative Therapy Comes to Yelm's AM Medical - ThurstonTalk

Five recent drug target discoveries for pancreatic cancer – Drug Target Review

This article highlights some of the most recent drug target discoveries that could be used to develop and design a treatment for pancreatic cancer.

Scientists investigating pancreatic cancer have identified new targets which, with further research, could be the basis for developing future therapies. Listed below are five of the most recent target discoveries, in order of their journal publication dates, with the newest first.

Scientists at the Queen Mary University of London, UK and Zhengzhou University, China have developed a personalised vaccine system that may be able to delay the onset of pancreatic cancer.

Cells taken from mice, mutated chemically into pancreatic cancer cells and then infected with Adenovirus (AdV) as a prime or Vaccinia virus (VV) as a boost, create a vaccine product. The virus kills the cancerous cells in such a way that their antigens are released and are therefore able to prime the immune system to prevent pancreatic cancer returning.

Injection of the virus-infected cells into mice destined to develop pancreatic cancer doubled their survival rate, compared to their unvaccinated counterparts. The vaccine also delayed the onset of the condition in these mice.

Using cells from the recipient of the vaccine enables the immune system to respond to the exact antigens seen in tumour cells of the individual, resulting in a vaccine regime tailored to them.

Through this international collaboration, we have made progress towards the development of a prophylactic cancer vaccine against pancreatic cancer, said Professor Yaohe Wang, leader of the study, from Queen Mary University of London and the Sino-British Research Centre at Zhengzhou University in China.

Researchers at Sanford Burnham Prebys Medical Discovery Institute in the US have identified that a combination of two anti-cancer compounds, already approved for use to treat other cancers, shrank pancreatic tumours in mice.

Our study identifies a potential treatment combination that can immediately be tested against these aggressive tumours. We are already meeting with oncologists at Oregon Health & Science University, US to discuss how to advance this discovery into clinical evaluation, explained Dr Zeev Ronai, a professor in Sanford Burnham Prebys Tumor Initiation and Maintenance Program, also senior author of the study.

Scientists used L-asparaginase to starve pancreatic tumours of asparagine, an amino acid required by cells for protein synthesis. However, the tumour cells did not die, instead switching on a stress response pathway whereby they could produce asparagine themselves. Scientists then used an MEK inhibitor to block the stress response pathway, causing the pancreatic tumour to shrink.

L-asparaginase is already US Food and Drug Administration (FDA) approved to treat leukaemias and similarly the MEK inhibitor is approved for the treatment of solid tumours, including melanoma skin cancer.

This research lays the basis for the inhibition of pancreatic tumour growth by a combined synergistic attack based on asparagine restriction and MAPK signalling inhibition, says Dr Eytan Ruppin, chief of the Cancer Data Science Library at the National Cancer Institute (NCI) and co-author of the study.

Scientists from the Max Planck Institute for Biology of Ageing, Germany have identified that YME1L, a protease in the membrane of mitochondria, is activated when a cell uses glycolysis to produce energy anaerobically.

scientists were able to reduce tumour growth by switching off the glycolysis signalling pathway in the mitochondria

Cells adapt to oxygen deficiency by switching their energy supply to glycolysis, which ferments sugar without oxygen. This switch is often necessary in old age, as the cells in the body become poorly supplied with oxygen and nutrients.

Cancer cells can also face this problem; prior to angiogenesis, tumours are poorly perfused and so the tissue is deprived of oxygen. Oxidative stress in tumours drives the switch-on of multiple pathways. This includes the glycolysis pathway that alters the behaviour of the mitochondria to provide tumour cells with energy despite being starved of oxygen.

Scientists found that the YME1L protease is activated during the conversion to glycolysis. YME1L appears altered and breaks down various proteins in the organelles, preventing the formation of new mitochondria and causing the remaining organelles to change their metabolism. This process eventually stops as YME1L begins to degrade itself at high activity.

Researchers examined cancer cells originating from patients with pancreatic tumours and were able to reduce tumour growth by switching off the glycolysis signalling pathway in the mitochondria, with reproducible results both in the petri dish and in pancreatic tumours in mice.

There is currently no treatment available for pancreatic cancer. I believe that this protease can be a very interesting therapeutic target because we have seen that the signalling pathway is also active in human patients with pancreatic cancer, explained Thomas Langer, the Max Planck Director, continuing: However, there are no known substances that have an effect on this protease.

Researchers at the Crick Institute have identified cancer stem cells as a driver of pancreatic cancer growth. These cells can metastasise and differentiate into different tumour types to continue the spread of cancer.

Cancer stem cells appear at all stages of cancer growth so being able to identify where they are present could be vital in both targeting cancer and developing new treatments, according to the researchers. Analysis of gene expression in the cancer stem cells identified a protein, CD9, is present on tumour surfaces during development and when it is more established. This protein could therefore be used as a marker to help locate these cells.

A further development of the study established that this protein is not just a marker of cancer stem cells, but also promotes their malignant behaviour. By altering the amount of CD9 in tumour cells in mice, researchers found that reduced levels of this protein caused smaller tumours to form and increasing levels of CD9 created more aggressive cells able to form large tumours quickly.

These cells are vital to pancreatic cancer and if even just a few of them survive chemotherapy, the cancer is able to bounce back. We need to find effective ways to remove these cells and so stop them from fuelling cancer growth. However, we need more experiments to validate the importance of CD9 in human pancreatic cancer, says Victoria Wang, lead author and member of the Adult Stem Cell Laboratory at the Crick Institute.

A look into cancer stem cell metabolism also revealed CD9 increases the rate tumour cells take up glutamine, an amino acid which helps provide energy for cancer growth.

Now we know this protein is both linked to cancer stem cells and helps cancer growth, this could guide the development of new treatments that are targeted at the protein and so cut off the supply of glutamine to cancer stem cells, effectively starving the cancer, says Axel Behrens, corresponding author and group leader in the Adult Stem Cell Laboratory at the Crick Institute.

Scientists at Tel Aviv University, Israel have found that PJ34, a small molecule, causes human pancreatic cancer cells to self-destruct. The researchers tested PJ34 on xenografts (transplants) of human pancreatic tumours in mice.

this mechanism also exists in other types of cancer and therefore the treatment could be valuable for use on those resistant to current therapies

The mice were treated with a molecule called PJ34, which is permeable in the cell membrane but affects human cancer cells exclusively. This molecule causes an anomaly during the duplication of human cancer cells, provoking their rapid cell death. Thus, cell multiplication itself resulted in cell death in the treated cancer cells, explains Professor Malca Cohen-Armon, project lead at Tel Aviv Universitys Sackler Faculty of Medicine.

The treatment consisted of daily PJ34 injections for 14 days and four weeks later there was a relative drop of 90 percent in the number of cancer cells within the tumours of the mice. Cohen-Armon also noted there were no adverse side-effects observed in the mice.

This mechanism similarly exists in other types of cancer and therefore the treatment could be valuable for use on those resistant to current therapies. The molecule PJ34 is being tested in pre-clinical trials according to FDA regulations before clinical trials begin.

More here:
Five recent drug target discoveries for pancreatic cancer - Drug Target Review

20(R)-Ginsenoside Rg3 Influences Cancer Stem Cell Properties and the E | OTT – Dove Medical Press

Lan Thi Hanh Phi,* Yoseph Toni Wijaya,* Ita Novita Sari, Kwang Seock Kim, Ying-Gui Yang, Min-Woo Lee, Hyog Young Kwon

Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea

*These authors contributed equally to this work

Correspondence: Hyog Young Kwon; Min-Woo LeeSoonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, 25 Bongjeong-ro, Cheonan, Chungcheongnam-do 31151, Republic of KoreaTel +82-41-413-5021; +82-41-413-5029Email hykwon@sch.ac.kr; mwlee12@sch.ac.kr

Background: Cancer stem cells (CSCs) have been proposed as central drivers of cancer relapse in many cancers. In the present study, we investigated the inhibitory effect of 20(R)-Ginsenoside Rg3 (Rg3R), a major active component of ginseng saponin, on CSC-like cells and the Epithelial-Mesenchymal Transition (EMT) in colorectal cancer (CRC).Methods: The effects of ginsenoside Rg3R on the colony-forming, migration, invasion, and wound-healing abilities of CRC cells were determined in HT29 and SW620 cell lines in vitro. Further, ginsenoside Rg3R was given intraperitoneally at 5mg/kg of mouse body weight to check its effect on the metastasis of CRC cells in vivo.Results: Ginsenoside Rg3R significantly inhibited CSC properties, but did not affect cell proliferation. Moreover, ginsenoside Rg3R treatment significantly inhibited the motility of CRC cells based on migration, invasion, and wound-healing assays. The inhibitory effects of ginsenoside Rg3R on CRC are potentially mediated by significant down-regulation of the expression of stemness genes and EMT markers in CRC cells in a SNAIL-dependent manner. Furthermore, ginsenoside Rg3R treatment decreased both the number and size of tumor nodules in the liver, lung, and kidney tissues in a metastasis mouse model.Conclusion: These findings highlighted the potential use of ginsenoside Rg3R in clinical applications for colorectal cancer treatment.

Keywords: colorectal cancer, ginsenoside Rg3R, CSCs, EMT

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

View post:
20(R)-Ginsenoside Rg3 Influences Cancer Stem Cell Properties and the E | OTT - Dove Medical Press

Immunotherapy drug improves outcomes for some children with relapsed leukemia – National Institutes of Health

News Release

Tuesday, December 10, 2019

New findings from a clinical trial show that treatment with the immunotherapy drug blinatumomab is superior to standard chemotherapy for children and young adults with high- or intermediate-risk B-cell acute lymphoblastic leukemia (B-ALL) that has relapsed. Those treated with blinatumomab had longer survival, experienced fewer severe side effects, had a higher rate of undetectable residual disease, and were more likely to proceed to a stem cell transplant.

Our study demonstrates that immunotherapy with blinatumomab is more effective and less toxic than chemotherapy as a bridge to curative bone marrow transplant for children and young adults with very aggressive relapse of B-ALL, said Patrick Brown, M.D., who chaired the trial and is director of the Pediatric Leukemia Program at the Johns Hopkins Kimmel Cancer Center, Baltimore. We are thrilled that these patients, whose survival has not substantially improved for decades, now have a new and better standard of care.

The findings were presented as a late-breaking abstract at the American Society of Hematology (ASH) annual meeting on Dec. 10, 2019. The trial was led by the Childrens Oncology Group (COG), part of the National Cancer Institute (NCI)sponsored National Clinical Trials Network. NCI is part of the National Institutes of Health. Amgen reviewed the trial protocol and amendments and provided the study drug under a Cooperative Research and Development Agreement with NCI.

These findings will likely have immediate impact on the treatment of this group of children and young adults with relapsed B-ALL, said Malcolm Smith, M.D., Ph.D., associate branch chief for pediatric oncology in NCIs Cancer Therapy Evaluation Program, which sponsored the trial. These results also reinforce the important role that federally funded clinical trials play in developing more effective treatments for children with cancer.

When children have B-ALL that relapses after their initial treatment, they are typically given chemotherapy. The first four to six weeks of chemotherapy, the reinduction phase, is commonly followed by additional intensive chemotherapy, or consolidation treatment, to further reduce disease levels. Following this, hematopoietic stem cell transplant is considered the best treatment for approximately half of patients, based on factors such as whether relapse occurred during initial treatment or shortly after it was completed.

However, chemotherapy can produce severe side effects in some patients and is sometimes ineffective in reducing leukemia levels to the low levels needed prior to transplant. As a result, patients may not be able to proceed to transplant or transplant may be delayed, which increases the risk that the leukemia will return.

The COG study investigated blinatumomab as an alternative type of consolidation treatment to follow the reinduction phase. Blinatumomab is a type of immunotherapy that works by binding to two different molecules: CD19, a protein, or antigen, expressed on the surface of B-ALL cells, and CD3, an antigen expressed on T cells. By bringing T cells close to leukemia cells, the immunotherapy helps the T cells recognize and kill the cancer cells.

Blinatumomab has been approved by the U.S. Food and Drug Administration (FDA) for adults and children with B-ALL that has returned or has not responded to treatment. FDA has also granted accelerated approval to the drugmeaning confirmatory trials must show it has clinical benefitfor some adults and children undergoing treatment for B-ALL who achieve complete remission but still have small amounts of leukemia detectable using very sensitive methods.

Investigators in this study wanted to see if blinatumomab could increase rates of survival free from leukemia and be less toxic than intensive chemotherapy in children and young adults undergoing consolidation treatment.

The trial report was based on 208 children and young adults aged 130 with relapsed B-ALL who had received reinduction chemotherapy and were considered to have high- or intermediate-risk disease. They were randomly assigned to receive either two rounds of intensive chemotherapy or two 4-week rounds of treatment with blinatumomab before proceeding to a transplant. (A separate part of the study addressed children with low-risk disease.)

After a median follow-up time of 1.4 years, those in the blinatumomab group had higher rates of 2-year disease-free survival, the primary outcome of the study, than those who received intensive chemotherapy (59.3 5.4% vs. 41 6.2%). Those treated with blinatumomab also had higher rates of overall survival (79.4 4.5% vs. 59.2 6%), fewer severe side effects, a higher rate of undetectable residual disease (79% vs. 21%), and a higher rate of proceeding to stem cell transplant (73% vs. 45%).

At a planned interim analysis, an independent data safety monitoring committee concluded that the outcome for children treated with blinatumomab was superior to that of children treated with chemotherapy only and recommended that enrollment to the high- and intermediate-risk part of the trial be stopped.

Future clinical trials will study whether blinatumomabs effects in relapsed B-ALL can be enhanced by combining it with other immunotherapy and will test whether adding the drug to standard chemotherapy for children and young adults with newly diagnosed B-ALL is beneficial.

About the National Cancer Institute (NCI):NCIleads the National Cancer Program and NIHs efforts to dramatically reduce the prevalence of cancer and improve the lives of cancer patients and their families, through research into prevention and cancer biology, the development of new interventions, and the training and mentoring of new researchers. For more information about cancer, please visit the NCI website atcancer.govor call NCIs contact center, the Cancer Information Service, at 1-800-4-CANCER (1-800-422-6237).

About the National Institutes of Health (NIH):NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIHTurning Discovery Into Health

###

See original here:
Immunotherapy drug improves outcomes for some children with relapsed leukemia - National Institutes of Health

Patients closer to receiving regenerated tissue, scientists say – The Irish News

Doctors are one step closer to using regenerated tissue to treat patients due to breakthroughs in stem cell research, according to a new study.

Scientists have developed a new gel from piglet intestinal tissue to grow tissue in the form of organoids so they can be used in human treatment.

Organoids are laboratory-grown structures of human stem cells that model the shape and function of tissue such as muscle.

While they hold potential for use in the replacement and repair of damaged or diseased tissue, the gels currently used to culture human organoids have been unsuitable for use in patients.

However, the researchers led by National Institute for Health Research Professor Paolo De Coppi and Professor Nicola Elvassore, at University College London Great Ormond Street Institute of Child Health, have developed an extracellular-matrix (ECM) hydrogel.

The use of decellularised piglet intestinal tissue means organoids could be suitable for use in human treatment.

Published in Nature Communications, the study suggests the new hydrogel meets good practice standards so can be used in a clinical setting.

It provides the same level of support to stem cells in the organoid culture as synthetic gels, scientists say.

Gels used in the development of organoids play an important role in determining the final tissue that is grown.

Researchers found their new ECM hydrogel could be used to support cell growth not only in small intestine tissue, but also for liver, stomach and pancreatic tissue.

They say their findings mark a step towards clinicians being able to use laboratory-developed organoids in clinical settings.

Prof De Coppi said: There is a huge potential for organoids to open up regenerative medicine and advance how we treat complex conditions.

Our findings mark a major step towards seeing tissue grown from stem cells being used in clinical settings to treat patients.

This could open up the possibility of providing organoid transplants for patients affected by devastating diseases such as short bowel syndrome to improve intestinal function.

Research was conducted by a team from UCL GOS ICH, the Francis Crick Institute, ShanghaiTech University, the Royal Netherlands Academy of Arts and Sciences, University Medical Centre Utrecht, Princess Maxima Centre for Paediatric Oncology Netherlands and the Telethon Institute of Genetics and Medicine in Italy.

Visit link:
Patients closer to receiving regenerated tissue, scientists say - The Irish News

Layoffs at Fla.-based stem cell clinic accused of aggressively marketing patients – ABC Action News

Tampa, Fla. A Tampa-based regenerative clinic accused of using aggressive and unfair marketing tactics to lure the diseased and desperate into spending thousands of dollars on unproven stem cell therapies laid off a small number of non-medical employees earlier this week, a company spokesperson confirmed.

While its unknown exactly how many employees the Lung Health Institute let go of earlier this week, a spokesperson on Wednesday denied the layoffs were the result of a pending lawsuit facing the company and recent media scrutiny questioning its practices. Instead, the spokesperson wrote in a statement the layoffs were the result of a planned transition that aligns with our strategy of moving away from a direct-to-consumer business model and focusing on our goal of ultimately creating industry-leading therapies that are FDA-approved for the treatment of chronic lung disease.

The Lung Health Institute, which is headquartered in Tampa but has locations in four other states, has been criticized by former clients for aggressively pitching stem cell therapies for incurable lung diseases that are not FDA approved or proven to work. In 2018, we spoke with former clients and widows of clients who described how they were pitched therapies for incurable lung diseases.

Hell definitely get some kind of improvement, thats what they told me, said Olga Cassady whose husband died of lung disease about 6 months after, she says, they spent $11,000 for treatment at the institutes Tampa headquarters, formerly known as the Lung Institute.

In 2018, Maureen Rosen of Ocala, also told us how she also bought into the Institutes pitch that its treatment would help slow down her progression with chronic obstructive pulmonary disease (COPD). At the time, Rosen was on an oxygen tank 24/7. But shortly after her treatment at the Lung Institute, Rosen told us, it seems like from the day I had it, I started to get worse, she said last year.

Rosen and Cassady are not the only ones complaining about the treatments offered by the company.

Tampa Attorney Ben Vinson filed the lawsuit on behalf of two former patients and said he has more than 30 others including Rosen and Cassady, who are hoping for a class action lawsuit against the clinic.

In Vinsons original complaint filed in 2017, he accused the Lung Institute of using aggressive and deceptive marketing tactics for sham treatments based on sham science and deception, according to the complaint.

They were desperate when they came to this company. They were all dying slowly, suffocating from various lung illnesses, Vinson said. They were desperate financially, in most cases, to afford the procedure so a lot of them gave up their last dime in order to do so, he said.

Earlier in the day, its spokesperson sent us copies of six testimonials from former patients who said they felt positive results after undergoing treatments at the institute. Several indicated they sought booster treatments after benefits from their original treatments wore off.

According to court filings, before any treatments are done at the institute, patients must sign a patient consent form which warns them that the treatment may not have any impact on their conditions.

A company spokesperson said the company is currently in discussions with the FDA to start clinical trials with investigative new drugs (IND) to help treat patients with lung diseases.

As for this weeks layoffs and its impact on patient treatments at the Institutes facilities, a company spokesperson said, the changes will have no impact on the quality medical care we provide our patients.

Visit link:
Layoffs at Fla.-based stem cell clinic accused of aggressively marketing patients - ABC Action News