Targeting CCR5 trafficking to inhibit HIV-1 infection – Science Advances

Abstract

Using a cell-based assay monitoring differential protein transport in the secretory pathway coupled to high-content screening, we have identified three molecules that specifically reduce the delivery of the major co-receptor for HIV-1, CCR5, to the plasma membrane. They have no effect on the closely related receptors CCR1 and CXCR4. These molecules are also potent in primary macrophages as they markedly decrease HIV entry. At the molecular level, two of these molecules inhibit the critical palmitoylation of CCR5 and thereby block CCR5 in the early secretory pathway. Our results open a clear therapeutics avenue based on trafficking control and demonstrate that preventing HIV infection can be performed at the level of its receptor delivery.

A large number of pathologies, from infectious and developmental diseases to cancers, depend on the activity of plasma membrane receptors, adhesion proteins, channels, etc. that are delivered from their site of synthesis in the endoplasmic reticulum (ER) to the plasma membrane through the secretory pathway. To perturb these protein functions, several tracks have been followed such as the development of agonists and antagonists, inhibitors of signaling, or enzymatic activity. Nevertheless, inhibition of the intracellular transport of these proteins has not been considered because intracellular routes were considered as too generic to represent a therapeutic target. However, a clear diversity of secretion routes for many different cargos has recently been unambiguously revealed (1). Taking advantage of this diversity, we set out to identify small molecules specifically inhibiting the transport of virus receptor, focusing on HIV-1 entry.

HIV-1 infects immune cells, in particular CD4+ T lymphocytes and macrophages, leading to AIDS. The cell entry of HIV-1 is initiated by the interaction of its surface envelope glycoprotein, gp120, with two host cell surface receptors: CD4 and a co-receptor. CC chemokine receptor 5 (CCR5) is the principal co-receptor for R5-tropic strains, responsible for the transmission and establishment of HIV-1 infection (26). Genetic polymorphism in the CCR5 gene has been correlated with HIV resistance. Individuals homozygous for the CCR5 delta32 allele do not express CCR5 at the cell surface and are resistant to HIV-1 infection (7, 8). An additional demonstration of the crucial role CCR5 plays in HIV-1 infection came from the long-term control of infection in a patient transplanted with stem cells from a delta32/delta32 individual (9). CCR5 delta32 individuals do not show major deficiencies due to the absence of cell surface CCR5, and as such, the therapy shows great promise. Consequently, several anti-HIV therapies targeting CCR5 have been developed, such as the drug maraviroc (10, 11), CCR5-blocking antibodies (12, 13), and CCR5 gene editing (14, 15). Of these, maraviroc is the only anti-HIV therapy targeting CCR5 currently used for the treatment of patients. By binding to CCR5, this small, nonpeptidic CCR5 ligand prevents the interaction of the HIV-1 gp120 to CCR5 via an allosteric mechanism.

CCR5 is a member of the class A G proteincoupled receptor (GPCR) family, containing seven transmembrane domains, which enters the secretory pathway at the level of the ER. It is exported from the ER to reach the Golgi complex and is then delivered to the plasma membrane. Little is known about the transport of CCR5 to the cell surface along the secretory pathway, and we tested whether specifically inhibiting delivery could provide an alternative therapeutic strategy. We used the retention using selective hooks (RUSH) assay (16) to quantitatively monitor the anterograde transport of CCR5. Furthermore, we coupled it to a high-content screening of chemical libraries to identify small molecules able to specifically inhibit CCR5 delivery to the plasma membrane. Of the three molecules identified, two inhibit the palmitoylation of the cysteine residues present in the cytoplasmic tail of CCR5, a molecular event that is critical for CCR5 to be transported to the plasma membrane. The incubation of the human primary target cells with either of the three molecules therefore resulted in a significant reduction in HIV-1 entry and de novo virus production.

Together, our data indicate that perturbation of CCR5 modification and more generally of its transport to the plasma membrane through the secretory pathway is a clear avenue for treatment. It also shows that the diversity of secretory routes represents an important and underexploited source for drug discovery.

The quantity of CCR5 present at the plasma membrane at steady state corresponds to a balance between the delivery of newly synthesized CCR5 and its endocytosis followed by recycling and degradation. To study the delivery of CCR5 to the plasma membrane and identify compounds that affect its anterograde transport, we synchronized its transport using the RUSH assay (16). Briefly, the cargo of interest is fused to a streptavidin binding peptide (SBP) and coexpressed with a resident protein of the ER, which is fused to streptavidin. The streptavidin hook retains the cargo upon synthesis due to the streptavidin-SBP interaction and prevents its export from the ER. The synchronized transport of the cargo is induced by the addition of biotin that rapidly enters cells, binds to streptavidin, and competes out SBP. We engineered a HeLa cell line stably expressing a version of CCR5 adapted to the RUSH assay (Str-KDEL_SBP-EGFP-CCR5). In the absence of biotin, CCR5 was localized in the ER (Fig. 1A, 0 min). As expected, addition of biotin enabled export of CCR5 from the ER toward the Golgi complex and its subsequent appearance at the cell surface (Fig. 1A, 30 to 120 min). Compared to another RUSH-adapted cargo, tumor necrosis factor (TNF), the transport kinetics were very different (Fig. 1A) (16, 17). For instance, while transport intermediates containing TNF were clearly visible from ER to Golgi and from Golgi to the plasma membrane, very few were detected for CCR5 (Fig. 1A and movies S1 and S2). To confirm this, we performed the visualization of simultaneously expressed CCR5 and TNF. The two cargos were segregated, especially at the level of the Golgi complex. First, CCR5 and TNF do not perfectly colocalize, and TNF is exported from the Golgi complex in tubular and vesicular transport carriers from which CCR5 was excluded (Fig. 1, B and C, and movie S3). Second, CCR5 appeared to reach the plasma membrane more slowly than TNF. To confirm this apparent kinetics difference, we quantified transport using flow cytometry. Enhanced green fluorescent protein (EGFP) is exposed to the extracellular face of the plasma membrane in both CCR5 and TNF constructs. This allows quantification of the kinetics of cell surface appearance using nonpermeabilized cells labeled with an anti-GFP antibody. This analysis confirmed that CCR5 is transported more slowly than TNF to the plasma membrane (Fig. 1D). Furthermore, it also revealed that once delivered at the plasma membrane, CCR5 is stable, while TNF rapidly disappears, consistent with our previous studies (16). Together, these results indicate that CCR5 and TNF have different transport characteristics that are likely sustained by distinct molecular machineries that could be selectively targeted.

(A) Synchronized transport of CCR5 (top) and TNF (bottom) in HeLa cells stably expressing Str-KDEL_SBP-EGFP-CCR5 or Str-KDEL_TNF-SBP-EGFP. Trafficking was induced by addition of biotin at 0 min. Scale bar, 10 m. (B) Dual-color imaging of the synchronized transport of SBP-EGFP-CCR5 and TNF-SBP-mCherry transiently coexpressed in HeLa cells. Streptavidin-KDEL was used as an ER hook. Release from the ER was induced by addition of biotin at 0 min. Scale bar, 10 m. (C) Magnification (2.8) of the Golgi complex region is displayed. Scale bar, 10 m. (D) Kinetics of arrival of CCR5 (magenta) or TNF (cyan) to the cell surface after release from the ER measured by flow cytometry. Ratio of cell surface signal divided by GFP intensity was used for normalization. a.u., arbitrary units. The mean SEM of three experiments is shown. See also movies S1 to S3.

To identify molecules that specifically inhibit the CCR5 plasma membrane delivery, we conducted high-content screenings of chemical libraries using HeLa cells stably expressing either RUSH-adapted CCR5 (Str-KDEL_SBP-EGFP-CCR5) or TNF (Str-KDEL_TNF-SBP-EGFP). They were plated in 384-well plates and incubated for 1.5 hours with small molecules (10 M) from the following two chemical libraries: (i) an approved drug collection of 1200 drugs from Prestwick Chemicals and (ii) a drug collection of 2824 drugs obtained from the U.S. National Cancer Institute (NCI). As the molecules were dissolved in dimethyl sulfoxide (DMSO), an identical concentration of DMSO was used as negative control. Brefeldin A (BFA), which blocks secretion (18), and nocodazole, which disrupts microtubules and perturbs Golgi organization (19), were used as additional controls. In addition, biotin was omitted in some wells to validate the screening procedure and the analysis. Transport to the cell surface was induced by incubation with biotin for 2 hours (for CCR5) or 45 min (for TNF) according to the determined delivery kinetics (see Fig. 1). The localization of the cargos was determined using GFP fluorescence, while the fraction of the cargo present at the cell surface was quantified by immunolabeling using an anti-GFP antibody on fixed, but nonpermeabilized, cells. Nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI) for imaging and segmentation purposes (Fig. 2A).

(A) Outline of the chemical screening strategy. (B) Micrographs from screening plates showing controls. DMSO without biotin and DMSO with biotin correspond to the conditions where no transport and normal transport occurred, respectively. HeLa cells stably expressing Str-KDEL_SBP-EGFP-CCR5 and Str-KDEL_TNF-SBP-EGFP are displayed in the top and bottom panels, respectively. Cargo at the plasma membrane was detected using anti-GFP antibodies on nonpermeabilized cells. (C and D) Clustering of molecules obtained after bioinformatics analysis of the Prestwick (C) and NCI (D) chemical library screening of CCR5 secretion. Below the dendrogram, each bar corresponds to a well of the plate. Molecules identified as hits were shifted one lane below for better visualization. BFA, brefeldin A; Noco, nocodazole. (E) Micrographs showing the three classes of hits detected. CCR5 and TNF hit corresponds to a molecule affecting transport of both CCR5 and TNF. CCR5-specific hit or TNF-specific hit corresponds to a molecule inhibiting only CCR5 or only TNF transport. HeLa cells stably expressing Str-KDEL_SBP-EGFP-CCR5 and Str-KDEL_TNF-SBP-EGFP are displayed in the top and bottom panels, respectively. Cargo at the plasma membrane was detected using anti-GFP antibodies on nonpermeabilized cells.

As expected, in the absence of biotin (DMSO without biotin), the GFP signal was restricted to the ER for both CCR5 and TNF, and almost no surface anti-GFP signal was visible (Fig. 2B). After incubation with biotin (DMSO with biotin), CCR5 and TNF reached the plasma membrane, as shown by a strong cell surface staining (see Fig. 2B). Using features obtained from image segmentation of these control conditions, a bioinformatics analysis was conducted to identify molecules from the Prestwick (Fig. 2C) and NCI libraries (Fig. 2D) that alter not only different parameters, such as CCR5 and TNF localization and plasma membrane delivery, but also cell organization or that induce cell death. Principal component analysis (PCA) and the resulting hierarchical clustering grouped conditions that altered secretion (i.e., DMSO without biotin, BFA with biotin, and nocodazole with biotin) and separated them from conditions inducing secretion (i.e., DMSO with biotin). The same approach was used to identify molecules from the libraries that altered transport and delivery of CCR5 or TNF. Several small molecules prevented secretion of both CCR5 and TNF (CCR5 and TNF hit). However, in addition to these generic inhibitors, several molecules specifically perturbed the secretion of either CCR5 (CCR5-specific hit) or TNF (TNF-specific hit) (Fig. 2E). This shows that the apparent qualitative and quantitative differences reported above that distinguish transport of CCR5 and TNF can be translated to specific inhibition.

The 15 strongest CCR5 hits (Table 1) were selected for further analysis. First, as a secondary screen, we evaluated their effects on the trafficking of two other chemokine receptors, CCR1 and CXCR4, closely related to CCR5. CCR5, CCR1, and CXCR4 belong to the class A subfamily (rhodopsin like) of GPCR, and CCR5 shares several ligands with CCR1 (namely, CCL3, CCL4, and CCL5). CCR1 and CXCR4 transport out of the ER was synchronized using the RUSH assay. The secretion of CCR1 and CXCR4 was slightly faster than that of CCR5, but like CCR5, they then remained stably expressed at the cell surface over several hours (Fig. 3A). To evaluate whether the 15 CCR5 hits also affect the delivery of CCR1 and CXCR4, we used an end-point analysis using the RUSH assay. After 2 hours of incubation with biotin, the presence of the cargo at the plasma membrane was quantitated using flow cytometry. CCR5 plasma delivery was monitored again, and the molecules were ranked according to their relative impact. Molecules 1 to 10 reduced the transport of CCR5 to the cell surface by less than 50%, while a stronger effect was observed for molecules 11 to 15. In particular, molecules 13, 14, and 15 reduced the cell surface delivery of CCR5 by more than 75% (Fig. 3B). These three molecules had only moderate effects on CCR1 and CXCR4 delivery (Fig. 3, C and D), demonstrating their specificity of action on the transport of CCR5 toward the cell surface. As an example, dual-color imaging of the synchronized transport of coexpressed CCR5 and CCR1 in cells treated or not with molecule 13 confirmed that it specifically inhibits CCR5 delivery (Fig. 3, E and F). Note that CCR5 was still observed in the ER and in the Golgi complex after more than 2 hours of biotin addition, indicating that molecule 13 inhibits the trafficking of CCR5 in the early secretory pathway. Together, these results demonstrate that molecules 13, 14, and 15 are not broad inhibitors of chemokine receptor transport but instead specifically target CCR5 transport.

(A) Kinetics of synchronized transport of three chemokine receptorsCCR5 (black), CCR1 (red), and CXCR4 (green)using the RUSH assay. Trafficking was induced by addition of biotin at time 0. Surface expression of CCR5, CCR1, and CXCR4 was measured by flow cytometry using an anti-GFP antibody. Ratio of cell surface signal to GFP intensity was used for normalization. The mean SEM of three experiments is shown. End-point measurement (2 hours) of the effects of the hit molecules on the trafficking of CCR5 (B), CCR1 (C), and CXCR4 (D) in HeLa cells. Cells were pretreated for 1.5 hours with molecules at 10 M. Cargo present at the cell surface 2 hours after release from the ER was measured by flow cytometry using an anti-GFP antibody. Ratio of cell surface signal to GFP intensity was used for normalization. The mean SEM of three experiments is shown. Real-time synchronized secretion of CCR5 and CCR1 was monitored using dual-color imaging in nontreated HeLa cells (E) and in HeLa cells pretreated for 1.5 hours with 10 M molecule 13 (F). Scale bars, 10 m.

Little is known about the key players controlling the CCR5 secretion and trafficking in the secretory pathway. CCR5 is a seven-transmembrane domain protein, with its N terminus facing the luminal/extracellular space and its C terminus in the cytoplasm (Fig. 4A). As the main differences between CCR1 and CCR5 are found in the C-terminal sequences, we examined the role of CCR5 cytoplasmic tail in mediating the effects of molecules 13, 14, and 15 on plasma membrane delivery. Chimeric receptors were constructed, whereby cytoplasmic tails of CCR5 and CCR1 were interchanged (Fig. 4B) and were tested in the RUSH assay in the presence of molecules 13, 14, and 15. First, all receptors either wild type (CCR5wt and CCR1wt) or chimeric (CCR5-CCR1tail and CCR1-CCR5tail) reach the cell surface with similar kinetics (Fig. 4C). However, incubation with molecules 13, 14, and 15 affected the secretion of the chimeras in different ways. The transport of both chimeras (CCR5-CCR1tail and CCR1-CCR5tail) was inhibited after exposure to molecule 15 by more than 40%, suggesting that the effect of this molecule is not targeted to the tail of CCR5. In contrast, molecules 13 and 14 inhibited the secretion of the constructs bearing the cytoplasmic tail of CCR5 (i.e., CCR5wt and CCR1-CCR5tail) by more than 40%. They were, however, quite inefficient against receptors bearing CCR1 tail (Fig. 4D). Although this inhibition was not as strong as the effect of these molecules on CCR5wt (40% inhibition for CCR1-CCR5 tail versus 90% for CCR5wt), this indicated that the presence of the cytoplasmic tail of CCR5 was necessary for the reduction of trafficking induced by molecules 13 and 14. The cytoplasmic tail of CCR5 contains three cysteine residues that require palmitoylation to ensure efficient secretion (20, 21). In contrast, the CCR1 cytoplasmic tail does not contain palmitoylated cysteine residues.

(A) Schematic representation of CCR5 with three palmitoylated cysteine residues indicated in blue. (B) Amino acid sequence of CCR5, CCR1, their chimeras, and the cysteine to alanine mutants used in this study. (C) Kinetics of the synchronized transport of CCR5/CCR1 chimeras to the cell surface measured by flow cytometry in HeLa cells transiently expressing the constructs. Release was induced by addition of biotin at time 0. The mean SEM of three experiments is shown. (D) End-point measurement (2 hours) by flow cytometry of the effects of molecules 13, 14, and 15 on the transport of the CCR5/CCR1 chimeras in HeLa cells after transient expression. Cells were pretreated for 1.5 hours with molecules at 10 M. The mean SEM of three experiments is shown. (E) Kinetics of the synchronized transport of CCR5 cysteine mutants to the cell surface measured by flow cytometry in HeLa cells transiently expressing the corresponding constructs. Release was induced by addition of biotin at time 0. The mean SEM of three experiments is shown. (F) End-point measurement (2 hours) by flow cytometry of the effects of molecules 13, 14, and 15 on the transport of CCR5 cysteine mutants. HeLa cells transiently expressing the cysteine mutants were pretreated for 1.5 hours with molecules at 10 M. The mean SEM of three experiments is shown. (G and H) Quantification of palmitoylation of either GFP-CCR5 or GFP-CCR5 Cys3A transiently expressed in HEK293T cells. [3H]Palmitate was incorporated for 4 hours in the presence of the compounds following a pretreatment with DMSO () and molecules 13, 14, and 15 for 30 min. A representative autoradiogram and immunoblot are shown (G), and the mean SEM of four experiments is shown.

To further study the role of the three cysteine residues in mediating the effect of molecules 13 and 14, a series of mutants were created with cysteine substituted by alanine, independently or in a combinatorial way (Fig. 4B). The kinetics of plasma membrane delivery of the CCR5 cysteine mutants were consistent with previous reports (20, 21). The secretion of the single cysteine mutants was decreased by 20%, while the secretion of the double and triple cysteine mutants was decreased by 50%, with the exception of the CCR5 C323A-C324A mutant that was decreased by only 20% (Fig. 4E).

We then tested the effect of molecules 13, 14, and 15 on the transport of the cysteine mutants. Molecule 13 did not reduce the secretion of CCR5 C321A-C323A, CCR5 C321A-C324A, and CCR5 Cys3A, while other mutants were affected (e.g., CCR5 C324A) (Fig. 4F). Similarly, although molecule 14 is more potent than molecule 13, it leads to the same relative inhibition. CCR5 C324A delivery was affected the strongest and to the same extent as CCR5wt. In contrast, in agreement with the results presented above, the inhibitory effect of molecule 15 was not affected by any of the cysteine mutation and relies on different CCR5 molecular features.

Because these cysteine residues were reported to be palmitoylated, we directly assessed the effects of molecules 13, 14, and 15 on CCR5 palmitoylation. In vivo metabolic labeling using radioactive palmitate of cells expressing either GFP-CCR5 or GFP-CCR5 Cys3A was performed (Fig. 4, G and H). Molecules 13 and 14 decreased the level of palmitoylated GFP-CCR5 by 70%. As expected, molecule 15 did not affect the palmitoylation level of GFP-CCR5.

As expected, CCR5 Cys3A showed a reduced level of palmitoylation (about 50%) compared to CCR5wt, although some palmitoylation signal was still observed. This may suggest that residual palmitoylation on cysteine other than Cys321, Cys323, and Cys324 may be occurring in the mutant. This residual signal was also decreased after incubation with molecules 13 and 14, while molecule 15 had no effect.

The palmitoyltransferase responsible for the palmitoylation of CCR5 is not known. We looked for pamitoyltransferases able to modify CCR5. DHHC3, DHHC7, and DHHC15 overexpression was found to increase palmitoylation of CCR5 (fig. S1A). Autopalmitoylation of DHHC3 and DHHC7 was inhibited to about 50% following incubation with molecules 13 and 14, whereas molecule 15 had no effect (fig. S1, B and C). These results suggest that molecules 13 and 14 may inhibit autopalmitoylation of DHHCs responsible for CCR5 palmitoylation and consequently palmitate transfer to CCR5.

Together, our results indicate that molecules 13 and 14 may share a similar mode of action inducing a strong reduction of CCR5 palmitoylation. In contrast, molecule 15 seems to affect the secretion of CCR5 by another, still elusive, mechanism.

To validate the effect of molecules 13, 14, and 15 on the delivery of CCR5 to the cell surface, we monitored the expression of endogenous CCR5 in human monocytederived macrophages (hMDMs) after overnight treatment by flow cytometry.

These molecules, alone or in combination, after overnight incubation induced a small but significant decrease of CCR5 cell surface expression (19.1 to 23.8%) compared with DMSO treatment. The cell surface expression of CXCR4, however, was not significantly modified under the same conditions (P > 0.05; Fig. 5A and fig. S2A). These three molecules, alone or in combination, also did not induce major cytotoxicity (fig. S2B).

Primary human macrophages differentiated for 4 days with rhM-CSF were treated during 18 hours with molecule 13 at 10 M, molecule 14 at 3 M, molecule 15 at 1 M, and molecules 14 and 15 at 1 M (or DMSO at 0.1%). (A) Cell surface expression of CCR5 was measured by flow cytometry with specific antibodies. (B) Principles of the HIV-1 entry test used (22). Inhibition of fusion of HIV-1ADA (R5 tropic strain) (C) or HIV-1VSVG (VSVG pseudotyped) (D) containing BlaM-Vpr (BV) with CCF2/AM primary macrophages mediated by compounds. Total p24 amount (supernatants and lysates) of HIV-1ADAinfected macrophages was measured by ELISA (E). Each black point represents one donor analyzed independently. Statistical analyses were performed using Prism software. A one-sample t test was applied, and significant P values (<0.05) are indicated for each treatment compared to DMSO in (A), (C), and (E). The absence of a P value indicates that the results were not significantly different. Error bars correspond to SEM.

CCR5 is critical for HIV particles to bind target cells and mediate their entry by fusion. HIV entry was then investigated using the BlaM-Vpr fusion assay (22) after overnight treatment with molecules 13, 14, and 15 (Fig. 5B). The fusion of HIV-1 ADA (a strain that uses CCR5 as a co-receptor) with hMDMs was strongly decreased upon incubation with these molecules (by 45.7 to 78.0%) when compared with DMSO (Fig. 5C). Treatment with both molecules 14 and 15 led to further perturbation of viral entry. Under the same conditions, the entry of a vesicular stomatitis virus glycoprotein (VSVG)pseudotyped virus (used as a CCR5-independent control) was not affected (Fig. 5D).

These data indicate that a small reduction of neosynthesized CCR5 expressed at the cell surface is sufficient to significantly affect R5-tropic HIV-1 entry into human macrophages. To further assess whether the perturbation of viral entry was sufficient to alter the viral cycle and production, the total amount of p24 capsid protein produced by macrophages was quantified. Viral production and secretion were both strongly reduced by 31.4 to 76.0% (Fig. 5E). Together, these results demonstrate that molecules specifically reducing CCR5 secretion at the cell surface impair HIV-1 infection of human macrophages.

The development of many pathologies relies on the efficient intracellular transport of proteins. Transport to the cell surface is particularly important, as adhesion proteins, channels, proteases, or receptors, for example, have to reach the plasma membrane to fulfill their functions. We thus reasoned that, instead of looking for molecules able to perturb their function when expressed at the plasma membrane, we may target their transport pathway to prevent their normal expression at the cell surface, hence exploring a novel therapeutic option. This option has been underexploited for at least two reasons.

On the one hand, it has long been thought that the diversity of secretory routes was low and that the bulk flow of membranes was responsible for most nonspecialized pathways. We now know that the diversity of pathways is high with several coats, adaptors, Golgi matrix proteins, or molecular motors active at the same transport stage. In addition, not only the molecular machinery of transport may be targeted but also the cargo itself may be targeted. Perturbation of its folding, modifications, or interaction with transport partners or membrane partitioning may perturb, or prevent, its transport.

On the other hand, as compared to the power and precision of the study of endocytosis and retrograde pathways, the diversity of the secretory pathway has long been difficult to study and target. Quantitative monitoring of the transport of proteins was only possible for selected proteins, and assays were hardly amenable to screening. The development of the RUSH assay (16) that allows us to cope with the diversity now allows us to overcome this limitation and specifically screen for inhibitory molecules.

To validate this new paradigm, we used the RUSH assay to screen for small molecules able to inhibit specifically the transport of CCR5 to the cell surface. CCR5 is essential for R5-tropic HIV-1 strain infections of human cells and represents a valuable therapeutic target. Individuals devoid of CCR5 expressed at the cell surface are resistant to HIV-1 infection, while people heterozygous for this deletion, who show a reduction of CCR5 cell surface expression, display slower progression of HIV infection (23). The absence of functional CCR5 seems not to be deleterious to these individuals, although increased susceptibility to infections, such as West Nile virus (24, 25) and tick-borne encephalitis (26), has been reported.

Several large-scale screens were conducted to identify protein regulators of HIV-1 infection, but none of them led to the identification of CCR5 secretion regulators (2730). Little is known about the molecular players that regulate the secretion of CCR5. The involvement of the small guanosine triphosphatases (GTPases) Rab1, Rab8, and Rab11 has been proposed (31). Rab43 was recently reported to play a role in the export of several class A GPCRs from the ER (32), although its role in controlling the transport of CCR5 was not evaluated. The importance of palmitoylation of CCR5 was also revealed (20, 21). However, the palmitoyltransferase responsible for palmitoylation of CCR5 remains unknown.

RUSH-based differential screening, using TNF as a control reporter, allowed the identification of a set of inhibitory molecules. In particular, three molecules that strongly perturbed CCR5 transport were found to have no, or only moderate, effects on the secretion of the closely related CCR1 and CXCR4. Molecules 13, 14, and 15 were active on endogenous CCR5 secretion and reduced HIV-1 infection of human macrophages isolated from donors. Molecules 13, 14, and 15 are cadmium chloride (CdCl2), zinc pyrithione (C10H8N2O2S2Zn), and tetrocarcinA (C67H96N2O24), respectively. Cd and zinc pyrithione were found to share similar mechanisms of action because they both rely on the C-terminal cytoplasmic tail of CCR5 and, in particular, the cysteine residues in positions 321, 323, and 324 and inhibit CCR5 palmitoylation. At the molecular level, Cd affects protein function by binding to thiol groups. Direct binding of Cd to cysteine residues may prevent efficient palmitoylation of CCR5, hence affecting its transport, as previously reported (20, 21). Alternatively, palmitoyltransferase may represent the target of these molecules. Palmitoylation occurs in a two-step mechanism. First, palmitoylcoenzyme A (CoA) is transferred to the DHHC cysteine-rich domain, leading to autoacylation of the palmitoyltransferase (33). In the second step, the palmitoyl group is transferred to the cysteine residues of the target protein. DHHC contains bound Zn (34). Cd is known to displace essential metals like Zn in metalloproteins [see (35) for review]. Zn pyrithione is an antifungal and antibacterial zinc chelator. As these two molecules may affect Zn-dependent enzymes, it is tempting to propose that Zn pyrithione and Cd bind to, and perturb, the palmitoyltransferase responsible for palmitoylation of CCR5.

Tetrocarcin A represents another class of CCR5 inhibitory molecule because it does not depend on the C-terminal tail and does not affect palmitoylation. It is an antibiotic (36), which antagonizes Bcl-2 anti-apoptotic function (37). The putative mode of action of tetrocarcin A on the trafficking of CCR5 remains unclear. Further studies are required to obtain a clearer view of tetrocarcin As mechanism of action, but it may represent an interesting unprecedently identified class of CCR5 inhibitory molecule.

The three molecules identified in our study exhibited inhibitory effects on HIV-1 infection for R5-tropic viruses at both the level of virus entry and viral particle production in human macrophages. Of major concern in anti-HIV therapies, particularly those targeting a receptor such as CCR5, is the emergence of escape viruses. To date, maraviroc is the only approved anti-HIV therapy targeting CCR5. Reports of the emergence of resistant viruses have since been published (38, 39). Targeting the host secretory pathway may avoid the emergence of such escape viruses. The molecules identified in this study induced a decrease in secretion of CCR5, resulting in a reduced expression at the cell surface. Reduction was small in primary cells but may target the conformations recognized by HIV-1. Because such molecules target the cellular machinery, viruses are less likely to escape. For example, if mutations were to arise in R5-tropic viruses, they would not be able to induce normal secretion of CCR5 and restore infection. This is a clear advantage over treatments based on competition or allosteric modifications. Combinatorial treatment may also reduce the amount of CCR5 at the cell surface and may therefore improve the efficacy of blocking antibodies or maraviroc.

In conclusion, our study confirms our model that proposes that the diversity of secretory routes can be exploited to identify molecules that specifically affect the transport of a given receptor. Targeting the transport and the function of target protein may thus represent a novel therapeutic paradigm.

HeLa cells were cultured in Dulbeccos modified Eagles medium (DMEM) (Thermo Fisher Scientific) supplemented with 10% fetal calf serum (FCS; GE Healthcare), 1 mM sodium pyruvate, and penicillin and streptomycin (100 g/ml) (Thermo Fisher Scientific). HeLa cells stably expressing Str-KDEL as a hook and either SBP-EGFP-CCR5 or TNF-SBP-EGFP as a reporter were obtained by transduction with lentiviral particles produced in human embryonic kidney (HEK) 293T. A clonal population was then selected using puromycin resistance and limiting dilution.

Human primary macrophages were isolated from the blood of healthy donors (Etablissement Franais du Sang Ile-de-France, Site Trinit, #15/EFS/012) by density gradient sedimentation in Ficoll (GE Healthcare), followed by negative selection on magnetic beads (catalog no. 19059, Stem Cells) and adhesion on plastic at 37C for 2 hours. Cells were then cultured in the presence of complete culture medium [RPMI 1640 supplemented with 10% FCS (Eurobio), streptomycin/penicillin (100 g/ml), and 2 mM l-glutamine (Invitrogen/Gibco)] containing recombinant human macrophage colony-stimulating factor (rhM-CSF) (10 ng/ml) (R&D Systems) (40) for 4 to 5 days.

The DNA sequences corresponding to human CCR5 (P51681, UniProt), CCR1 (P322246, UniProt), and CXCR4 (P61073, UniProt) were purchased either as synthetic genes (GeneArt, Thermo Fisher Scientific) or as complementary DNA (cDNA) (Open Biosystems). They were cloned into RUSH plasmids downstream of Str-KDEL_IL2ss-SBP-EGFP or Str-KDEL_IL2ss-SBP-mCherry using Fse I and Pac I restriction enzymes (16). Str-KDEL_TNF-SBP-EGFP and Str-KDEL_TNF-SBP-mCherry plasmids have been described elsewhere (16). The CCR5-CCR1tail and CCR1-CCR5tail chimeras were generated from synthetic genes (GeneArt, Thermo Fisher Scientific) and cloned between Fse I and Pac I restriction sites. Mutations from cysteine to alanine in CCR5 tail were generated either by polymerase chain reaction assembly or by the insertion of small synthetic DNA fragments (gBlock from Integrated DNA Technologies). Protein sequences of chimeras and mutants are depicted in Fig. 4B. GFP-CCR5 and GFP-CCR5-Cys3A bear the interleukin-2 (IL-2) signal peptide upstream of GFP and either CCR5 wild-type or CCR5-Cys3A downstream of GFP. A modified version of pEGFP (Clontech) was used for their generation. All plasmids used in this study were verified by sequencing. HeLa cells were transfected using calcium phosphate as described previously (41).

The HIV-1ADA provirus plasmid (pHIV-1ADA) expressing the env gene of the HIV-1 R5-tropic strain ADA has been described elsewhere (42). pNL4.3 pNL4.3f was a gift from P. Benaroch (Institut Curie, Paris, France). The plasmid expressing the env gene of VSVG (pEnvVSVG) was a gift from S. Benichou (Institut Cochin, Paris, France).

Chemical compounds were purchased from Prestwick Chemicals (Illkirch, France) corresponding to 1200 approved drugs [U.S. Food and Drug Administration (FDA), European Medicines Agency (EMA), and other agencies] dissolved in DMSO at 10 mM. A second library of 2824 compounds was provided by the NCI chemical libraries as follows: diversity set III, 1596 compounds; mechanistic set, 879 compounds; approved oncology drugs set II, 114 agents; and natural products set II, 235 agents. All NCI stock compounds were received in DMSO at a concentration of 10 mM except for mechanistic set (at 1 mM) (in a 96-well plate format). All libraries were reformatted in-house in 384-well plates. BFA and nocodazole were purchased from Sigma-Aldrich and used as control molecules.

For compound screening, cells (5.0 103 per well) were seeded on black clear-bottom 384-well plates (ViewPlate-384 Black, PerkinElmer) in 40 l of complete medium. The screen was performed at the similar early cell passages (2) for both replicates. Twenty-four hours after cell seeding, compounds were transferred robotically to plates containing cells using TeMO (MCA 384) (TECAN) to a final concentration of 10 M and 0.5% of DMSO. Controls were added to columns 1, 2, 23, and 24 of each plate. After 90 min of compound incubation, cells were treated with 40 M biotin for 45 min (for TNF) or 120 min (CCR5) at 37C. Compound screens were performed in two independent replicate experiments at the BioPhenics Screening Laboratory (Institut Curie).

Cells were processed immediately after biotin treatment for immunofluorescence. Briefly, cells were fixed with 3% paraformaldehyde for 15 min and quenched with 50 mM NH4Cl in phosphate-buffered saline (PBS) solution for 10 min. For cell surface labeling, cells were incubated with anti-mouse GFP (1:800, Roche, catalog no. 814 460 001) diluted in 1% bovine serum albumin blocking solution for 45 min. Cells were then washed with PBS and incubated for 1 hour with Cy3-conjugated anti-mouse (1:600; catalog no. 715-165-151, Jackson ImmunoResearch). Nuclei were counterstained with DAPI (Life Technologies) for 45 min.

Image acquisition was performed using an INCell 2200 automated high-content screening fluorescence microscope (GE Healthcare) at a 20 magnification (Nikon 20/0.45). Four randomly selected image fields were acquired per wavelength, well, and replicate experiment. Image analysis to identify cells presenting predominantly cell surface or intracellular CCR5 and/or TNF localization was performed for each replicate experiment using the Multi Target analysis application module in the INCell analyzer Workstation 3.7 software (GE Healthcare). Results were reported as mean values from four image fields per well.

Fields with less than 50 cells were filtered out after image segmentation. All cell features extracted from the image analysis step were normalized within each plate by subtracting the median value of control wells containing DMSO and biotin and dividing by the median absolute deviation of the same controls.

PCA was applied to normalized data for each dataset separately as a denoising method. From this PCA, the coordinates of wells in the subspace, defined by principal component with eigenvalue greater than one, were used to compute the Euclidean distance between wells. Hierarchical clustering with Wards agglomerative criterion was then applied on these distances. Two groups were identified from the clustering. The group with the positive controls was defined as the hits list. All analyses were performed using R statistical software.

Cells (1 106) expressing RUSH constructs per condition were treated with 40 M biotin to induce trafficking of the reporter and incubated at 37C. At the desired time point, cells were washed once with PBS supplemented with 0.5 mM EDTA and incubated with PBS supplemented with 0.5 mM EDTA for 5 min at 37C. Plates containing cells were then put on ice. Cells were resuspended and transferred to ice-cold tubes for centrifugation at 300g for 5 min at 4C. Cell pellets were resuspended in cold PBS supplemented with 1% FCS for blocking and incubated for at least 10 min. After centrifugation, cell pellets were incubated in a solution of Alexa Fluor 647coupled anti-GFP (catalog no. 565197, BD Pharmingen) prepared in PBS supplemented with 1% serum for 40 min on ice. Cells were washed three times in cold PBS and 1% serum and fixed with 2% paraformaldehyde (Electron Microscopy Sciences) for 15 min. Cells were washed twice with PBS before acquisition with an Accuri C6 flow cytometer. The intensity of the GFP signal (FL1) and the Alexa Fluor 647conjugated antibody (FL4) was measured on GFP-positive cells. The FL4 signal was divided by the FL1 signal to normalize for the transfection level. The FL4/FL1 ratio for each condition was then normalized to the DMSO control.

HeLa cells expressing either stably or transiently RUSH constructs were grown on 25-mm glass coverslips. Before imaging (after treatment), coverslips were transferred to an L-shape tubingequipped Chamlide chamber (Live Cell Instrument). Trafficking was induced by exchanging Leibovitz medium (Life Technologies) with prewarmed Leibovitz medium supplemented with 40 M biotin (Sigma-Aldrich). Imaging was performed at 37C in a thermostat-controlled chamber using an Eclipse 80i microscope (Nikon) equipped with a spinning disc confocal head (Perkin) and an Ultra897 iXon camera (Andor). Image acquisition was performed using MetaMorph software (Molecular Devices). Maximum intensity projections of several z slices are shown (Figs. 1, A and C, and 3, E and F).

HEK293T cells were transfected with GFP-CCR5 or GFP-CCR5 Cys3A mutant. Twenty-four hours after transfection, cells were labeled with [3H]palmitate (0.5 mCi/ml) for 4 hours. Cells were incubated with 10 M of individual compounds for 30 min before labeling and for 4 hours together with [3H]palmitate. For compound (), DMSO was added. For fluorography, after SDSpolyacrylamide gel electrophoresis of cell lysates, the gels were exposed for 11 to 16 days. n = 4 independent experiments. The mean SEM is shown.

The following antibodies were used: Alexa Fluor 647coupled anti-GFP (catalog no. 565197, BD Pharmingen); Alexa Fluor 647 rat immunoglobulin G2a (IgG2a), isotype control (catalog no. 400526); Alexa Fluor 647 anti-human CD195 (catalog no. 313712) from BioLegend; phycoerythrin (PE) mouse IgG1, isotype control (catalog no. 550617); PE mouse IgG2a, isotype control (catalog no. 553457); fluorescein isothiocyanate (FITC) mouse IgG2a, isotype control (catalog no. 555573); FITC mouse IgG1 isotype control (catalog no. 555748); PE mouse anti-human CD184 (catalog no. 555974); FITC mouse anti-human CD4 (catalog no. 555346); FITC mouse anti-human CD3 (catalog no. 555332); and PE mouse anti-human CD11b/Mac1 (catalog no. 555388) from BD Biosciences.

The amount of lactate dehydrogenase (LDH) released into supernatants was quantified using a Pierce LDH Cytotoxicity Assay kit (catalog no. 88953, Thermo Fisher Scientific). The Alliance HIV-1 p24 ELISA (enzyme-linked immunosorbent assay) Kit (catalog no. NEK050, PerkinElmer) was used to determine the amount of capsid p24 protein in supernatants and cell lysates. LDH and p24 quantification were performed following the manufacturers instructions.

Cells were washed once with cold PBS and detached using 2 mM EDTA in PBS on ice. To analyze cell surface expression of receptors, cells were washed with PBS and stained with antibodies (see above) for 1 hour on ice in PBS and 2% FCS. Cells were then washed twice in cold PBS and analyzed by flow cytometry (Accuri C6, BD Biosciences). Propidium iodide (catalog no. P4864, Sigma-Aldrich), diluted in cold PBS at 0.1 g/ml, was added to cells just before analysis.

Viral stocks. HIV-1 particles or pseudoparticles containing BlaM-Vpr were produced by cotransfection of HEK293T cells with proviral plasmids (pHIV-1ADA or pNL4.3Env and pEnvVSVG), pCMV-BlaM-Vpr encoding -lactamase fused to the viral protein Vpr, and pAdvantage, as described elsewhere (22). After 48 hours of culture at 37C, the virus-containing supernatant was filtered and stored at 80C. Pseudoparticles containing BlaM-Vpr were ultracentrifuged at 60,000g for 90 min at 4C on a sucrose cushion (20%). The virion-enriched pellet was resuspended in PBS and aliquoted for storage at 80C. The amount of p24 antigen in the supernatants was quantified using an ELISA kit (PerkinElmer). HIV-1 infectious titers were also determined in HeLa TZM-bl cells (LTRlacZ, NIH reagent program) by scoring -lactamasepositive cells 24 hours after infection, as described previously (43).

BlaM-Vpr viral fusion assay. After 18 hours of incubation with compounds, 1.5 105 primary macrophages were inoculated with the BlaM-Vprcontaining viruses (15 ng of p24 Gag) by 1-hour spinoculation at 4C and incubated for 2.5 hours at 37C. Cells were then loaded with CCF2/AM, the BlaM-Vpr substrate (2 hours at room temperature), and fixed. Enzymatic cleavage of CCF2/AM by -lactamase (22) was measured by flow cytometry (LSR II, BD), and data were analyzed with FACSDiva software. The percentage of fusion corresponds to the percentage of cells displaying increased cleaved CCF2/AM fluorescence (447 nm).

HIV-1 infections. After treatment for 18 hours, human primary macrophages were infected with HIV-1ADA in six-well trays with a multiplicity of infection of 0.2, incubated for 24 hours at 37C, and washed with culture medium without FCS. Cells were cultured for 24 hours at 37C in complete culture medium supplemented with library compounds. After 24 hours, supernatant was harvested, and cells were lysed for 15 min at 4C in lysis buffer [20 mM tris-HCl (pH 7.5), 150 mM NaCl, 0.5% NP-40, 50 mM NaF, and 1 mM sodium orthovanadate, supplemented with complete protease inhibitor cocktail; Roche Diagnostic]. Lysates were centrifuged at 10,000g for 10 min at 4C, and the quantity of HIV-1 p24 in the postnuclear supernatants was determined by ELISA.

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/5/10/eaax0821/DC1

Fig. S1. Molecules 13 and 14 inhibit autopalmitoylation of DHHC3 and DHHC7.

Fig. S2. Molecules 13, 14, and 15 do not alter CXCR4 surface expression or induce cytotoxicity in primary macrophages.

Movie S1. Synchronized transport of CCR5.

Movie S2. Synchronized transport of TNF.

Movie S3. Synchronized transport of CCR5 and TNF.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

Acknowledgments: We thank A. Mularski and C. Rabouille for carefully reading and commenting on the manuscript. Funding: We acknowledge the Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, a member of the French National Research Infrastructure, France-BioImaging (ANR10-INBS-04). This work was supported by grants from CNRS, INSERM, Universit Paris Descartes, Agence Nationale de la Recherche (2011 BSV3 025 02), and Agence Nationale de Recherches sur le Sida et les Hpatites (ANRS, AO2012-2) to A.B., F.P., and F.N., and Fondation pour la Recherche Mdicale (FRM DEQ20130326518) to F.N. This work has received support under the Investissements dAvenir program launched by the French government and implemented by ANR with the references ANR-10-LABX-62-IBEID and ANR-10-IDEX-0001-02 PSL. Author contributions: G.B., A.B., F.N., and F.P. designed the study and analyzed data. G.B., F.H., I.S., Y.F., and M.F. performed experiments and analyzed data. S.T., A.L., and E.D.N. set up, performed, and analyzed the chemical screening. P.G. conducted the bioinformatics analysis of the screens. G.B., F.H., A.B., F.N., F.H., and F.P. wrote the manuscript, which all coauthors commented on. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

See more here:
Targeting CCR5 trafficking to inhibit HIV-1 infection - Science Advances

The Other Side of Stem Cell Research – The Tablet Catholic Newspaper

(Photo: Getty Images)

By Christopher White, The Tablets National Correspondent

Last month, the federal government implemented a new ban on using fetal tissue for research a move praised by U.S. Catholic leaders.

Yet while the church has long opposed using fetal tissue for research, as it is often derived from abortions, many Catholics are largely unaware that the church supports the use of umbilical cord blood, which is rich in stem cells and has proven effective in many therapies.

Stem cells are special human cells, which can be developed into many types of cells. In 2001, President George W. Bush banned federal funding for embryonic stem cell research a move supported by Catholic leaders as it required the destruction of a human embryo.

Among the ethically acceptable alternatives supported by the church is that of adult stem cell research and using cord blood stem cell transplants, which has proven to be the best way of treating leukemia, sickle cell anemia, Hodgkin lymphoma and a range of other diseases.

In its 2000 document, Declaration on the Production and the Scientific and Therapeutic use of Human Embryonic Stem Cells, the church noted that such a practice offers a more reasonable and human method for making correct and sound progress in this new field of research and in the therapeutic applications which it promises.

These applications are undoubtedly a source of great hope for a significant number of suffering people, the document noted.

Five years later, Cardinal William Keeler, who was then chairman of the United States Conference of Catholic Bishops (USCCB), echoed those words and called for more federal funding to develop a nationwide bank for umbilical cord blood cells.

Umbilical cord blood stem cells have successfully treated thousands of patients with dozens of diseases, Cardinal Keeler said.

They also exhibit properties once associated chiefly with embryonic stem cells: They grow rapidly in culture, producing enough cells to be clinically useful in both children and adults; they can treat patients who are not an exact genetic match, without being rejected as foreign tissue; and they seem able to produce a wide array of different cell types.

What is preventing far broader use of umbilical cord blood stem cells is not an ethical concern, or any lack of evidence of clinical benefits, but simply a lack of funding and access, he lamented at the time.

Jennifer Lahl, a pediatric nurse for more than 20 years and president of the California-based Center for Bioethics and Culture, described the process for The Tablet.

When a baby is born in the hospital delivery room, the umbilical cord blood, which is rich in stem cells, is extracted and saved in a Cord Blood Bank until it is needed to treat a patient, Lahl said.

Parents can make the decision to do private cord blood banking to save the stem cells for use in their own family, but it is more often recommended to store the cord blood stem cells in a public bank, similar to our public blood banks. This makes the stems cells available to anyone who is a match and needs a stem cell transplant, she continued.

Cord blood stem cells are a wonderful resource that should not be tossed out after the delivery of a baby, but saved in order to one day save a life, she added.

Charles Camosy, a theology professor at Fordham University who specializes in medical ethics, noted that the Catholic Church has been a leading proponent of the use of cord blood and has even led the way in working with secular medical institutions to explore their potential.

The Catholic Church has been enthusiastically in support of stem cell research that does not involve embryo-destruction for many years now, he told The Tablet. Indeed, the Vatican has even formally partnered with companies like NeoStem, a U.S.-based biopharmaceutical firm, to see what adult stem cells can do to aid vulnerable sick and disabled people. It turns out, quite a bit. Many therapies have been produced via adult stem cells as well as stem cells from the amniotic fluid of pregnancy. In some cases, it has literally made the blind see.

Yet while developments have offered great promise, he cautioned to carefully discern which companies to use when engaging in treatment.

One should be careful not to be scammed by companies offering to freeze cord blood promising more than can be delivered, he advised. While we still may find new and even dramatic therapies from cord blood stem cells, much of the work has yet to be done.

In 2011, when the Vatican announced its partnership with NeoStem, CEO Dr. Robin Smith said such a partnership offered a way to alleviate human suffering by unlocking the healing power of the human body.

Most importantly, she added, we are able to do all this without destroying another human life.

Read the original post:
The Other Side of Stem Cell Research - The Tablet Catholic Newspaper

Republicans demand answers about government experiments with animals and fetal tissue – Washington Examiner

Republican lawmakers are demanding the Trump administration provide more information about government experiments that mix animals with fetal tissue from abortions.

In a letter sent Wednesday, 69 lawmakers said they were "disappointed" the research had been allowed to continue and highlighted a Washington Examiner op-ed from August that said the National Institutes of Health, the government's research branch, paid out $115 million for 200 different projects involving fetal tissue.

The op-ed was written by Terrisa Bukovinac, founder and executive director of Pro-Life San Francisco, and by Alyssa Canobbio Hackbarth, a board member for an anti-animal experimentation group called the White Coat Waste Project. They describe experiments in which scientists were "implanting thymus glands from aborted human babies into mice" and "dissecting kidney tissue from 8 to 18-week-old human fetuses."

The Republicans asked Alex Azar, the Health and Human Services secretary, to send more information about the grants and what fetal parts they use, and about which ones also used animals. They also asked for more information about the ethics board the NIH said it would create to devise a system for reviewing grants that involve the tissue.

The NIH announced in June that it would no longer let government scientists conduct experiments using any new fetal tissue acquired from abortions. It did not, however, put a stop to the research already underway or stop outside groups that receive the funding from conducting the research.

The decision came after months of backlash from anti-abortion groups, who demanded President Trump fire NIH Director Francis Collins for saying that research using fetal tissue could provide useful study for treatments of devastating illnesses.

At the same time, some members of Congress are pressuring government agencies to look for alternatives to animal experimentation whenever possible. The Environmental Protection Agency has pledged not to use any mammals for research starting in 2035.

Still, animal experimentation is common. Any prescription drug that has been approved by the Food and Drug Administration first had to clear animal testing before scientists moved onto trials involving people.

Republicans have called for ending fetal tissue research since the anti-abortion Center for Medical Progress released videos that appeared to show Planned Parenthood staff discussing the sale of fetal tissue, a practice that is illegal. Planned Parenthood has denied wrongdoing, and state investigations have not found evidence that the organization illegally sold fetal tissue for profit.

Outside groups opposed to fetal tissue research are not just opposed to abortion, but contend the practice of using the tissue in experiments is degrading, wrong, and unnecessary. They question whether fetal tissue research is effectual and believe other types of tissues work better and should be used instead adult stem cells, umbilical cord, amniotic fluid, tissue from the placenta, or discarded tissue from surgery on an infant. Major medical groups defend the research and say fetal tissue has unique properties that will help scientists develop cures to infectious and chronic diseases.

View original post here:
Republicans demand answers about government experiments with animals and fetal tissue - Washington Examiner

Reviewing MediciNova Inc. (MNOV)’s and Brainstorm Cell Therapeutics Inc. (NASDAQ:BCLI)’s results – MS Wkly

MediciNova Inc. (NASDAQ:MNOV) and Brainstorm Cell Therapeutics Inc. (NASDAQ:BCLI) compete with each other in the Biotechnology sector. We will analyze and compare their dividends, analyst recommendations, profitability, institutional ownership, risk, earnings and valuation.

Earnings and Valuation

Table 1 shows top-line revenue, earnings per share and valuation of the two companies.

Profitability

Table 2 shows us MediciNova Inc. and Brainstorm Cell Therapeutics Inc.s net margins, return on assets and return on equity.

Risk and Volatility

A beta of 1.18 shows that MediciNova Inc. is 18.00% more volatile than Standard and Poors 500. Brainstorm Cell Therapeutics Inc. has a 1.19 beta and it is 19.00% more volatile than Standard and Poors 500.

Liquidity

The Current Ratio and Quick Ratio of MediciNova Inc. are 34.8 and 34.8 respectively. Its competitor Brainstorm Cell Therapeutics Inc.s Current Ratio is 1 and its Quick Ratio is 1. MediciNova Inc. can pay off short and long-term obligations better than Brainstorm Cell Therapeutics Inc.

Analyst Ratings

The table given features the ratings and recommendations for MediciNova Inc. and Brainstorm Cell Therapeutics Inc.

Meanwhile, Brainstorm Cell Therapeutics Inc.s consensus price target is $9, while its potential upside is 127.85%.

Institutional and Insider Ownership

Roughly 21.3% of MediciNova Inc. shares are owned by institutional investors while 11.4% of Brainstorm Cell Therapeutics Inc. are owned by institutional investors. About 2.7% of MediciNova Inc.s share are owned by insiders. Competitively, 0.6% are Brainstorm Cell Therapeutics Inc.s share owned by insiders.

Performance

Here are the Weekly, Monthly, Quarterly, Half Yearly, Yearly and YTD Performance of both pretenders.

For the past year MediciNova Inc.s stock price has bigger growth than Brainstorm Cell Therapeutics Inc.

Summary

MediciNova Inc. beats on 7 of the 11 factors Brainstorm Cell Therapeutics Inc.

MediciNova, Inc., a biopharmaceutical company, focuses on acquiring and developing novel and small molecule therapeutics for the treatment of serious diseases with unmet medical needs in the United States. The companys product candidate includes MN-166 (ibudilast), an oral anti-inflammatory and neuroprotective agent for the treatment of neurological disorders, including primary and secondary progressive multiple sclerosis; amyotrophic lateral sclerosis; and substance dependence and addiction, including methamphetamine, opioid, and alcohol dependence. Its product pipeline also comprises MN-001 (tipelukast), an orally bioavailable small molecule compound to treat fibrotic diseases, such as nonalcoholic steatohepatitis, idiopathic pulmonary fibrosis, and other fibrotic diseases; MN-221 (bedoradrine), a 2-adrenergic receptor agonist for the treatment of acute exacerbation of asthma; and MN-029 (denibulin), a tubulin binding agent to treat solid tumor cancers. The company was founded in 2000 and is headquartered in La Jolla, California.

Brainstorm Cell Therapeutics Inc., a biotechnology company, develops adult stem cell therapies for neurodegenerative disorders that include amyotrophic lateral sclerosis, multiple sclerosis, Parkinsons disease, and others. The company holds rights to develop and commercialize its NurOwn technology through a licensing agreement with Ramot of Tel Aviv University Ltd. Its NurOwn technology is based on a novel differentiation protocol, which induces differentiation of the bone marrow-derived mesenchymal stem cells into neuron-supporting cells and secreting cells that release various neurotrophic factors, including glial-derived neurotrophic factor, brain-derived neurotrophic factor, vascular endothelial growth factor, and hepatocyte growth factor for the growth, survival, and differentiation of developing neurons. The company was formerly known as Golden Hand Resources Inc. and changed its name to Brainstorm Cell Therapeutics Inc. in November 2004 to reflect its new line of business in the development of novel cell therapies for neurodegenerative diseases. Brainstorm Cell Therapeutics Inc. was founded in 2000 and is headquartered in Hackensack, New Jersey.

Receive News & Ratings Via Email - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings with our FREE daily email newsletter.

Original post:
Reviewing MediciNova Inc. (MNOV)'s and Brainstorm Cell Therapeutics Inc. (NASDAQ:BCLI)'s results - MS Wkly

SI-BONE Inc. (SIBN) and Cesca Therapeutics Inc. (NASDAQ:KOOL) Comparing side by side – MS Wkly

SI-BONE Inc. (NASDAQ:SIBN) and Cesca Therapeutics Inc. (NASDAQ:KOOL) compete with each other in the Medical Appliances & Equipment sector. We will analyze and contrast their risk, analyst recommendations, profitability, dividends, earnings and valuation, institutional ownership.

Valuation and Earnings

Table 1 shows the top-line revenue, earnings per share (EPS) and valuation for SI-BONE Inc. and Cesca Therapeutics Inc.

Profitability

Table 2 shows SI-BONE Inc. and Cesca Therapeutics Inc.s return on equity, net margins and return on assets.

Liquidity

SI-BONE Inc. has a Current Ratio of 13.1 and a Quick Ratio of 12.7. Competitively, Cesca Therapeutics Inc.s Current Ratio is 1.6 and has 0.8 Quick Ratio. SI-BONE Inc.s better ability to pay short and long-term obligations than Cesca Therapeutics Inc.

Analyst Ratings

The table given features the ratings and recommendations for SI-BONE Inc. and Cesca Therapeutics Inc.

Meanwhile, Cesca Therapeutics Inc.s consensus target price is $7.5, while its potential upside is 45.07%.

Insider & Institutional Ownership

The shares of both SI-BONE Inc. and Cesca Therapeutics Inc. are owned by institutional investors at 74.7% and 1.8% respectively. About 3% of SI-BONE Inc.s share are held by insiders. Insiders Comparatively, held 30.91% of Cesca Therapeutics Inc. shares.

Performance

Here are the Weekly, Monthly, Quarterly, Half Yearly, Yearly and YTD Performance of both pretenders.

For the past year SI-BONE Inc. had bearish trend while Cesca Therapeutics Inc. had bullish trend.

Summary

SI-BONE Inc. beats on 7 of the 9 factors Cesca Therapeutics Inc.

SI-BONE, Inc., a medical device company, develops and commercializes a proprietary minimally invasive surgical implant system in the United States and Internationally. It offers iFuse, an implant system to fuse the sacroiliac joint to treat sacroiliac joint dysfunction that causes lower back pain. The company was founded in 2008 and is headquartered in Santa Clara, California.

Cesca Therapeutics Inc. focuses on the research, development, and commercialization of autologous cell-based therapeutics for use in regenerative medicine in the United States and internationally. The company develops and manufactures automated blood and bone marrow processing systems that enable the separation, processing, and preservation of cell and tissue therapy products. Its products include SurgWerks system, a proprietary system comprised of the SurgWerks processing platform, including devices and analytics, and indication-specific SurgWerks procedure kits for use in regenerative stem cell therapy at the point of care for vascular and orthopedic diseases; CellWerks system, a proprietary cell processing system with associated analytics for intra-laboratory preparation of adult stem cells from bone marrow or blood; and AutoXpress system, a proprietary automated device and companion sterile disposable for concentrating hematopoietic stem cells from cord blood. The company also offers MarrowXpress system, a derivative product of the AXP and its accompanying sterile disposable for the isolation and concentration of hematopoietic stem cells from bone marrow; BioArchive system, an automated cryogenic device used by cord blood banks for the cryopreservation and storage of cord blood stem cell concentrate for future use; and manual disposables bag sets for use in the processing and cryogenic storage of cord blood. In addition, it provides cell manufacturing and banking services. The company was formerly known as ThermoGenesis Corp. and changed its name to Cesca Therapeutics Inc. in February 2014. Cesca Therapeutics Inc. was founded in 1986 and is headquartered in Rancho Cordova, California.

Receive News & Ratings Via Email - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings with our FREE daily email newsletter.

Go here to see the original:
SI-BONE Inc. (SIBN) and Cesca Therapeutics Inc. (NASDAQ:KOOL) Comparing side by side - MS Wkly

Inherited Learning? It Happens, but How Is Uncertain – Quanta Magazine

Rechavi says that exactly how the changes in the neurons are communicated to the germline and how thataffects the nervous system of the next generation are still open questions. He hypothesizes that the process involves one or more molecules released by the nervous system perhaps small RNAs, perhaps something secreted like a hormone. But somehow those germ cells then influence the behavior of the next generation and seem to circumvent the normal need for rde-4 in the production of the small RNAs for chemotaxis in the progeny.

In another paper on epigenetic behavior that appeared in the same June issue of Cell, Rebecca Moore, Rachel Kaletsky and Coleen Murphy, the molecular biologist who leads their laboratory at Princeton University, reported that C. elegans worms exposed to the pathogenic bacterium Pseudomonas aeruginosa learn to avoid it, and they transmit this learned avoidance for approximately four generations. Normally, the worms seem to prefer Pseudomonas to the bacteria on which they routinely feed.

The researchers sought to understand how this behavior is controlled at a molecular level. They discovered that double-stranded RNA from the pathogen triggered the worms response, a finding that they further investigated with Lance Parsons of Princeton University and described in a biorxiv preprint posted on July 11.

In the worms exposed to the pathogen, they detected changes in the expression of a gene, daf-7, in a specific neuron called ASI that is required for the avoidance behavior. They also found a huge number of changes in the small RNAs in the germline, Murphy said, including the ones called Piwi-interacting RNA (piRNA). As the name suggests, piRNAs interact with piwi genes, which help to regulate stem cell differentiation.

Moore, Kaletsky and Murphy found that animals without the piRNA pathway can learn to avoid Pseudomonas but do not pass on this avoidance behavior to their progeny. Thus, the piRNA pathway is critical for inheritance of the behavior. Thats why were excited about the piRNA pathway, Murphy said.

Sarkies thinks these findings may help to explain the curious ability of C. elegans to take up double-stranded RNA from the environment and use it to silence endogenous genes. For years, geneticists have exploited this property of worms: By synthesizing double RNAs that match any gene, researchers can silence it and study what it does.

But why the worm has this ability was mysterious. It obviously didnt evolve it in order to make life easy for scientists, and we dont really understand what ecological role it might have, Sarkies said. Whats quite exciting in principle about the studies from the Murphy lab is that they suggest that this might be a way in which C. elegans is able to adapt to pathogenic bacteria. Hypothetically, when the worm takes up double-stranded RNA from bacteria in its environment, the molecules could silence some of the worms genes and induce adaptive responses. Those adaptations could then be passed to the next generation.

Most in the field still approach such conjectures with skepticism. I believe that today, there is not a single solid paper showing that only small RNAs are involved in epigenetic inheritance, said Isabelle Mansuy, a neuroepigenetics researcher at the Swiss Federal Institute of Technology Zurich and the University of Zurich who studies the inheritance of trauma in humans and mice. In the mouse model she works with, she knows that small RNAs are not sufficient because if she injects small RNAs alone into fertilized mouse eggs, the resulting animals do not show the RNA-associated trait.

Mansuy believes that a multitude of factors may contribute in different ways to epigenetic inheritance, and their importance may vary with the trait or behavior. Very often people like to simplify the matter and think either its DNA methylation or its microRNA. I think its totally misleading to think that way, she said. People should not dismiss one or the other but just think about all these factors together.

She added that errors have crept into the literature on epigenetic inheritance, making some findings seem more definitive than they are. For example, some review articles claim that Mansuy demonstrated that injecting microRNAs into fertilized eggs is sufficient to cause the inheritance of behavioral symptoms in mice. We never showed this, she emphasized. Authors of review articles often dont go back to check the original findings, so when the review is cited subsequently, it creates an auto-feeding system that perpetuates errors. Its polluting the field, she said. Now many people work only on RNA epigenetic inheritance because they think it is well established, she added.

Unreliable findings have also sometimes appeared in high-profile journals. As a result, she argues, the field as a whole may be on thinner ice than it seems. The lack of rigor can lead to a misleading thought and perception, she warned.

Validation of Mansuys skepticism can be found in a recent study in eLife on epigenetic inheritance in fruit flies. Giovanni Bosco and his colleagues at Dartmouth College demonstrated that learned adaptive behaviors in fruit flies can be epigenetically inherited but that small RNAs are not sufficient to transmit this behavior.

In Drosophila, adult females raised with parasitic wasps learn to lay their eggs on food that contains ethanol, which protects the eggs and larvae from being parasitized by the wasps. This egg-laying preference occurs even when the mother herself was never exposed to ethanol, Bosco emphasized. Exposure to the wasp was in and of itself sufficient for the females to somehow epigenetically reprogram their eggs so that their daughters would be predisposed to have this behavior, he said.

The preference for egg laying on ethanol persists for five generations. Bosco, his graduate student Julianna Bozler, and Balint Kacsoh (now a postdoc at the University of Pennsylvania) hypothesized that small RNAs were involved in the inheritance of this behavior. To test this idea, they used a quirk of fly genetics to create flies with a pair of chromosomes that both came from the same parent (normally, both parents contribute to each pair). Boscos team reasoned that if small RNAs in the cytoplasm of the mothers egg were sufficient for inheritance of the learned behavior, then the offspring should exhibit the inherited behavior even if it received both pairs of chromosomes from the father.

In a series of experiments, Bozler, Kacsoh and Bosco demonstrated that small noncoding RNAs from the mother were not sufficient for transmitting the behavior between generations; an as yet unidentified epigenetic modification on chromosome 3 was also essential. They are currently investigating the nature of this epigenetic change.

To Bosco, the big question is: How does the signal from the brain reach an egg and change the information thats in the egg? Figuring this out would open the floodgates to ask: What else is the brain doing to the germline? What else are our cognitive experiences and environmental exposures impinging on the epigenome of the egg or sperm?

Most people, Bosco continued, would have no trouble accepting that exposure to a toxic chemical in our water or food could interact with the germline and change the epigenetic state of germ cells.

What I would suggest is that our brains are our pharmacies, Bosco said. Our brains are making chemicals all the time, such as neuropeptides and other neuromodulatory molecules with diverse functions. Some of those functions impinge directly on processes in other organs, including the reproductive system. If we can ingest a chemical from our environment that changes the epigenomes of the egg or sperm, why couldnt our brain make a similar molecule that does the same thing? he said.

At Cambridge, Burton has identified at least one of the ways in which information from the nervous system can be transmitted to the germline. In a 2017 Nature Cell Biology paper, he and his colleagues exposed C. elegans to high levels of salt to induce a state called osmotic stress. They discovered that the worms brain responded by secreting insulin-like peptides that change the egg-making cells (oocytes) in ways that induce an epigenetic change. The resulting alterations in gene expression in the oocytes lead the offspring to produce more glycerol, which protects them against osmotic stress.

You have a neuronal signal affecting the germ cells that looks to be adaptive, Burton said.

Mansuy has found that early-life trauma in mice leads to the release of stress hormones that affect the animal throughout its life span, producing depressed or risk-taking behaviors, metabolic dysregulation, and other health problems. They also affect the developing germ cells, causing the same behaviors and metabolic alterations to be inherited in the offspring for up to five generations. Previously, Mansuy had found that small RNAs were not sufficient to transmit these phenotypes in mice, just as they were not sufficient in the fruit flies. Something else was going on.

In a preprint recently posted on biorxiv.org, she and her colleagues report that by injecting the blood of traumatized mice into control mice, they could induce similar metabolic symptoms. The injected blood also appeared to affect the mices germ cells because their offspring inherited the metabolic abnormalities too.

The researchers identified some of the signaling molecules that transmitted the metabolic effects as fatty acids that can bind to receptor molecules, move into the nucleus and help activate the transcription of certain targeted genes. The receptors exist in germ cells, too, so they could be one of the ways in which information moves between blood and germ cells, Mansuy suggests.

One of the outstanding questions in the field is why epigenetic inheritance only lasts for a handful of generations and then stops, said Eric Greer, an epigeneticist at Harvard Medical School and Boston Childrens Hospital who studies the epigenetic inheritance of longevity and fertility in C. elegans. It appears to be a regulated process, in part because the effect persists at the same magnitude from one generation to the next, and then abruptly disappears. Moreover, in a paper published in Cell in 2016, Rechavi and colleagues described dedicated cell machinery and specific genes that control the duration of the epigenetically inherited response. So its an evolved mechanism that likely serves many important functions, Rechavi said.

But what exactly is adaptive about it? If the response is adaptive, why not hardwire it into the genome, where it could be permanently and reliably inherited?

In Murphys C. elegans model, because the learned avoidance behavior is transient (even if it is transgenerational), it allows animals to go back to eating bacteria that are nutritious but smell a lot like those pathogens, she explained. Sniffing out the difference between food and foes can be difficult, so worms that permanently avoid pathogens will miss out on nutritious food sources.

Greer concurs that there could generally be a cost to deploying an adaptive response permanently. For example, deploying antiviral defenses when pathogens arent around is a waste of resources that could be used instead for growth and reproduction.

Trade-offs could also constrain other adaptations. In Burtons 2017 study, worms exposed to P. aeruginosa produced offspring resistant to the pathogen, but that adaptation was deleterious to the offsprings ability to respond to other challenges, like osmotic stress. Unavoidable trade-offs between adaptations to different stresses make it impossible for the worms to be optimally adapted across the board.

In that scenario, you wouldnt want it hardwired into your genetics. Youd want this plasticity where you could program the adaptation, but also get rid of it, Burton explained. That may explain why stress appears to reset transgenerational small-RNA inheritance, as reported by Rechavi and his colleagues in a new preprint on biorxiv.org.

Very little work has been done to investigate mismatched stresses between parents and offspring, but a lot of literature suggests that these mismatched stresses might play a role in human diseases, Burton said. I think mechanistically looking at that is going to be really interesting, going forward.

Correction added on Oct. 16, 2019: The beginning of one sentence was rephrased to clarify that the described work in Murphys lab was not related to Rechavis experiments.

Read the original:
Inherited Learning? It Happens, but How Is Uncertain - Quanta Magazine

Contrasting of Brainstorm Cell Therapeutics Inc. (BCLI) and Magenta Therapeutics Inc. (NASDAQ:MGTA) – MS Wkly

As Biotechnology companies, Brainstorm Cell Therapeutics Inc. (NASDAQ:BCLI) and Magenta Therapeutics Inc. (NASDAQ:MGTA) are our subject to contrast. And more specifically their risk, analyst recommendations, profitability, dividends, institutional ownership, earnings and valuation.

Valuation and Earnings

Table 1 highlights Brainstorm Cell Therapeutics Inc. and Magenta Therapeutics Inc.s gross revenue, earnings per share (EPS) and valuation.

Profitability

Table 2 shows us Brainstorm Cell Therapeutics Inc. and Magenta Therapeutics Inc.s net margins, return on equity and return on assets.

Liquidity

The Current Ratio of Brainstorm Cell Therapeutics Inc. is 1 while its Quick Ratio stands at 1. The Current Ratio of rival Magenta Therapeutics Inc. is 17.1 and its Quick Ratio is has 17.1. Magenta Therapeutics Inc. is better equipped to clear short and long-term obligations than Brainstorm Cell Therapeutics Inc.

Analyst Recommendations

In next table is given Brainstorm Cell Therapeutics Inc. and Magenta Therapeutics Inc.s ratings and recommendations.

Brainstorm Cell Therapeutics Inc. has a 126.70% upside potential and an average price target of $9.

Institutional & Insider Ownership

Institutional investors owned 11.4% of Brainstorm Cell Therapeutics Inc. shares and 85.4% of Magenta Therapeutics Inc. shares. 0.6% are Brainstorm Cell Therapeutics Inc.s share owned by insiders. Comparatively, 2.2% are Magenta Therapeutics Inc.s share owned by insiders.

Performance

In this table we show the Weekly, Monthly, Quarterly, Half Yearly, Yearly and YTD Performance of both pretenders.

For the past year Brainstorm Cell Therapeutics Inc.s stock price has smaller growth than Magenta Therapeutics Inc.

Brainstorm Cell Therapeutics Inc., a biotechnology company, develops adult stem cell therapies for neurodegenerative disorders that include amyotrophic lateral sclerosis, multiple sclerosis, Parkinsons disease, and others. The company holds rights to develop and commercialize its NurOwn technology through a licensing agreement with Ramot of Tel Aviv University Ltd. Its NurOwn technology is based on a novel differentiation protocol, which induces differentiation of the bone marrow-derived mesenchymal stem cells into neuron-supporting cells and secreting cells that release various neurotrophic factors, including glial-derived neurotrophic factor, brain-derived neurotrophic factor, vascular endothelial growth factor, and hepatocyte growth factor for the growth, survival, and differentiation of developing neurons. The company was formerly known as Golden Hand Resources Inc. and changed its name to Brainstorm Cell Therapeutics Inc. in November 2004 to reflect its new line of business in the development of novel cell therapies for neurodegenerative diseases. Brainstorm Cell Therapeutics Inc. was founded in 2000 and is headquartered in Hackensack, New Jersey.

Magenta Therapeutics, Inc., a clinical-stage biopharmaceutical company, engages in developing medicines to bring the curative power of bone marrow transplant to patients. It is developing C100, C200, and C300 targeted antibody-drug conjugates for transplant conditioning; MGTA-145, a stem cell mobilization product candidate to control stem cell mobilization; MGTA-456, an allogeneic stem cell therapy to control stem cell growth; E478, a small molecule aryl hydrocarbon receptor antagonist for the expansion of gene-modified stem cells; and G100, an ADC program to prevent acute graft and host diseases. The company was formerly known as HSCTCo Therapeutics, Inc. and changed its name to Magenta Therapeutics, Inc. in February 2016. Magenta Therapeutics, Inc. was incorporated in 2015 and is based in Cambridge, Massachusetts.

Receive News & Ratings Via Email - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings with our FREE daily email newsletter.

Read this article:
Contrasting of Brainstorm Cell Therapeutics Inc. (BCLI) and Magenta Therapeutics Inc. (NASDAQ:MGTA) - MS Wkly

PRP and IRAP: Where nature meets science in horse injury treatment – Horsetalk.co.nz – Horsetalk

Platelet Rich Plasma is injected into an injured area to encourage a morerobust healing response.Palm Beach Equine Clinic

As sport horses become faster and stronger, veterinary medicine is often challenged to break barriers to provide the best in diagnostic and maintenance care.

Two resources that have become increasingly popular to treat equine injuries are Platelet Rich Plasma (PRP) and Interleukin-1 Receptor Antagonist Protein (IRAP), which encourage regeneration of injured or degenerative tissue.

Managing joint diseases and injuries using these methods is ground-breaking, but logical at its core. They essentially use naturally occurring proteins, cells, and other natural processes originated from within the body of the horse to put the horses own biological mechanisms to work stimulating healing without the use of steroids or other drugs.

Platelets are among the very first cells to accumulate at an injured site, making them very important when simulating the repair process. Platelets contain granules filled with growth factors (the elements that aid in healing) and stimulate specified tissue to heal at an increased rate. To treat a horse with PRP, the veterinarians at PBEC are able to take a sample of the horses blood and concentrate the platelets in a high-speed centrifuge on-site. The harvest and processing procedures take approximately 30 minutes before the concentrated platelet-rich sample is injected back into the horse at the specific area of injury using sterile techniques and guided by ultrasound.

Explaining the process, Dr Weston Davis, Board-Certified Staff Surgeon at Floridas Palm Beach Equine Clinic, said that first, a large quantity of blood is harvested, anywhere from 60 to180ml.

We process that to concentrate the segment that is very rich in platelets. We get a high concentration of platelets we are hoping for five to eight times the concentration that you would get from normal blood. Then we take that platelet-rich extract and inject it back into an injured area to encourage a more robust healing response.

Whenever you have an injury, platelets are one of the first cells that get there. They will aggregate, clump, and de-granulate. They release granules that are very rich in growth factors and signal the body to start the healing process.

IRAP is used to treat equine athletes that are susceptible to musculoskeletal injuries and osteoarthritis or degenerative joint disease. Joint trauma results in the release of inflammatory mediators such as Interleukin-1 (IL-1). IRAP uses a horses own anti-inflammatory protein found within the blood to counteract the destructive effects of IL-1 to slow the process of osteoarthritis. The process works by binding to the IL-1 receptors in the joint and blocking the continuation of damage and inflammation.

Palm Beach Equine Clinic veterinarian Dr Bryan Dubynsky said veterinarians often see joint damage in sport horses because of the nature of their work. But we try to avoid over-use of steroids in joints because steroids can have long-term effects on cartilage.

This is a way we can manage joint disease and stop inflammation without having to consistently use steroids. Some of our clients will maintain their horses on IRAP alone for joint injections.

The goal to better serve sport horses that continue to improve athletically is the driving force behind the search for even more developed and precise techniques used in regenerative medicine.

I believe we are learning more about these technologies with more advanced science behind what they do and how they do it, Dubynsky said. These treatments are natural, drug-free, and competition-safe, and necessity drives the need for regenerative therapies in the sport horse world.

Read the original here:
PRP and IRAP: Where nature meets science in horse injury treatment - Horsetalk.co.nz - Horsetalk

Protective mediators help heal tendon cells by attacking inflammation – Health Europa

Tendon tears, both to the rotator cuff and Achilles heel, are common injuries, especially in aged individuals. Painful and disabling, they can adversely impact quality of life.

New approaches are required to help patients suffering from chronic tendon injuries. A novelstudyinThe American Journal of Pathology, identified mediators that promote resolution of inflammation as potential new therapeutics to push chronically injured tendons down an inflammation-resolving pathway.

Stephanie Dakin of Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre and University of Oxford, said: Our study informs new therapeutic approaches that target diseased cells and promote resolution of tendon inflammation, harnessing the bodys own natural responses for therapeutic gain.

The study demonstrates the anti-inflammatory effects of two specialised pro-resolving mediators (SPMs), lipoxin B4 (LXB4) and Resolvin E1 (RvE1), on cultured tendon cells in which induced shoulder tendon disease was present.

According to Dr Dakin and colleagues, resident (meaning part of the normal tissue) stromal cells, especially fibroblasts, play a pivotal role in inflammatory diseases of joints. After injury, fibroblasts become activated and show inflammation memory, an important event underlying the switch from acute to chronic inflammation.

These cells become unable to return to their normal state. The SPMs identified by the researchers interfere with this chronic inflammatory process and help fibroblasts resolve tendon inflammation; hence the name pro-resolving mediators.

Commenting on the study, Undurti N Das of UND Life Sciences, Battle Ground and BioScience Research Centre and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam, India, emphasised that understanding the crosstalk among resident stromal cells including fibroblasts that not only participate in inflammatory diseases of the joint, but also in the switch from acute to chronic inflammation, tissue resident and infiltrating macrophages, infiltrating immune cells, and endothelial cells is important to the disease process and for the development of newer therapeutic interventions.

Dr Das said: In this context, the report by Dakin et al is of substantial interest to the field. It establishes that tendon stromal cells isolated from patients with tendon tears show pro-inflammatory phenotype and secrete significantly higher amounts of interleukin (IL)-6 with dysregulated production and action of lipoxin A4, resolvins, protectins, and maresins compared to normal cells.

Dr Dakin said: There is a clear unmet clinical need to develop effective new therapeutic approaches to treat tendon disease.

SPMs, including LXB4 and RvE1, may target diseased cells and potentiate resolution of chronic tendon inflammation.

Shoulder pain is the third most common cause of musculoskeletal pain, and tears affecting shoulder rotator cuff tendons comprise a large proportion of this disease burden. Current treatments for tendon injuries include physical therapy, non-steroidal anti-inflammatory drugs, platelet rich plasma, steroid injections, and surgery to repair torn tendons.

These therapies are frequently ineffective, steroids are potentially harmful, and tendon tear surgery is associated with high postoperative failure rates. Therefore, alternative therapies targeting the cells driving chronic inflammation are required to help patients, and ideally avoid some of the problems associated with surgery, steroids, NSAIDS, or other interventions.

Here is the original post:
Protective mediators help heal tendon cells by attacking inflammation - Health Europa

WindMIL Therapeutics and University of California, Irvine Announce Collaboration to Collect Bone Marrow from Patients with Gliomas to Develop Marrow…

BALTIMOREand PHILADELPHIA and IRVINE, Calif., Oct. 15, 2019 (GLOBE NEWSWIRE) -- WindMIL Therapeutics and the University of California, Irvine (UCI) today announced that the first patients have been identified in an investigator-sponsored study for the collection of bone marrow from patients with gliomas. The study will evaluate generating marrow infiltrating lymphocytes (MILs) for these patients through WindMILs proprietary cellular activation and expansion process. The study is being conducted at UCI.

Patients suffering with glioblastoma are in great need of new, promising treatments that might advance the current standard of care, said Daniela A. Bota, MD, PhD, director of theUCI Health Comprehensive Brain Tumor Program,seniorassociate dean for clinical research, UCI School of Medicine and clinical director, UCI Sue & Bill Gross Stem Cell ResearchCenter. The University of California, Irvine is excited toplay a key role in research that may lead to a clinical trial that enlists the immune system in novel ways to fight this terrible disease.

Gliomas are the most common of the malignant brain tumors. Glioblastoma, the most common glioma, has a five-year survival of less than 5 percent. Additional treatment options are urgently needed for these patients. Adoptive immunotherapy is a possible approach for gliomas and the use of MILs, a cell therapy that is naturally tumor-specific, is one such treatment option.

The bone marrow is a unique niche in the immune system to which antigen-experienced memory T cells traffic and are then maintained. WindMIL has developed a proprietary process to select, activate and expand these memory T cells into MILs. Because memory T cells in bone marrow occur as a result of the immune systems recognition of tumor antigens, MILs are specifically suited for adoptive cellular immunotherapy and are able to directly eradicate or facilitate eradication of each patients unique cancer. WindMIL is currently studying MILs in multiple myeloma, non-small cell lung cancer and squamous cell carcinoma of the head and neck, and plans to expand into other solid tumors.

WindMIL is looking forward to working with the University of California, Irvine on this exciting project and is optimistic that MILs may offer the potential to help patients with these hard-to-treat diseases, said Monil Shah, PharmD, MBA, Chief Development Officer at WindMIL.

About WindMIL Therapeutics

WindMIL Therapeutics is a clinical-stage company developing a novel class of autologous cell therapies based on marrow infiltrating lymphocytes (MILs) for cancer immunotherapy. As the leader in cellular therapeutics emanating from bone marrow, WindMIL translates novel insights in bone marrow immunology into potentially life-saving cancer immunotherapeutics for patients. WindMIL believes that Cell Source Matters and the companys proprietary process to extract, activate and expand these cells offers unique immunotherapeutic advantages, including inherent poly-antigen specificity, high cytotoxic potential and long persistence. For more information, please visit: http://www.windmiltx.com.

About UCI Health

UCI Healthcomprises the clinical enterprise of the University of California, Irvine. Patients can access UCI Health at primary and specialty care offices across Orange County and at its main campus, UCI Medical Center in Orange, California. The 417-bed acute care hospital provides tertiary and quaternary care, ambulatory and specialty medical clinics and behavioral health and rehabilitation services. UCI Medical Center features Orange Countys only National Cancer Institute-designated comprehensive cancer center, high-risk perinatal/neonatal program and American College of Surgeons-verified Level I adult and Level II pediatric trauma center and regional burn center. UCI Health serves a region of nearly 4 million people in Orange County, western Riverside County and southeast Los Angeles County. Follow us onFacebookandTwitter.

About the University of California, Irvine

Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. Its located in one of the worlds safest and most economically vibrant communities and is Orange Countys second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visitwww.uci.edu.

Story continues

Read the rest here:
WindMIL Therapeutics and University of California, Irvine Announce Collaboration to Collect Bone Marrow from Patients with Gliomas to Develop Marrow...