Stemming the Tide of Alzheimer’s – UCI News

Keith Swayne has a magic touch when it comes to fundraising.

I guess I could go to anyone and get them to write some kind of check just so I would go away, he says, laughing. However, thats not what I want to accomplish. I want to connect people to causes and needs that they can relate to and then help them find a way to help out.

Swayne is so adroit at soliciting donations, in fact, that a campus project he undertook has left people shaking their heads in amazement: His efforts led to a $20 million windfall for investigators at the UCI Institute for Memory Impairments and Neurological Disorders.

Keiths passionate commitment to supporting our research has been tireless and nothing short of transformative, says Joshua Grill, director of UCI MIND.

It all started with a $150,000 gift the Laguna Beach philanthropist made to the research facility in honor of his late wife, Judy, whom he lost to Alzheimers disease in 2014. He also issued a challenge to the community at the time that boosted the donation to $300,000.

The UCI MIND team then leveraged that seed money to secure a total of $20 million in funding from the National Institutes of Health.

Our research is blazing new trails into understanding the genetic, molecular and cellular underpinnings of disease and is poised to lead to identification of new treatment targets and candidates, Grill says. Keiths initial challenge-gift enabled an exponential impact in terms of research support.

Weian Zhao lab at Sue and Bill Gross Stem Cell center at UCI. Lab personnel: Ling Shun, Meglu Han, Michael Toledano, Aude Segaliny, Jan Zimak, Leanne Hildebrand

His late wife would have liked that, Swayne says. The fact that some good came from this terrible disease Judy would certainly want that, he says. And I wanted that too.

The couple, married 50 years, were best friends and committed partners. Judy Swayne, like her husband, was intent on making a difference in her community. Among other contributions, in 1989, she founded the Orange County Community Foundation, which became a major philanthropic institution in the region. Keith Swayne has carried on her legacy as a member of its board, stepping down in September after a stint as chairman.

In addition, Judy Swayne served on numerous nonprofit boards, acted as a role model and mentor to many throughout the philanthropic community, and was the mother of two: a daughter, Anne Keir, who lives in Hawaii, and a son, Kirk Swayne, of Orange County.

The disease was hard on my kids, Keith Swayne says. Its a tough disease.

It was also hard on Swayne himself, Grill notes: Alzheimers is an insidious disorder that robs patients of their most human characteristics language, decision making and, of course, memory.

Ultimately, it also robs patients of their independence, putting a strain on family members.

Keith was a caregiver to his beloved Judy, a costly and taxing role, Grill says. He watched her progress until she succumbed to this unrelenting disease, helpless to do anything to slow or stop its course. He decided to do what he could to prevent others from suffering her fate.

Frank M. LaFerla, dean of the UCI School of Biological Sciences, also recalls Swaynes struggles.

Alzheimers disease really impacted his family, he says. Judy was a very special woman. He wanted to make sure future generations wouldnt experience the pain his wife did.

At the time, LaFerla was director of UCI MIND and talked with Swayne about ways he could make a difference in the search for a cure. One field of research involved stem cells, which experts believe may offer great promise for new medical treatments.

My lab had started getting involved with stem cells many years ago, and about this time a new technology was created using stem cells from your skin, not embryos, LaFerla says. You could take some of a patients skin cells by biopsy and reprogram them to become pluripotent meaning they have the ability to give rise to many different types of cells found in the body, such as brain cells or more skin cells or kidney cells.

Swayne likes innovation and taking chances, LaFerla says: I told him this opportunity was high-risk but had high potential.

That was when Swayne issued his challenge to the community and set about rounding up donors. He held salons at his hillside home, inviting LaFerla and other UCI staffers to speak to local residents. They explained how pluripotent stem cell technology could be used as a tool in Alzheimers research.

I went to people who knew my wife or to people I knew who also had a vested interest in Alzheimers research because they had the disease in their own families, Swayne says.

He found many community members who were willing to contribute.

The odds are that if you live to be 85, theres a 1-in-2 chance youre going to have Alzheimers. A lot of my friends are in my age bracket, says Swayne, 79. The message was compelling.

One thing he learned was that individuals were familiar with the Alzheimers Association but not UCI MIND.

In some respects, UCI MIND is one of the best-kept secrets in Orange County, Swayne says. Many people didnt know that its one of only 30 NIH-designated Alzheimers research centers in the country.

His fundraising zeal and efforts to involve the Orange County community in the effort eventually paid off. As LaFerla says, It worked better than we could ever have dreamed.

When the time came to renew funding for the stem cell research program from the National Institute on Aging, UCI MIND won a five-year commitment to continue its research. One reason behind the NIAs decision: local philanthropic contributions.

With charitable and federal funding in place, UCI established a bank of induced pluripotent stem cells, now a valuable resource for Alzheimers researchers globally. Today, hundreds of cell samples have been provided to investigators at UCI and 10 other research universities around the world, and UCI MIND scientists and their partners have received more than $20 million in grants.

And all of that stemmed, ultimately, from the initial gift we received from Keith, LaFerla says.

Adds Swayne: We grew $150,000 to $20 million. It blows me away.

Hes not resting on his laurels, though. Swayne continues to connect more donors to UCI MIND so that research can progress.

The UCI MIND team is devoted to this cause, he says. Its reassuring to know youve got people with this talent trying to find answers to this disease.

So Swayne writes letters to business and community leaders urging their backing, chairs a panel that seeks new opportunities for philanthropic gifts, speaks on behalf of the institute at public events, and co-leads a caregiver support group for men whose spouses have Alzheimers.

Keith gives a voice to the nearly 6 million Americans with Alzheimers and the more than 15 million caregivers like him, Grill wrote earlier this year in a letter nominating Swayne for the Outstanding Philanthropist Award, which will be conferred on Nov. 14 by the Association of Fundraising Professionals of Orange County in celebration of National Philanthropy Day. UCI MIND would not be the organization it is without the leadership of Keith Swayne.

Read this article:
Stemming the Tide of Alzheimer's - UCI News

IGIB finds a protein with better precision in gene-editing – The Hindu

Researchers at the Delhi-based Institute of Genomics and Integrative Biology (CSIR-IGIB) have discovered a protein variant from a different species of bacteria that can edit the DNA with very high precision. In the tool now commonly used for editing disease-causing mutations in DNA (CRISPR-Cas9), the Cas9 protein behaves like a molecular scissors that cuts the DNA at a specific location and inserts a foreign piece of DNA to correct the mutation that causes the disease.

In addition to binding to the intended target on the DNA, the commonly used Cas9 protein from Strepotococcus pyogenes bacteria (SpCas9) and its engineered derivative tend to potentially bind to DNA at multiple unintended sites thereby leading to unnecessary alterations in the DNA.

The researchers found their new Cas9 protein, which binds and cuts the DNA, was able to correct sickle cell anaemia mutation in patient-derived stem cells. The protein (FnCas9) used by the researchers to edit the DNA is derived from a bacterium Francisella novicida.

The Cas9 protein is supposed to bind to the DNA only when there is a perfect match between the DNA and the protein, thus reducing the chances of the protein binding at non-target sites on the DNA. But even when three mismatches exist between the protein and the DNA, the currently used SpCas9 protein binds and cleaves the DNA. In contrast, the team led by Debojyoti Chakraborty from IGIB found the new FnCas9 protein showed negligible binding when there exists more than one mismatch in the target DNA. The results were published in the journal Proceedings of the National Academy of Sciences (PNAS).

The high specificity of the new FnCas9 protein arises due to reduced affinity to bind to DNA when there is even a single mismatch. And when there is more than one mismatch, complete absence of binding of the protein to the DNA is seen in many cases, says Dr. Chakraborty.

If the Cas9 protein remains bound to DNA at mismatched locations for a long time, there is a possibility that it might cut the DNA at these locations. Also, if it remains bound to DNA, the protein might block the transcription (which is the first step in gene expression) at that location. And if Cas9 is bound at multiple unintended sites then the transcription machinery gets stalled and the expression of genes at these locations might be altered, Dr. Chakraborty explains.

In nature, DNA often gets damaged and is routinely repaired through one of the two pathways. In the case of the homology-directed repair (HDR) pathway, which is relatively less error-prone, matching sequences are used to repair the DNA. The FnCas9 protein was found to increase the HDR repair rate fourfold compared to the widely used SpCas9, says Deepanjan Paul from CSIR-IGIB and one of the first authors of the paper.

The researchers tested the precision of binding and cleavage at the desired sites on the DNA using mouse cell lines (embryonic stem cells and brain cells), human kidney cell lines and induced pluripotent stem cells (iPSc). In the case of human iPS cells, the FnCas9 protein was found to bind to the DNA at the specific site, cut and repair the sickle cell anaemia mutation.

The correction process is the same for any disease-causing mutation and so our FnCas9 protein should theoretically correct any mutation in the DNA. The efficiency might vary, so we must test it for each disorder, says Dr. Chakraborty.

The efficiency of any Cas9 protein delivery as well the ability to correct mutations is generally low in the case of iPS cells. The efficiency of correction is about 1.6%. Though the efficiency to correct mutations is low in iPS cells, the corrected cells can be isolated, multiplied and converted (differentiated) into haematopoietic stem cells. Once differentiated into haematopoietic stem cells, they can be transfused into patients.

Differentiating iPS cells into haematopoietic stem cells is not trivial. Plenty of experimental work is under way to make it efficient for clinical translation, says Dr. Chakraborty.

Recalling how he started working on FnCas9 protein for genome editing, Dr. Chakraborty recalls that he was looking for a Cas9 protein which can target RNA instead of DNA. There was one study that reported that FnCas9 could potentially target viral RNA. We were not able to target RNA using FnCas9 proteins. So we started to investigate whether it can target DNA as well since it was not known if FnCas9 can be used for precise gene correction. We found that not only does it target the DNA but does so with very high specificity, he says.

We are now proceeding for preclinical studies to establish the efficacy of FnCas9 protein for genome-wide binding and targeting using patient-derived cells and mouse models, he says.

You have reached your limit for free articles this month.

Register to The Hindu for free and get unlimited access for 30 days.

Find mobile-friendly version of articles from the day's newspaper in one easy-to-read list.

Enjoy reading our articles without intrusion from advertisements.

A select list of articles that match your interests and tastes.

Move smoothly between articles as our pages load instantly.

A one-stop-shop for seeing the latest updates, and managing your preferences.

We brief you on the latest and most important developments, three times a day.

*Our Digital Subscription plans do not currently include the e-paper ,crossword, iPhone, iPad mobile applications and print. Our plans enhance your reading experience.

More here:
IGIB finds a protein with better precision in gene-editing - The Hindu

Skin-Derived Heart Cells Help Uncover the Genetic Foundations of Cardiac Function – Technology Networks

Genome-wide association studies have uncovered more than 500 genetic variants linked to heart function, everything from heart rate to irregular rhythms that can lead to stroke, heart failure or other complications. But since most of these variations fall into areas of the genome that dont encode proteins, exactly how they influence heart function has remained unclear.

By examining heart cells derived from the skin samples of seven family members, researchers at University of California San Diego School of Medicine have now discovered that many of these genetic variations influence heart function because they affect the binding of a protein called NKX2-5.

NKX2-5 is a transcription factor, meaning it helps turn on and off genes in this case, genes involved in heart development. To do this, NKX2-5 must bind to non-coding regions of the genome. Thats where genetic variation comes in.

NKX2-5 binds to many different places in the genome near heart genes, so it makes sense that variation in the factor itself or the DNA to which it binds would affect that function, said senior author Kelly A. Frazer, PhD, professor of pediatrics and director of the Institute for Genomic Medicine at UC San Diego School of Medicine. As a result, we are finding that multiple heart-related traits can share a common mechanism in this case, differential binding of NKX2-5 due to DNA variants.

The study started with skin samples from seven people from three generations of a single family. The researchers converted the skin cells into induced pluripotent stem cells (iPSCs) as an intermediary. Like all stem cells, iPSCs can both self-renew, making more iPSCs, and differentiate into a specialized cell type. With the right cocktail of molecules and growth factors, the researchers directed iPSCs into becoming heart cells.

These heart cells actually beat in the laboratory dish, and still bear the genetic and molecular features of the individuals from which they were derived.

Frazer and team conducted a genome-wide analysis of these patient-derived heart cells. They determined that NKX2-5 can bind approximately 38,000 sites in the genome. Of those, 1,941 genetic variants affected NKX2-5 binding. The researchers investigated the role of those variants in heart gene function and heart-related traits. One of the genetic variants was associated with the SCN5A gene, which encodes the main channel through which sodium is transported in heart cells.

Since related individuals tend to share similar genetic variants, the team was able to validate their findings by analyzing the same variants in multiple samples.

People typically need a large number of samples to detect the effects of common DNA variants, so we were surprised that we were able to identify with high confidence these effects on NKX2-5 binding at so many sites across the genome with just few people, said first author Paola Benaglio, PhD, a postdoctoral researcher in Frazers lab.

Yet, she said, this finding may just be the tip of the iceberg.

There are probably a lot more genetic variants in the genome involved with NKX2-5 as well as with other important cardiac transcription factors, Frazer said. We identified almost 2,000 in this study, but thats probably only a fraction of what really exists because we were only looking at seven people in a single family and only at one transcription factor. There are probably many more variants in gene regulation sites across the entire population.

Not only does the team plan to further investigate cardiovascular genetics, but they also have their sights set on other organ systems.

We are now expanding this same model system to look at many different transcription factors, across different tissue types, such as pancreas and retina epithelia, and scaling it up to include more families, Benaglio said.

Reference

Benalgio, P. et al. (2019)Allele-specific NKX2-5 binding underlies multiple genetic associations with human electrocardiographic traits. Nature Genetics. DOI:https://doi.org/10.1038/s41588-019-0499-3

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Read more from the original source:
Skin-Derived Heart Cells Help Uncover the Genetic Foundations of Cardiac Function - Technology Networks

Novel Cell Sorting and Separation Market: Focus on Acoustophoresis, Buoyancy-activated, Dielectrophoresis, Magnetophoretics, Microfluidics,…

NEW YORK, Oct. 1, 2019 /PRNewswire/ --

INTRODUCTIONAdvances in the fields of cell biology and regenerative medicine have led to the development of various cell-based therapies, which, developers claim, possess the potential to treat a variety of clinical conditions. In 2018, it was reported that there were more than 1,000 clinical trials of such therapies, being conducted across the globe by over 900 industry players. Moreover, the total investment in the aforementioned clinical research efforts was estimated to be around USD 13 billion. Given the recent breakthroughs in clinical testing and the discovery of a variety of diagnostic biomarkers, the isolation of one or multiple cell types from a heterogenous population has not only become simpler, but also an integral part of modern clinical R&D. The applications of cell separation technologies are vast, starting from basic research to biological therapy development and manufacturing. However, conventional cell sorting techniques, including adherence-based sorting, membrane filtration-based sorting, and fluorescence- and magnetic-based sorting, are limited by exorbitant operational costs, time-consuming procedures, and the need for complex biochemical labels. As a result, the use of such techniques has, so far, been restricted in the more niche and emerging application areas.

Read the full report: https://www.reportlinker.com/p05817189/?utm_source=PRN

Over the years, extensive research in the field of flow cytometry has enabled the development of a variety of novel technologies that are capable of efficiently isolating cells from tissue samples and / or heterogenous cell populations. In fact, since 2014, over 3,000 patents were reported to have been filed / granted related to such advanced techniques, indicating the rapid pace of innovation in this domain. Developers of the aforementioned technologies claim that these new techniques offer numerous benefits, including fast and precise cell sorting, reduced sample requirement, improved portability, reduced risk to cell viability, and negligible need for expensive biochemical / magnetic labels. Moreover, they have been shown to be compatible for use across a myriad of applications, including research studies (bacteriology, immunology, stem cell research, and viral titering and infectivity), biomedical diagnostics (circulating tumor cell detection, in vitro fertilization, and non-invasive prenatal diagnosis), biological therapy-related process operations (bio-banking, drug discovery, sample preparation, single cell sequencing, and tumor cell characterization), and cell-based therapeutics (B- or T-cell immunotherapies). Consequently, these techniques have captured the interest of several stakeholders in the biopharmaceutical industry. It is also worth highlighting that stakeholders in this domain have received significant support from both private and public investors.

SCOPE OF THE REPORTThe 'Novel Cell Sorting and Separation Market: Focus on Acoustophoresis, Buoyancy-activated, Dielectrophoresis, Magnetophoretics, Microfluidics, Optoelectronics, Photoacoustics, Traceless Affinity and Other Technologies, 2019-2030' report features an extensive study of the current landscape and future outlook of the growing market for novel cell sorting and separation technologies (beyond conventional methods). The study presents detailed analyses of cell sorters, cell isolation kits, and affiliated consumables and reagents, that are based on the aforementioned technologies.

Amongst other elements, the report features: A detailed assessment of the current market landscape, featuring a comprehensive list of over 220 innovative cell sorters, cell isolation kits, and affiliated consumables and reagents, along with information on their respective specifications (such as size, weight, cell flow rate, cell sort rate, cell analysis rate, cell purity and viability, process time, and operating temperature and pressure), cell sorting technology (acoustophoresis, buoyancy-activated, dielectrophoresis, magnetophoretics, microfluidics, optoelectronics, photoacoustics, traceless affinity, and others), type of cell (animal cells, cancer cells, immune cells, microbial cells, red blood cells / platelets, stem cells, and others), cell separation approach (positive selection, negative selection and depletion), basis for separation (cell morphology and physiology, cell size and density, surface biomarkers, surface charge and adhesion, and others), and end use / application (research studies, biomedical diagnostics, biological therapy-related process operations, and cell-based therapeutics). An insightful company competitiveness analysis, taking into consideration the supplier power (based on size of employee base and experience in this segment of the industry) and portfolio-related parameters, such as number of products offered, number of target cells, end use(s) / application(s), and key product specification(s). Comprehensive profiles of key industry players (shortlisted on the basis of company competitiveness analysis scores) that are currently offering novel cell sorters / consumables and cell isolation kits, featuring an overview of the company, its financial information (if available), and a detailed description of its proprietary product(s). Each profile also includes a list of recent developments, highlighting the key achievements, partnership activity, and the likely strategies that may be adopted by these players to fuel growth in the foreseen future. An in-depth analysis of the patents that have been filed / granted related to novel cell sorting and separation technologies, since 2014. It highlights the key trends associated with these patents, across patent type, regional applicability, CPC classification, emerging focus areas, leading industry players (in terms of number of patents filed / granted), and current intellectual property-related benchmarks and valuation. A detailed publication analysis of more than 200 peer-reviewed, scientific articles that have been published since 2014, highlighting the research focus within the industry. It also highlights the key trends observed across the publications, including information on innovative technologies, potential application areas, target disease indications, type of cell, and analysis based on various relevant parameters, such as year of publication, and most popular journals (in terms of number of articles published in the given time period) within this domain. An analysis of the partnerships that have been established in the domain, in the period 2014-Q1 2019, covering R&D collaborations, licensing agreements, distribution agreements, mergers / acquisitions, asset purchase agreements, product development agreements, product utilization agreements, and other relevant deals. An analysis of the investments made at various stages of development, such as seed financing, venture capital financing, debt financing, grants / awards, capital raised from IPOs and subsequent offerings, by companies that are engaged in this field. An analysis to estimate the likely demand for novel cell sorting products and solutions across key application areas, including research studies, clinical diagnostics, cell-based therapeutics, and other applications, in different global regions for the period 2019-2030.

One of the key objectives of the report was to understand the primary growth drivers and estimate the future size of the novel cell sorting and separation market. Based on multiple parameters, such as potential application areas, likely adoption rate and expected pricing, we have provided an informed estimate on the likely evolution of the market, over the period 2019-2030. In addition, we have provided the likely distribution of the current and forecasted opportunity across [A] potential application areas (research studies, clinical diagnostics, cell-based therapeutics, and other applications), [B] end users (academic institutes, clinical testing labs, hospitals, and commercial organizations), [C] type of offering (cell sorters, and consumables and isolation kits), [D] cell sorting technology (buoyancy-activated, magnetophoretics, microfluidics, optoelectronics, and other advanced technologies), [E] type of cell (adult stem cells, CAR-T cells, circulating fetal cells, circulating tumor cells, dendritic cells, embryonic stem cells, insect cells, induced pluripotent stem cells, microbial cells, sperm cells, TCR cells, TILs, and tumor cells / cancer cells), [F] size of cell (< 5 m, 5-10 m, 10-15 m, 15-25 m, and > 25 m), and [G] key geographical regions (North America, Europe and Asia-Pacific). In order to account for the uncertainties associated with some of the key parameters and to add robustness to our model, we have provided three market forecast scenarios portraying the conservative, base and optimistic tracks of the industry's evolution.

The opinions and insights presented in this study were also influenced by discussions conducted with multiple stakeholders in this domain. The report features detailed transcripts of interviews held with the following individuals (in alphabetical order of organization names): John Younger (Co-founder and Chief Technology Officer, Akadeum Life Sciences) Sean Hart (Chief Executive Officer and Chief Scientific Officer, LumaCyte) Soohee Cho (Product Manager, Namocell)

All actual figures have been sourced and analyzed from publicly available information forums and primary research discussions. Financial figures mentioned in this report are in USD, unless otherwise specified.

RESEARCH METHODOLOGYThe data presented in this report has been gathered via secondary and primary research. For all our projects, we conduct interviews with experts in the area (academia, industry and other associations) to solicit their opinions on emerging trends in the market. This is primarily useful for us to draw out our own opinion on how the market will evolve across different regions and technology segments. Where possible, the available data has been checked for accuracy from multiple sources of information.

The secondary sources of information include Annual reports Investor presentations SEC filings Industry databases News releases from company websites Government policy documents Industry analysts' views

While the focus has been on forecasting the market till 2030, the report also provides our independent view on various non-commercial trends emerging in the industry. This opinion is solely based on our knowledge, research and understanding of the relevant market gathered from various secondary and primary sources of information.

CHAPTER OUTLINESChapter 2 is an executive summary of the insights captured in our research. It offers a high-level view on the likely evolution of novel cell sorting and separation market in the mid-long term.

Chapter 3 is an introductory chapter that presents a general overview of cell sorting and separation, including a brief history of development, and information on the basic components and principle of operation of a cell sorter. Further, it features a detailed discussion on conventional cell separation techniques and the various challenges associated with their use across different application areas. The chapter also includes detailed sections on the novel cell sorting and separation technologies (such as acoustophoresis, buoyancy-activated, dielectrophoresis, magnetophoretics, microfluidics, optoelectronics, photoacoustics, traceless affinity, and others), highlighting their advantages and challenges. Further, it features a discussion on the key growth drivers and roadblocks related to modern cell sorting technologies, as well as upcoming trends that the field is expected to witness in the coming years.

Chapter 4 includes information on more than 220 innovative cell sorters, cell isolation kits, and affiliated consumables and reagents, along with details on their respective specifications (such as size, weight, cell flow rate, cell sort rate, cell analysis rate, cell purity and viability, process time, and operating temperature and pressure), cell sorting technology (acoustophoresis, buoyancy-activated, dielectrophoresis, magnetophoretics, microfluidics, optoelectronics, photoacoustics, traceless affinity, and others), type of cell (animal cells, cancer cells, microbial cells, red blood cells / platelets, stem cells, and others), cell separation approach (positive selection, negative selection and depletion), basis for separation (cell morphology and physiology, cell size and density, surface biomarkers, surface charge and adhesion, and others), and end use / application (research studies, biomedical diagnostics, biological therapy-related process operations, and cell-based therapeutics). The chapter also highlights the contributions of various companies engaged in this domain, presenting detailed analyses, based on their year of establishment, size of employee base, geographical presence, and type of offering.

Chapter 5 features an insightful competitiveness analysis of the companies engaged in novel cell sorting and separation domain, based on various parameters, such as number of products offered, number of target cells, end use(s) / application(s), and key product specification(s). In the chapter, stakeholder entities have been plotted on a 2X2 matrix, featuring a company's Supplier Power (based on size of employee base and experience in this segment of the industry) and Company Competitiveness as the two axes.

Chapter 6 includes elaborate profiles of key industry players (shortlisted on the basis of company competitiveness analysis scores) that are offering novel cell sorters / sorting technologies; each profile features an overview of the company, its financial information (if available), and a detailed description of its proprietary product(s). Each profile also includes a list of recent developments, highlighting the key achievements, partnership activity, and the likely strategies that may be adopted by these players to fuel growth, in the foreseen future.

Chapter 7 includes detailed profiles of key industry players (shortlisted on the basis of company competitiveness analysis scores) that are offering novel consumables and cell isolation kits; each profile features an overview of the company, its financial information (if available), and a detailed description of its proprietary product(s). Each profile also includes a list of recent developments, highlighting the key achievements, partnership activity, and the likely strategies that may be adopted by these players to fuel growth, in the foreseen future.

Chapter 8 provides an in-depth patent analysis to provide an overview of how the industry is evolving from the R&D perspective. For this analysis, we considered those patents that have been filed / granted related to novel cell sorting and separation technologies, since 2014. The analysis also highlights the key trends associated with these patents, across patent type, regional applicability, CPC classification, emerging focus areas, leading industry players (in terms of number of patents filed / granted), and current intellectual property-related benchmarks and valuation.

Chapter 9 presents a detailed publication analysis of more than 200 peer-reviewed, scientific articles that have been published since 2014, highlighting the research focus within the industry. It also highlights the key trends observed across the publications, including information on innovative technologies, potential application areas, target disease indications, type of cell, and analyses based on various relevant parameters, such as year of publication, and most popular journals (in terms of number of articles published in the given time period) within this domain.

Chapter 10 features an elaborate analysis and discussion of partnerships / collaborations that have been established in this domain in the period 2014-Q1 2019. It includes a brief description of various types of partnership models (such as R&D collaborations, licensing agreements, distribution agreements, mergers / acquisitions, asset purchase agreements, product development agreements, product utilization agreements, and others) that have been employed by stakeholders within this domain. It also consists of a schematic representation showcasing the players that have established the maximum number of alliances related to novel cell sorting and separation technologies. Furthermore, we have provided a world map representation of all the deals inked in this field, highlighting those that have been established within and across different continents.

Chapter 11 provides information on funding instances and investments that have been made within the novel cell sorting and separation domain. The chapter includes details on various types of investments (such as seed financing, venture capital financing, debt financing, grants, capital raised from IPOs and subsequent offerings) received by companies in the period 2014-Q1 2019, highlighting the growing interest of the venture capital community and other strategic investors in this domain.

Chapter 12 provides an overview of the demand for novel cell sorting products and solutions across key application areas, including research studies, clinical diagnostics, cell-based therapeutics, and other applications, in the contemporary market. In order to estimate the aforementioned demand, we considered the number of ongoing / completed research studies, diagnostic tests and cell-based therapies under development across different geographies. We also estimated the likely adoption of such products and solutions across key application areas, over the period 2019-2030.

Chapter 13 features a comprehensive market forecast, highlighting the future potential of novel cell sorting and separation market till 2030, based on multiple parameters, such as potential application areas, likely adoption rate and expected pricing. In addition, we estimated the likely distribution of the current and forecasted opportunity across [A] potential application areas (research studies, clinical diagnostics, cell-based therapeutics, and other applications), [B] end users (academic institutes, clinical testing labs, hospitals, and commercial organizations), [C] type of offering (cell sorters, and consumables and isolation kits), [D] cell sorting technology (buoyancy-activated, magnetophoretics, microfluidics, optoelectronics, and other advanced technologies), [E] type of cell (adult stem cells, CAR-T cells, circulating fetal cells, circulating tumor cells, dendritic cells, embryonic stem cells, insect cells, induced pluripotent stem cells, microbial cells, sperm cells, TCR cells, TILs, and tumor cells / cancer cells), [F] size of cell (< 5 m, 5-10 m, 10-15 m, 15-25 m, and > 25 m), and [G] key geographical regions (North America, Europe and Asia-Pacific). We adopted a combination of top-down and bottom up approaches, backed by robust data and credible inputs from primary research, to estimate the likely size of the market, both in terms of value (USD billion) and volume (number of products).

Chapter 14 is a collection of executive insights of the discussions that were held with various key stakeholders in this market. The chapter provides a brief overview of the companies and details of interviews held with John Younger (Co-founder and Chief Technology Officer, Akadeum Life Sciences), Sean Hart (Chief Executive Officer and Chief Scientific Officer, LumaCyte), and Soohee Cho (Product Manager, Namocell).

Chapter 15 is a summary of the overall report. In this chapter, we have provided a list of key takeaways from the report, and expressed our independent opinion related to the research and analysis described in the previous chapters.

Chapter 16 is an appendix, which provides tabulated data and numbers for all the figures provided in the report.

Chapter 17 is an appendix, which contains the list of companies and organizations mentioned in the report.

Read the full report: https://www.reportlinker.com/p05817189/?utm_source=PRN

About Reportlinker ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________ Contact Clare: clare@reportlinker.com US: (339)-368-6001 Intl: +1 339-368-6001

SOURCE Reportlinker

http://www.reportlinker.com

Read this article:
Novel Cell Sorting and Separation Market: Focus on Acoustophoresis, Buoyancy-activated, Dielectrophoresis, Magnetophoretics, Microfluidics,...

Regenerative medicine today: Are diabetes and vascular disease treatments ready for the clinic? – Science Magazine

Regenerative medicinewhich involves regrowing damaged or dysfunctional cells, tissues, and organs, in order to treat and cure human diseaseholds great promise. Discoveries in stem cell research and tissue engineering as well as advances in regulatory and industry support have brought regenerative medicine treatments closer than ever to the clinic. Two areas showing particular potential are diabetes and vascular disease. Whether acquired or congenital, diabetes afflicts millions of people worldwide and presents a tremendous burden both in terms of physical deterioration and loss of economic capacity. Current treatments rely mainly on lifetime injections of exogenous hormones and palliative treatments with pharmaceuticals, neither of which can address the lack of properly functioning beta cells in the pancreas. Similarly, vascular diseases are among the leading causes of mortality and morbidity. The ability to generate new, clinical-grade vascular tissue is critical to the long-term treatment of complications arising from ischemic injury, stroke, aneurisms, retinopathy, and other acute and chronic vascular conditions; significant progress has been made in using stem cell sources to produce this tissue. But what is needed to get such potentially transformative treatments over the finish line?

During this webinar, the speakers will:

This webinar will last for approximately 60 minutes.

University of Miami Miller School of MedicineMiami, FL

Juan Domnguez-Bendala, Ph.D., is director of the Stem Cell Development for Translational Research and research associate professor of surgery at the Diabetes Research Institute (DRI), University of Miami Miller School of Medicine. Before joining the DRI faculty, he worked at the Roslin Institute (Scotland, United Kingdom) under the supervision of one of the creators of Dolly the sheep. He obtained his Ph.D. there and acquired considerable experience in embryonic stem cell research and state-of-the-art genetic engineering techniques. Working with other DRI faculty and international collaborators, Dr. Domnguez-Bendala is currently involved in several projects that focus on the use of stem cells to obtain pancreatic islets that could be safely and efficiently transplanted into patients with type 1 diabetes. He is also working on new methods for the endogenous regeneration of pancreatic beta cells.

Mayo ClinicRochester, MN

As deputy director of Translation for the Center for Regenerative Medicine, medical director of the Advanced Product Incubator, and director of the Van Cleve Cardiac Regenerative Medicine Program at the Mayo Clinic in Rochester, Minnesota, Dr. Behfar has worked to establish off-the-shelf good manufacturing practice (GMP)-grade regenerative technologies. Over the last two decades, his program has engaged in evaluating cell-based technologies for restoration of skeletal and cardiac muscle function. During this time, he initiated clinical trials in heart failure along with Dr. Andre Terzic, using stem cells to restore cardiac function and treating over 400 patients. Through that experience, it was discovered that exosome secretion was the primary driver of the regenerative action of stem cells. More specifically, an exosome product was purified (termed purified exosome product, or PEP) from our regenerative platform that revealed massive biopotency in activating regeneration through mitogenic, antioxidant, anti-inflammatory and provasculogenic influence. This discovery now serves as the basis for many preclinical and clinical efforts at Mayo Clinic.

Science/AAASWashington, D.C.

Dr. Oberst did her undergraduate training at the University of Maryland, College Park, and her Ph.D. in Tumor Biology at Georgetown University, Washington D.C. She combined her interests in science and writing by pursuing an M.A. in Journalism from the Philip Merrill College of Journalism at the University of Maryland, College Park. Dr. Oberst joined Science/AAAS in 2016 as the Assistant Editor for Custom Publishing. Before then she worked at Nature magazine, the Howard Hughes Medical Institute, The Endocrine Society, and the National Institutes of Mental Health.

Read more here:
Regenerative medicine today: Are diabetes and vascular disease treatments ready for the clinic? - Science Magazine

Dr Naveen Pemmaraju Outlines the Symptoms of Myelofibrosis – AJMC.com Managed Markets Network

Myelofibrosis has a very heterogeneous disease presentation, which means patients with it can present to the clinic with a number of different symptoms, explained Naveen Pemmaraju, MD, associate professor in the Department of Leukemia at MD Anderson Cancer Center.

Myelofibrosis has a very heterogeneous disease presentation, which means patients with it can present to the clinic with a number of different symptoms, explained Naveen Pemmaraju, MD, associate professor in the Department of Leukemia at MD Anderson Cancer Center.

Transcript

What does the myelofibrosis patient population look like? How do they present with symptoms?

So, patients with myelofibrosis (MF) in 2019, we know a lot more than we did 10 years ago. The most important aspect of the patient presenting into the clinic is to think about the performance status and MPN, or myeloproliferative neoplasm symptom burden. Its a heterogeneous disease presentation, which means that patients with patients with MF can present in a number of different ways.

On the lower-risk end, by the International prognostics scoring system, patients may actually be more like a chronic disease presentation, such as essential thrombocytosis and polycythemia vera. And the life expectancy may be measured in decades. But as you move into the intermediate to high risk, patients with MF can actually present quite ill to the clinic, large organomegaly hepatosplenomegaly, cachexia, weight loss, night sweats, fevers, and they can either present very sick or become ill quite quickly just from the disease itself. So, you have a wide range of patients with myelofibrosis.

The second aspect is the way were scoring the prognosis continues to exponentially increase. Theres so many scoring systems out there, but the bottom line is trying to capture the patients clinical presentation, including their age, their cytogenetics, and their molecular markers to try to come up with whos low risk, intermediate-high risk, who would benefit from a stem cell transplant, who would not, and then trying to figure out clinical trials and targeted therapies.

See the original post:
Dr Naveen Pemmaraju Outlines the Symptoms of Myelofibrosis - AJMC.com Managed Markets Network

Businesses Sponsor Another Season Of Movies In The Park Square – Osprey Observer

Local residents are invited to do something a little different with their Saturday nights this fall. Businesses in FishHawk Ranchs Park Square are coordinating the Movies in the Park series for the second year with fun new attractions for the whole family.

The series, which kicked off last month with Aladdin, is coordinated by Eric Soncrant, owner of the Art Monkey Emporium.

Our goal is [to] provide fun things for families to do in Park Square, said Soncrant. We want Park Square to be active with our communitys families.

Voting is currently underway for the first October movie, which will take place on October 5. The options are The Secret Life of Pets 2, Avengers: End Game, Pokemon: Detective Pikachu and Shazam.

Our first movie had bear hugs where kids could make their own stuffed animals, and theyll be back for more events throughout the year, said Soncrant. We are working on some other surprises as well.

On October 19, Park Square will welcome local band Smakk for a concert, and two other concerts will take place during the series with a Winterfest event scheduled for November 30. All movies are free to everyone and will be shown on a 19-foot inflatable movie screen starting at dusk.

Come out at 6 p.m. to visit with our sponsors and order dinner, drinks and dessert from Park Square businesses, said Soncrant. We couldnt do this without the generosity of all of our sponsors, so please support them so we can keep building these events and provide more free fun in Park Square.

The events featured sponsor is the Tony Baroni Team at Keller Williams Realty and the starring sponsors are Watts Dental and Motion Chirotherapy. Other sponsors include Certified Roofers, Tampa Printer, LadyBird Academy FishHawk, Davenports Daily Delights, Briggs Family Insurance Services Amerifirst, Brandon Sports and Aquatic Center, Foundation Title and Trust, TECO Energy, Brandon Stem Cell Clinic and the Law Office of Kari L. McDonald.

For more information, call the Art Money Emporium at 315-9803. Visit Art Monkeys Facebook page to learn more and vote on upcoming movies. Park Square is located at 16132 Churchview Dr. in Lithia.

The rest is here:
Businesses Sponsor Another Season Of Movies In The Park Square - Osprey Observer

Stem Cell Manufacturing | Research Report Overview By Top Key Players, Opportunities, Key Drivers, Application and Regional Outlook To 2027 -…

(MENAFN - iCrowdNewsWire) Oct 4, 2019

Stem Cell Manufacturing MarketReport Provides Future Development Possibilities By Key Players , Key Drivers, Competitive Analysis, Scope, Key Challenges Analysis. The Reports Conjointly Elaborate The Expansion Rate Of The Industry Supported The Highest CAGR And Global Analysis. This Report Providing An In Depth And Top To Bottom Analysis By Market Size, Growth Forecast By Applications, Sales, Size, Types And Competitors For The Creating Segment And The Developing Section Among The Stem Cell Manufacturing Market. Market Expansion Worldwide With Top Players Future Business Scope And Investment Analysis Report

Get the inside scope of the Sample report @https://www.theinsightpartners.com/sample/TIPBT00002553/

MARKET INTRODUCTION

Stem cell manufacturing discusses the required technologies that enable the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic environment as therapeutics, while concurrently achieving control, reproducibility, automation, validation, and safety of the process and the product.

The market of stem cell manufacturing is anticipated to grow with a significant rate in the coming years, owing to the factors such as, growing public-private investments and funding in stem cell-based research, rising public awareness regarding the therapeutic potency of stem cell products, development of advanced genomic analysis techniques for quality control during stem cell manufacturing, technological advancements in stem cell manufacturing and preservation, and evolving regulatory frameworks for stem cell therapeutics.

The report also includes the profiles of key stem cell manufacturing companies along with their SWOT analysis and market strategies. In addition, the report focuses on leading industry players with information such as company profiles, products and services offered, financial information of last 3 years, key development in past five years.

Key Competitors In Market are Merck KGaA, Thermo Fisher Scientific, Inc., BD, Bio-Rad Laboratories, Inc., Miltenyi Biotec, Pharmicell Co., Ltd, Takara Bio Inc., STEMCELL Technologies Inc., Osiris Therapeutics, Inc., and NuVasive, Inc. among others.

TOC points of Market Report:

Market size & shares

Market trends and dynamics

Market Drivers and Opportunities

Competitive landscape

Supply and demand

Technological inventions in industry

Marketing Channel Development Trend

Market Positioning

Pricing Strategy

Brand Strategy

Target Client

MARKET SCOPE

The "Global Stem cell manufacturing Market Analysis to 2027" is a specialized and in-depth study of the biotechnology industry with a focus on the global market trend. The report aims to provide an overview of global stem cell manufacturing market with detailed market segmentation by of product, application and end user. The global stem cell manufacturing market is expected to witness high growth during the forecast period. The report provides key statistics on the market status of the leading market players and offers key trends and opportunities in the market. On the other hand, increasing market focus on embryonic stem cells and induced pluripotent stem cells are expected to offer new growth platforms to conduct advanced research and developments for the players in the global stem cell manufacturing market.

Market segmentation:

By Product (Stem Cell Lines, Instruments, Culture Media, And Consumables)

Application (Research Applications, Clinical Applications, and Cell and Tissue Banking)

End User (Pharmaceutical and Biotechnology Companies, Hospitals and Surgical Centers, Academic Institutes, Research Laboratories, and Cros, Cell Banks, and Tissue Banks)

By Geography North America, Europe, Asia-Pacific (APAC), Middle East and Africa (MEA) and South & Central America. And 13 countries globally along with current trend and opportunities prevailing in the region.

The target audience for the report on the market

Manufactures

Market analysts

Senior executives

Business development managers

Technologists

R & D staff

Distributors

Investors

Governments

Equity research firms

Consultants

Click to buy full report with all description:- https://www.theinsightpartners.com/buy/TIPBT00002553/

MENAFN0410201900703403ID1099086064

Excerpt from:
Stem Cell Manufacturing | Research Report Overview By Top Key Players, Opportunities, Key Drivers, Application and Regional Outlook To 2027 -...

NIH funding bolsters rare diseases research collaborations | National Institutes of Health – National Institutes of Health

News Release

Thursday, October 3, 2019

New grants aimed at better understanding diseases, moving potential treatments closer to the clinic.

Of an estimated 6,500 to 7,000 known rare diseases, only a fraction maybe 5% have U.S. Food and Drug Administration-approved treatments. To increase that percentage, the National Institutes of Health has awarded approximately $31 million in grants in fiscal year 2019 to 20 teams including five new groups -- of scientists, clinicians, patients, families and patient advocates to study a wide range of rare diseases. An additional $7 million has been awarded to a separate data coordinating center to support these research efforts.

The grants, which support consortia that together form the Rare Diseases Clinical Research Network (RDCRN), are aimed at fostering collaborative research among scientists to better understand how rare diseases progress and to develop improved approaches for diagnosis and treatment. This is the fourth five-year funding cycle for the RDCRN, which is supported by multiple NIH Institutes and Centers and led by NIHs National Center for Advancing Translational Sciences (NCATS) and the NCATS Office of Rare Diseases Research.

Individually, most rare diseases affect only a few hundred to several thousand people; collectively, rare diseases affect more than 25 million Americans. Many rare diseases are life-threatening and about half of those affected are children.

Because rare diseases affect a small number of people, they can be extremely challenging to study. Scientists often lack basic information about a rare diseases symptoms and biology, and the ways a disease can affect people over time. Research funding can be scarce.

Over the years, RDCRN scientists have partnered with patients and advocates to develop new insights into the causes and progression of and potential therapies for rare diseases that were simply not receiving the attention they deserved, said NCATS Director Christopher Austin, M.D. Their pioneering work in discerning underlying clinical differences and commonalities in hundreds of rare conditions has already changed the rare disease landscape in immeasurable ways.

Established by Congress under the Rare Diseases Act in 2002, the RDCRN has included more than 350 sites in the United States and more than 50 in 22 other countries. To date, they have encompassed 237 research protocols and included more than 56,000 participants in studies ranging from immune system disorders and rare cancers to heart and lung disorders, brain development diseases and more.

Each RDCRN member is a consortium of clinical and scientific experts and patient groups who study a group of rare diseases. Each consortium must study three or more diseases, partner with rare disease patient advocacy groups, provide rare disease research training to investigators and perform natural history studies that chart the course and progression of diseases. The primary focus of the RDCRN is clinical research, and the network does not generally support clinical care outside of research activities.

A key component of the RDCRN is the Data Management and Coordinating Center (DMCC), which was awarded to the Cincinnati Childrens Hospital Medical Center. The DMCC manages shared resources and data from the RDCRN research studies. The DMCC emphasizes the standardization of data, increased data sharing and broad dissemination of research findings.

The RDCRN consortia have a rich history of accomplishment. For example, Lysosomal Disease Network scientists led crucial natural history studies and gene editing research that provided a foundation for first-in-human genome editing clinical studies for a rare metabolic disease. Primary Immune Deficiency Treatment Consortium members showed the advantage of early stem cell transplants for patients with a rare immune system disorder, severe combined immunodeficiency, and the groups work contributed to advances in gene therapy-based treatments for the disease.

New groups, new emphasis

The five new consortia are:

According to ORDR director Anne Pariser, M.D., an important focus of the latest group of awards is on clinical trial readiness.

Some of the RDCRN research groups have been working together for 10 or 15 years and have gathered important data and developed a good understanding of the diseases they study, in addition to new potential therapies. Were emphasizing the need to be prepared to conduct clinical trials, Pariser said.

Were trying to get the drug candidates closer to be ready for clinical testing and de-risk the processes that lead to a successful clinical trial, said RDCRN program officer Tiina Urv, Ph.D. To get funding to conduct trials, they need to have strong natural history studies that show how the disease progresses, ways to measure outcomes of treatments and biomarker studies that provide indicators of how a drug is working in patients.

Collaboration is key. Consortia can involve numerous partner research teams from different sites, along with rare disease patients and advocacy groups. Scientists from different institutions come together to pool patients, data, experience and resources.

Scientists cant work alone. They wouldnt have enough patients, and they wouldnt have adequate resources and information about the diseases, Urv said. Patients and families help scientists decide what is important to study, test and treat.

To read more about the five new consortia, 15 continuing consortia and the DMCC, see: https://ncats.nih.gov/rdcrn/consortia

In addition to NCATS, other NIH funding support comes from the National Institute of Allergy and Infectious Diseases, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institute of Neurological Disorders and Stroke, the National Heart, Lung, and Blood Institute, the National Institute of Arthritis and Musculoskeletal and Skin Diseases, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of Dental and Craniofacial Research, the National Institute of Mental Health and the Office of Dietary Supplements.

About the National Center for Advancing Translational Sciences (NCATS):NCATS conducts and supports research on the science and operation of translation the process by which interventions to improve health are developed and implemented to allow more treatments to get to more patients more quickly. For more information about how NCATS is improving health through smarter science, visithttps://ncats.nih.gov.

About the National Institutes of Health (NIH):NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIHTurning Discovery Into Health

###

Visit link:
NIH funding bolsters rare diseases research collaborations | National Institutes of Health - National Institutes of Health

Stem Cell Therapy Market worth USD 4759.27 Million By 2024 – Global Market News 24

Zion Market Research published a new 110+ pages industry researchStem Cell Therapy Market by Type (Allogenic SCs and Autologous SCs) by Therapeutic Application (Musculoskeletal Disorders, Wounds & Injuries, Cardiovascular Diseases, Gastrointestinal Diseases, Immune System Diseases, and Others), by Cell Source (Adipose Tissue-Derived Mesenchymal SCs, Bone Marrow-Derived Mesenchymal SCs, Embryonic SCs, and Other Sources), and by End User (Hospitals and ASCs): Global Industry Perspective, Comprehensive Analysis and Forecast, 2017 2024.

TheGlobal Stem Cell Therapy Market Set For Rapid Growth, To Reach Around USD 4759.27 Million By 2024complete outline is crystal clear penned down in the GlobalStem Cell Therapy Marketresearch report such that not only an unskilled individual but also a professional can easily extrapolate the entire Stem Cell Therapy Market within a few seconds.The research study covers research data which makes the document a handy resource for managers, analysts, industry experts, and other key people get ready-to-access and self-analyzed study along with TOC, graphs and tables to help understand the market size, share, trends, growth drivers and market opportunities and challenges.

Request Brochureof Stem Cell Therapy Market Report for more Industry Insights@www.zionmarketresearch.com/requestbrochure/stem-cell-therapy-market

The Stem Cell Therapy Market research report covers major industry player profiles that include:

This report employs the SWOT analysis technique for the assessment of the development of the most remarkable market players. It additionally considers the latest upgrades while assessing the development of leading market players. Moreover, in the global Stem Cell Therapy Market report, the key product categories of the global Stem Cell Therapy Market are included. The report similarly demonstrates supportive data related to the dominant players in the market, for instance, product offerings, revenue, segmentation, and business synopsis. The global Stem Cell Therapy Market is as well analyzed on the basis of numerous regions.

To Know More About Our Unique Offerings for Stem Cell Therapy Market, Request a Sample from here @www.zionmarketresearch.com/sample/stem-cell-therapy-market

Global Stem Cell Therapy Market: Regional Analysis

To understand the competitive landscape in the market, an analysis of Porters five forces model for the market has also been included. The study encompasses a market attractiveness analysis, wherein all segments are benchmarked based on their market size, growth rate, and general attractiveness. This report is prepared using data sourced from in-house databases, secondary and primary research team of industry experts.

Browse Press Release@www.zionmarketresearch.com/news/stem-cell-therapy-market

The report answers important questions that companies may have when operating in the Global Stem Cell Therapy Market. Some of the questions are given below:

What is the current CAGR of the Global Stem Cell Therapy Market?

Which product is expected to show the highest market growth?

Which application is projected to gain a lions share of the Global Stem Cell Therapy Market?

Which region is foretold to create the most number of opportunities in the Global Stem Cell Therapy Market?

Will there be any changes in market competition during the forecast period?

Which are the top players currently operating in the global market?

How will the market situation change in the coming years?

What are the common business tactics adopted by players?

What is the growth outlook of the Global Stem Cell Therapy Market?

Also, Research Report Examines:

Thanks for reading this article; you can also get individual chapter wise section or region wise report versions like North America, Europe or Asia.

Sorry! The Author has not filled his profile.

Link:
Stem Cell Therapy Market worth USD 4759.27 Million By 2024 - Global Market News 24