Abeona Therapeutics Announces Publication of Positive Long-Term Data from Phase 1/2a Clinical Trial Evaluating EB-101 Gene Therapy for Recessive…

Sustained wound healing and favorable safety profile observed at three years post-treatment

Durable wound healing in large, disabling, chronic wounds

EB-101 associated with long-term molecular expression of Type VII collagen protein

NEW YORK and CLEVELAND, Oct. 15, 2019 (GLOBE NEWSWIRE) -- Abeona Therapeutics Inc. (ABEO), a fully-integrated leader in gene and cell therapy, today announced positive long term efficacy and safety results from its Phase 1/2a clinical trial evaluating EB-101, a gene-corrected cell therapy for recessive dystrophic epidermolysis bullosa (RDEB). Treatment with EB-101 resulted in sustained wound healing with a favorable safety profile at three years post-treatment. These long-term follow-up data in seven RDEB participants with 42 treated wounds were published in the peer-reviewed journal JCI Insight. Full text of the publication can be accessed here: https://insight.jci.org/articles/view/130554

These results bolster our belief that EB-101 is a safe and effective gene-corrected cell therapy capable of providing durable, long-lasting healing for the most disabling wounds in patients with RDEB, said Joo Siffert, M.D., Chief Executive Officer of Abeona. These results are particularly significant, as EB-101 treatment led to wound healing even in the most challenging to treat large and painful chronic wounds. Given the average RDEB chronic wound size is over 118 cm2, it is essential that potential new treatments are capable of addressing these wounds to improve quality of life. We thank our collaborators at Stanford and the patients who volunteered to participate in this study and look forward to building upon this strong clinical foundation with the initiation of the pivotal Phase 3 VIITALTM Study evaluating EB-101 for the treatment of RDEB.

Key Study findings include:

Wounds selected for treatment were present for a mean of 11.2 years (range 3-20 years)

Three years after treatment with EB-101, a majority of RDEB patients had sustained wound healing, with 80% (16/20) of wounds achieving 50% healing, and 70% (14/20) achieving 75%

Two years after treatment, only 1 of 6 untreated (17%), prospectively selected control wounds, had 50% healing

50% or greater wound healing was associated with no pain (0/16) and no itch (0/16) at treated sites three years post-treatment, compared with presence of pain in 53% (20/38) and itch in 61% (23/38) of wound sites at baseline

EB-101 was associated with long-term molecular expression of type VII collagen protein, which plays an important role in anchoring the dermal and epidermal layers of the skin

No serious treatment-related adverse events were observed during the three-year observation period

No replication competent virus was present at any time point

Researchers from Stanford University School of Medicine conducted the Phase 1/2a single-center, open-label clinical trial to evaluate the long-term wound healing and safety of EB-101 in seven adult patients with severe generalized RDEB and to assess patient-reported outcomes following treatment. Chronic open wounds, defined as wounds present and unhealed for at least 12 weeks, with a total area of at least 100 cm2, were required for enrollment. In the trial, gene-corrected EB-101 skin grafts (35 cm2 each) were transplanted onto six wound sites in each of the seven adult participants (n= 42 sites total) and wounds selected for treatment had been present for a mean of 11.2 years (range:3-20 years). Participants were followed for two to five years after transplantation of EB-101 and received standard of care therapies including iron supplementation and esophageal dilations during the study.

Story continues

Abeona is currently continuing preparations for the pivotal Phase 3 VIITALTM Study evaluating EB-101 for the treatment of RDEB pending the anticipated receipt of Chemical, Manufacturing and Controls (CMC) clearance from the U.S. Food and Drug Administration expected in Q4 2019.

About EB-101EB-101 is an investigational, autologous, gene-corrected cell therapy poised to enter late-stage development for the treatment of recessive dystrophic epidermolysis bullosa (RDEB), a rare connective tissue disorder without an approved therapy. Treatment with EB-101 involves using gene transfer to deliver COL7A1 genes into a patients own skin cells (keratinocytes) and transplanting them back to the patient to enable normal type VII collagen expression and facilitate wound healing. In the U.S., Abeona holds Regenerative Medicine Advanced Therapy, Breakthrough Therapy, and Rare Pediatric designations for EB-101 and Orphan Drug designation in both the U.S. and EU.

About Recessive Dystrophic Epidermolysis BullosaRecessive dystrophic epidermolysis bullosa, or RDEB, is a rare connective tissue disorder characterized by severe skin wounds that cause pain and can lead to systemic complications impacting the length and quality of life. People with RDEB have a defect in the COL7A1 gene, leaving them unable to produce functioning type VII collagen which is necessary to anchor the dermal and epidermal layers of the skin. There is currently no approved treatment for RDEB.

About Abeona TherapeuticsAbeona Therapeutics Inc. is a clinical-stage biopharmaceutical company developing gene and cell therapies for serious diseases. The Companys clinical programs include EB-101, its autologous, gene-corrected cell therapy for recessive dystrophic epidermolysis bullosa, as well as ABO-102 and ABO-101, novel AAV9-based gene therapies for Sanfilippo syndrome types A and B (MPS IIIA and MPS IIIB), respectively. The Companys portfolio of AAV9-based gene therapies also features ABO-202 and ABO-201 for CLN1 disease and CLN3 disease, respectively. Its preclinical assets include ABO-401, which uses the novel AIM AAV vector platform to address all mutations of cystic fibrosis. Abeona has received numerous regulatory designations from the FDA and EMA for its pipeline candidates and is the only company with Regenerative Medicine Advanced Therapy designation for two candidates (EB-101 and ABO-102). For more information, visit http://www.abeonatherapeutics.com.

Forward Looking StatementThis press release contains certain statements that are forward-looking within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and that involve risks and uncertainties. These statements include statements about the timing for CMC clearance for the VIITAL trial and the Companys beliefs relating thereto, the Companys ability to provide additional transport stability data points in response to the FDA clinical hold letter and the timing thereof, the Companys belief that completion of its CMC work and the durable safety and efficacy data will ultimately be critical to support a future Biologics License Application, the ability of its management team to lead the Company and deliver on key strategies, the market opportunities for the Companys products and product candidates, and the Companys goals and objectives. We have attempted to identify forward-looking statements by such terminology as may, will, anticipate, believe, estimate, expect, intend, and similar expressions (as well as other words or expressions referencing future events, conditions or circumstances), which constitute and are intended to identify forward-looking statements. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, numerous risks and uncertainties, including but not limited to continued interest in our rare disease portfolio, our ability to enroll patients in clinical trials, the impact of competition, the ability to secure licenses for any technology that may be necessary to commercialize our products, the ability to achieve or obtain necessary regulatory approvals, the risk of whether or when the FDA will lift the clinical hold respecting the Companys planned Phase 3 clinical trial for EB-101, the impact of changes in the financial markets and global economic conditions, risks associated with data analysis and reporting, and other risks as maybe detailed from time to time in the Companys Annual Reports on Form 10-K and quarterly reports on Form 10-Q and other reports filed by the Company with the Securities and Exchange Commission. The Company undertakes no obligation to revise the forward-looking statements or to update them to reflect events or circumstances occurring after the date of this presentation, whether as a result of new information, future developments or otherwise, except as required by the federal securities laws.

Investor Contact:Sofia WarnerSenior Director, Investor RelationsAbeona Therapeutics+1 (646) 813-4710swarner@abeonatherapeutics.com

Media Contact:Scott SantiamoDirector, Corporate CommunicationsAbeona Therapeutics+1 (718) 344-5843ssantiamo@abeonatherapeutics.com

Go here to see the original:
Abeona Therapeutics Announces Publication of Positive Long-Term Data from Phase 1/2a Clinical Trial Evaluating EB-101 Gene Therapy for Recessive...

Joint Pain Injections Market By New Business Developments, And Top Companies | Allergan Plc, Pfizer, Sanofi – Healthcare News

New York City, NY: Oct 16, 2019 Published via (Wired Release) MarketResearch. Biz has a big history of serving detail research reports that help to create business opportunities through competitive study. One of the report we provide is Joint Pain Injections market analyzing market latest trends, identifying your rivals, validating opportunities, examining threats to your company, and changing your go-to-market and positioning strategy respectively.

The report on the Global Joint Pain Injections Market 2019 has been portrayed by experienced and knowledgeable market analysts and researchers. It is a phenomenal compilation of vital studies that explore the competitive landscape, segmentation, geographical exploration, and revenue, production, and consumption growth of the Global Joint Pain Injections market. Players can use the accurate market facts and figures and statistical analysis provided in the report to understand the current and upcoming growth of the Joint Pain Injections market. The Global Joint Pain Injections market size was XX Mn US$ and it is expected to reach XX Mn US$ by the end of 2028, with a CAGR of XX% during 2019-2028. The report includes CAGR, market shares, sales, Joint Pain Injections gross margin, value, volume, and other crucial market figures that give an exact view of the growth of the Joint Pain Injections market 2019.

Advanced primary and secondary research techniques and tools have been used by our Joint Pain Injections market analysts to compile this report. We use research sources and tools that are highly reliable and trustworthy. The Joint Pain Injections market report provides effective guidelines and recommendations for leading players to secure a position of strength in the worldwide market. Joint Pain Injections Market Emerging players can also use this research study to plan business strategies and get informed about upcoming challenges in the market. We provide an extensive competitive analysis that includes detailed company profiling of key players, a study on the Joint Pain Injections nature and characteristics of the competitors landscape, and other important studies.

For Detail Insight Go With This Free Sample Report Enabled With Respective Tables and Figures:https://marketresearch.biz/report/joint-pain-injections-market/request-sample

Major Players of the Global Joint Pain Injections Market 2019

Chugai Pharmaceutical Co Ltd, Sanofi, Zimmer Biomet Holdings Inc, Flexion Therapeutics Inc, Seikagaku Corporation, Anika Therapeutics Inc, Bioventus LLC, Ferring B.V., Allergan Plc. and Pfizer Inc

Market Segmentation:

Segmentation by Injection type: Corticosteroid Injections, Hyaluronic Acid Injections, Others (include, Platelet-rich plasma (PRP), Placental tissue matrix (PTM), etc.). Segmentation by joint type: Knee & Ankle, Hip Joint, Shoulder & Elbow, Facet Joints of the Spine, Others (include, Ball and socket, etc.). Segmentation by end-user: Hospital Pharmacies, Retail Pharmacies, Online Pharmacies

Global Joint Pain Injections Market: Regions and Countries

The research study comprises key results and discoveries of our monitoring and analysis of the Joint Pain Injections market 2019. We have provided crucial information points, which include expansions, divestments, new product launches, Joint Pain Injections partnerships, mergers, acquisitions, and other strategic initiatives taken by Joint Pain Injections market players. The report also serves price trends for region-wise markets and analysis of crucial market events on a regional as well as worldwide scale. Our analysis will guide you to take vital decisions in the Joint Pain Injections market relating to procurement, inventory, pricing, and production. We assist you to give a tough competition to your rivals by providing latest, actionable, real-time, and quick market information.

The report will help you to get how and whether or not the worldwide Joint Pain Injections market 2019 has become customer-centric. It offers details insights into customer needs and preferences for players to expand their brand value, connect better with their clients, and improve their sales in the Joint Pain Injections market globally. As part of our customer insights, we focus on product positioning, customers perception of Joint Pain Injections market competition, customer segmentation, customer needs, consumer buying behavior, and target customers.

Have Any Query Or Specific Requirement? Feel Free To Ask Our Industry Experts: https://marketresearch.biz/report/joint-pain-injections-market/#inquiry

Our competitor profiling comprises validation of distribution channels and products and services offered by and Joint Pain Injections financial performance of companies operating in the market 2019. We also give Porters Five Forces, PESTLE, and SWOT analysis to identify the competitive threat and study other aspects of the Joint Pain Injections market. The report provides strategic recommendations, competitor benchmarking for performance measurement, and study of partnership, merger, and acquisition targets and Joint Pain Injections industry best practices. It also offered an analysis of profitability and cost across the Joint Pain Injections industry value chain.

Core Objective of Joint Pain Injections Market:

Every firm in the Joint Pain Injections market has objectives but this market research report focus on the crucial objectives, so you can analysis about competition, future market, new products, and informative data that can raise your sales volume exponentially.

Size of the Joint Pain Injections market and growth rate factors.

Important changes in the future Joint Pain Injections Market.

Top worldwide competitors of the Market.

Scope and product outlook of Joint Pain Injections Market 2019-2028.

Developing regions with potential growth in the future.

Tough challenges and risk faced in market.

Global Joint Pain Injections top manufacturers profile and sales statistics.

Joint Pain Injections Market Dynamics 2019-2028.

Browse Full Summary of Joint Pain Injections Market Enabled with Respective Tables and Figures at: https://marketresearch.biz/report/joint-pain-injections-market/

Customize report of Global Joint Pain Injections Market as per client requirement also available. Please connect with our sales team (inquiry@marketresearch.biz), who will ensure that you get a report that suits your needs.

Contact Us:

Mr. Benni Johnson

Prudour Pvt. Ltd.

420 Lexington Avenue,

Suite 300 New York City, NY 10170,

United States

Tel: + 1-347-826-1876

Website: https://marketresearch.biz/

Go here to read the rest:
Joint Pain Injections Market By New Business Developments, And Top Companies | Allergan Plc, Pfizer, Sanofi - Healthcare News

Stem Cell Therapy Industry 2019 Global Market Size, Trends, Revenue, Growth Prospects, Key Companies and Forecast by 2023 – Markets Gazette

Bone marrow transplant is the most widely used stem-cell therapy, but some therapies derived from umbilical cord blood are also in use. Research is underway to develop various sources for stem cells, and to apply stem-cell treatments for neurodegenerative diseases and conditions, diabetes, heart disease, and other conditions.

With the ability of scientists to isolate and culture embryonic stem cells, and with scientists growing ability to create stem cells using somatic cell nuclear transfer and techniques to create induced pluripotent stem cells, controversy has crept in, both related to abortion politics and to human cloning. Additionally, efforts to market treatments based on transplant of stored umbilical cord blood have been controversial.

Click to Access Sample Pages @ https://www.orianresearch.com/request-sample/609805

Scope of the Report:

This report studies the Stem Cell Therapy market status and outlook of Global and major regions, from angles of players, countries, product types and end industries; this report analyzes the top players in global market, and splits the Stem Cell Therapy market by product type and applications/end industries.

USA is a huge market, and the total sum of the industry is more than 24 Million US dollars in 2014. At the same time, this industry continuously increases, with the development of global economy.

According to the research, the most potential market in the main countries of stem cell therapy industry is China, determined by the rising level of medical care. Besides, South America, Middle East should also be focused by the investors. They are the potential consumers of stem cell therapy.

Complete report on Stem Cell Therapy Market report spread across 139 pages, profiling 18 companies and supported with tables and figures.

Inquire more or share questions if any before the purchase on this report @ https://www.orianresearch.com/enquiry-before-buying/609805

Development policies and plans are discussed as well as manufacturing processes and cost structures are also analyzed. This report also states import/export consumption, supply and demand Figures, cost, price, revenue and gross margins. The report focuses on global major leading Stem Cell Therapy Industry players providing information such as company profiles, product picture and specification, capacity, production, price, cost, revenue and contact information. Upstream raw materials and equipment and downstream demand analysis is also carried out. The Stem Cell Therapy industry development trends and marketing channels are

Analysis of Stem Cell Therapy Industry Key Manufacturers:

Order a Copy of Global Stem Cell Therapy Market Report @ https://www.orianresearch.com/checkout/609805

This report studies the top producers and consumers, focuses on product capacity, production, value, consumption, market share and growth opportunity in these key regions, covering:

Market Segment by Type, covers

Market Segment by Applications, can be divided into

Table of Contents

There are 15 Chapters to deeply display the global Banknote-Printing Machine market.

Chapter 1, to describe Banknote-Printing Machine Introduction, product scope, market overview, market opportunities, market risk, market driving force

Chapter 2, to analyze the top manufacturers of Banknote-Printing Machine, with sales, revenue, and price of Banknote-Printing Machine, in 2016 and 2017;

Chapter 3, to display the competitive situation among the top manufacturers, with sales, revenue and market share in 2016 and 2017;

Chapter 4, to show the global market by regions, with sales, revenue and market share of Banknote-Printing Machine, for each region, from 2013 to 2018;

Chapter 5, 6, 7, 8 and 9, to analyze the market by countries, by type, by application and by manufacturers, with sales, revenue and market share by key countries in these regions;

Chapter 10 and 11, to show the market by type and application, with sales market share and growth rate by type, application, from 2013 to 2018;

Chapter 12, Banknote-Printing Machine market forecast, by regions, type and application, with sales and revenue, from 2018 to 2023;

Chapter 13, 14 and 15, to describe Banknote-Printing Machine sales channel, distributors, traders, dealers, Research Findings and Conclusion, appendix and data source.

Customization Service of the Report:Orian Research provides customization of reports as per your need. This report can be personalized to meet your requirements. Get in touch with our sales team, who will guarantee you to get a report that suits your necessities.

About Us:

Orian Research is one of the most comprehensive collections of market intelligence reports on the World Wide Web. Our reports repository boasts of over 500000+ industry and country research reports from over 100 top publishers. We continuously update our repository so as to provide our clients easy access to the worlds most complete and current database of expert insights on global industries, companies, and products. We also specialize in custom research in situations where our syndicate research offerings do not meet the specific requirements of our esteemed clients.

See original here:
Stem Cell Therapy Industry 2019 Global Market Size, Trends, Revenue, Growth Prospects, Key Companies and Forecast by 2023 - Markets Gazette

Synthetic presentation of noncanonical Wnt5a motif promotes mechanosensing-dependent differentiation of stem cells and regeneration – Science Advances

INTRODUCTION

Human mesenchymal stem cells (hMSCs) have become increasingly popular as a cell source for repairing bone and other musculoskeletal tissues due to their availability, accessibility, and multipotency (1). The lineage commitment of hMSCs has been shown to be regulated by various signals, including mechanical stimuli, soluble factors, and cellextracellular matrix (ECM) interactions, in their natural niche microenvironment (2). Meanwhile, the delayed reunion of fractured bone remains a major clinical complication of surgery despite advances in operative techniques. The direct injection of stem cells into bone defects generally leads to limited stem cell grafting and differentiation due to the lack of necessary biochemical cues in the defect sites (3). Developing osteoinductive biomaterial scaffolds by incorporating developmentally relevant signaling cues to support and guide the differentiation of implanted stem cells in situ will enhance the clinical outcomes of stem cell therapies (4). For instance, scaffolds have been decorated with a wide range of bioactive motifs, including growth factors, bioactive peptides, and small molecules, to boost their osteoinductivity (5, 6). In recent years, biomimetic/bioactive peptides have become increasingly popular as inductive motifs for the biofunctionalization of biomaterials due to their major advantages, including their ease of immobilization onto various biomaterials via bioconjugation, better stability than proteins, and low cost (7). We previously demonstrated that the decoration of a hydrogel scaffold with an N-cadherin mimetic peptide promoted the chondrogenesis or the osteogenesis of hMSCs by emulating the enhanced intercellular interactions (8, 9). Therefore, there is an acute demand for previously unidentified osteoinductive ligands, which can potentially be identified by examining developmentally relevant proteinaceous cues (10).

Wnt signaling pathways have been reported to be essential to many developmental events, especially osteogenesis and bone formation (11, 12). The canonical Wnt signaling pathways generally involve the preservation and nuclear translocation of -catenin, which further triggers the activation of downstream genes to initiate osteogenic differentiation (13). On the other hand, the -cateninindependent noncanonical Wnt signaling cascade is activated by noncanonical Wnt ligands, such as Wnt5a (14). Wnt5a activation has been reported to contribute to the regeneration of multiple tissues, including the articular cartilage, the colonic crypt, and the liver, via paracrine or autocrine regulation (1517). During in vitro osteogenesis, embryonic stem cells express Wnt5a early on, rather than canonical Wnt3a, and cells expressing Wnt5a or treated with exogenous Wnt5a show a substantially enhanced osteogenic yield (18). In trabecular bone and bone marrow, Wnt5a is mainly expressed and secreted by osteoblastic niche cells, including precursor cells, osteoblasts, osteoclasts, and osteocytes (19). Wnt5a has been reported to preserve the proliferation and differentiation potential of stem cells in bone marrow and induce osteoblast maturation (20). Wnt5a signaling is a substantial constituent of bone morphogenetic protein 2mediated osteoblastogenesis (21). Collectively, these findings indicate that Wnt5a is an essential cue for the development of bones.

Wnt5a signaling is mediated through the Disheveled (Dvl) segment polarity proteindependent mechanism, which activates the small guanosine triphosphatase (GTPase) RhoA and its effector ROCKs (Rho-associated protein kinases) (22). RhoA-ROCK signaling plays a major regulatory role in the mechanotransduction signaling of cells by promoting focal adhesion formation (16), stress fiber assembly (23), and actomyosin contractility, and all these cellular events have been shown to enhance the osteogenesis of mesenchymal stem cells (MSCs). However, to the best of our knowledge, no prior studies have capitalized on the osteoinductive potential of noncanonical Wnt ligands to functionalize biomaterials or investigated the efficacy of such a developmental biologyinspired strategy to enhance the osteogenesis of MSCs and associated bone formation.

Recently, a Wnt5a mimetic hexapeptide, Foxy5 (formyl-Met-Asp-Gly-Cys-Glu-Leu), was shown to trigger cytosolic calcium signaling by activating -cateninindependent noncanonical Wnt signaling (24), and Foxy5 has recently been tested in a phase 1 clinical trial for treating cancer (www.clinicalTrials.gov; NCT02020291) (25). Here, we hypothesized that the functionalization of biomaterials with Foxy5 peptide can promote the mechanosensing and osteogenesis of hMSCs by activating noncanonical Wnt signaling (Fig. 1A). Our findings showed that this synthetic presentation of Wnt5a mimetic ligand activated noncanonical Wnt signaling, elevated the intracellular calcium, and promoted the mechanotransduction and osteogenesis of hMSCs, resulting in the enhanced bone regeneration in vivo. These findings emphasize the significance of the biofunctionalization of biomaterial scaffolds with developmentally guiding cues to enhance in situ tissue regeneration via grafted stem cells (26, 27).

(A) Porous, Foxy5 + RGD peptideconjugated MeHA hydrogels were developed by conjugating cysteine-containing functional peptides to MeHA molecules. (B) The porous scaffolds were used to copresent the adhesive ligand (RGD) and noncanonical Wnt5aactivating ligand (Foxy5) to synergistically induce the osteogenic lineage commitment of stem cells both in vitro and in vivo. (C) Rat MSC (rMSC)seeded hydrogels were used to fill calvarial defects for regeneration. (D) Micrographs of the 3D porous hydrogels with 200-m pores. The inset shows the microstructure of the MeHA porous hydrogel; scale bar, 50 m. (E) The Young modulus of the DTT-crosslinked MeHA hydrogels was verified using the Mach-1 mechanical tester. (F) The live/dead staining of the hMSCs seeded in the porous MeHA hydrogels showed the uniform distribution of the cells in the hydrogels. (G) Viable cell metabolic activity in the RGD, Foxy5 + RGD, and Scram + RGD hydrogels on day 7 of culture was characterized by alamarBlue assay. Data are shown as the means SD (n = 3).

To determine the effect of the Wnt5a mimetic peptide (Foxy5) on cellular behaviors, we grafted methacrylated hyaluronic acid (MeHA) with Foxy5 peptide (MDGECL, 1 mM) and arginylglycylaspartic acid (RGD) peptide (GCGYGRGDSPG, 1 mM) via Michael addition between the cysteine thiols of the peptide and the methacrylate groups of the MeHA (Fig. 1A and fig. S1). The peptide-functionalized MeHA (degree of methacryloyl substitution or methacrylation degree = 100 or 30%) (fig. S1) was then cross-linked to fabricate a three-dimensional (3D) porous hydrogel scaffold or a 2D hydrogel substrate for subsequent experiments (Foxy5 + RGD) (Fig. 1, B to D). Control hydrogels were fabricated with either RGD peptide alone (RGD) or the combination of scramble-sequenced Foxy5 peptide and RGD (GEMDCL, 1 mM, Scram + RGD). The RGD peptide was included in all groups to promote cell adhesion. The average Young moduli of the hydrogels from the RGD, Foxy5 + RGD, and Scram + RGD groups were determined to be 11.26, 10.82, and 10.96 kPa, respectively, indicating similar hydrogel stiffness in all groups (Fig. 1E). The storage moduli and loss moduli acquired from the frequency sweep analysis were not significantly different among the RGD, Foxy5 + RGD, and Scram + RGD groups (fig. S2A). Similarly, the surface roughness and the stiffness of 2D ultraviolet (UV)cross-linked hydrogels are not significantly different (fig. S2B). Our previous experience shows that the photocrosslinked MeHA hydrogels are typically stiffer than the dithiothreitol (DTT)cross-linked MeHA hydrogels given the same macromer content and methacrylation degree. This can be due to the semirigid nature of hyaluronic acid (HA) backbone, which may hinder the efficient crosslinking of HA-grafted methacryloyl groups by bifunctional crosslinkers (e.g., DTT). Therefore, by using the MeHA with the lower (30%) methacrylation degree to fabricate 2D hydrogels, the average Young moduli of the photocrosslinked hydrogels with 667 s of UV radiation were not significantly different from those of the DTTcross-linked MeHA hydrogels (100% methacrylation degree) (fig. S2, C and D). We believe that the results acquired from the 2D hydrogel substrates are representative and comparable with the data obtained from the 3D macroporous hydrogels. The 3D porous hydrogels used in this work have large pore sizes of around a few hundred micrometers, which are significantly larger than that of cells. The cells seeded in these 3D hydrogels are essentially still residing on top of the curved surfaces of the pores and are interacting with a more 2D-like rather than 3D microenvironment, and this is similar to the lining of osteoblasts on the surface of porous trabecular bone.

To evaluate the cytocompatibility of the peptide-functionalized hydrogels, we seeded hMSCs into the porous hydrogel constructs and allowed them to adhere for 4 hours, followed by further culture in basal growth media for another 7 days. Live/dead staining after 7 days of culture revealed that the majority of the seeded stem cells were viable and uniformly adhered to the RGD, Foxy5 + RGD, and Scram + RGD porous hydrogels (Fig. 1F). The alamarBlue assay showed that the seeded cells in all groups maintained consistent and robust metabolic activity in the porous hydrogel scaffolds for 7 days (Fig. 1G). These results indicate that the conjugated bioactive Foxy5 peptide was noncytotoxic, consistent with previous reports (24).

To further investigate the molecular events mediated by the noncanonical Wnt5a mimetic Foxy5 peptide, we used immunofluorescence staining to examine the expression levels of integrin V, integrin 1, phosphorylated focal adhesion kinase (p-FAK), and ROCK2 (fig. S3), which are essential elements for mediating mechanotransduction and have been reported to promote the osteogenic differentiation of stem cells. The staining intensities of integrin V and integrin 1 in the hMSCs cultured in the Foxy5 + RGD group appeared slightly higher but were not statistically different compared with that in the RGD and Scram + RGD groups (fig. S3, A and B). The staining intensity of p-FAK in the Foxy5 + RGD group was 92 and 33% higher than those in the RGD and Scram + RGD groups, respectively (fig. S3C). Consistent with the elevated expression of focal adhesion complex components, the Foxy5 + RGD group also showed ROCK2 staining intensity 135 and 34% higher than those in the RGD and Scram + RGD groups, respectively, after 7 days of osteogenic culture (fig. S3D). This enhanced expression of p-FAK and ROCK2 supports our speculation that the Foxy5 peptide presented by the biomaterial facilitates the mechanotransduction of the cells by activating noncanonical Wnt signaling to up-regulate the expression of focal adhesion complex molecules (p-FAK) and mechanotransduction signaling molecules (ROCK2).

We next explored the molecular signaling events by which the presentation of Foxy5 peptide via the hydrogel scaffold increased the mechanotransduction and consequent osteogenic lineage commitment of hMSCs (Fig. 2A). Noncanonical Wnt5a signaling has been shown to regulate the signaling of the Rho family of GTPases, such as RhoA, and studies have shown that RhoA is essential for actin cytoskeletal stability and associated actomyosin contractility via its downstream effectors, including ROCKs (22). Therefore, to examine the contribution of RhoA signaling and actomyosin contractility to the osteogenic effect of Foxy5 peptide presentation, we added Y-27632, an inhibitor of ROCKs, and blebbistatin, an inhibitor of nonmuscle myosin II (NMII), to the media in the Foxy5 + RGD group during the 7 days of osteogenic culture. The inhibition of ROCK with Y-27632 completely abolished the up-regulated osteogenic gene expression in the Foxy5 + RGD hydrogels. Blocking NMII activity also led to significantly down-regulated expression of the osteogenic genes alkaline phosphatase (ALP), type I collagen, and osteopontin (OPN) compared with the corresponding levels in the RGD group (fig. S4). Specifically, after 7 days of osteogenic culture, the expression levels of type I collagen, ALP, RUNX2, and OPN in the Y-27632Foxy5 + RGD group were down-regulated by 80.20, 97.96, 71.10, and 97.70%, respectively, compared with those in the Foxy5 + RGD group. The expression levels of type I collagen, ALP, RUNX2, and OPN in the blebbistatinFoxy5 + RGD group were down-regulated by 86.23, 98.54, 24.24, and 87.48%, respectively, compared with those in the Foxy5 + RGD group. These findings suggest that the pro-osteogenic effect of the Foxy5 peptide presentation can be attributed to the activation of RhoA signaling and associated actomyosin contractility.

(A) Schematic illustration of the seeding of hMSCs on the Foxy5/Scram + RGD peptidefunctionalized 2D hydrogel substrate. (B) Gene expression level of the RhoA signaling cascade (Wnt5a coreceptor Dvl2, RhoA, ROCK), downstream mechano-effector (NMII), and major focal adhesion adaptor protein (vinculin) in hMSCs in 3D porous hydrogels conjugated with RGD peptide alone (RGD), Foxy5 and RGD peptide (Foxy5 + RGD), or scrambled Foxy5 peptide and RGD peptide (Scram + RGD), respectively, after 7 days of osteogenic culture (n = 9). (C) Representative micrographs of fluorescence staining for F-actin (red), nuclei (blue), and RhoA (green) in hMSCs cultured on the 2D RGD, Foxy5 + RGD, and Scram + RGD hydrogels. Quantification showed a significantly higher RhoA staining intensity in the Foxy5 + RGD group than in the RGD and Scram + RGD groups (n = 20). a.u., arbitrary units. (D) Western blot bands and quantification of the expression level of mechano-responsive kinases ROCK2 and p-FAK (phosphorylated at the Ser722 sites) in each group (RGD, Foxy5 + RGD, Scram + RGD). (E) Representative merged fluorescence and bright-field micrographs of intracellular calcium in hMSCs cultured on RGD, Foxy5 + RGD, and Scram + RGD 2D hydrogels (stained with Fura-AM). (F) Quantification showed a significantly higher intracellular calcium level in the Foxy5 + RGD group than in the RGD and Scram + RGD groups. Scale bars, 50 m. Data are shown as the means SD (n = 9). Statistical significance: *P < 0.05, **P < 0.01, and ***P < 0.001.

We further investigated the mechanism underlying the enhanced RhoA signaling and actomyosin contractility via Foxy5 peptidemediated noncanonical Wnt signaling. Gene expression analyses revealed the up-regulated expression of Dvl2, RhoA, ROCK2, vinculin, and NMII in the presence of conjugated Foxy5 peptides after 7 days of osteogenic culture (Fig. 2B). Specifically, the Foxy5 + RGD group showed Dvl2, RhoA, ROCK2, vinculin, and NMII expression levels that were increased by 43, 27, 65, 72, and 24%, respectively, compared with those in the RGD group. Meanwhile, the expression of ROCK1, which was speculated to contribute to F-actin instability, was down-regulated by 25% in the Foxy5 + RGD group compared with that in the RGD group. Furthermore, the expression of the canonical Wnt signalingrelated genes (Wnt3a, Frizzled 3, LRP5, LRP6, and -catenin) was significantly up-regulated in the Foxy5 + RGD group compared with that in the control groups (fig. S5), and this is consistent with a previous report showing that the activated noncanonical Wnt signaling up-regulated the expression of canonical Wnt signaling factors during osteoblastogenesis (28). The expression of these mechanotransduction-related genes and canonical Wnt signalingrelated genes in the Scram + RGD group was not significantly different from that in the RGD group (Fig. 2B and fig. S5). We further quantified the expression of RhoA, ROCK2, and p-FAK based on immunofluorescence staining and Western blot analysis. The Foxy5 + RGD hydrogels showed RhoA staining intensity 92 and 134% higher than that in the RGD group and Scram + RGD groups, respectively, after 7 days of osteogenic culture (Fig. 2C). Further analysis showed a significantly increased cytoplasmic distribution of RhoA, consistent with the more prominent F-actin cytoskeleton, in cells cultured on hydrogels conjugated with Foxy5 peptide compared with those cultured on the controls. The Western blotting results showed that the expression levels of ROCK2 and p-FAK, two key mechanotransduction signaling molecules, were significantly up-regulated in the Foxy5 + RGD hydrogels (Fig. 2D) by 83 and 75% compared with those in the RGD hydrogels, respectively, and by 39 and 35% compared with those in the Scram + RGD hydrogels, respectively (Fig. 2E). Together, these data suggest that Foxy5 peptide immobilized on hydrogels is capable of initiating noncanonical Wnt signaling via the up-regulation of Dvl2, which further activates downstream RhoA signaling, leading to enhanced F-actin stability, actomyosin contractility, and cell adhesion structure development. Furthermore, the canonical Wnt signaling has been shown to promote the osteogenesis of hMSCs directly through the up-regulation of -catenin and downstream osteogenic genes including RUNX2, Dlx5, and Osterix (29). The immobilized Foxy5 peptide may indirectly facilitate the canonical Wnt signaling via the up-regulation of Frizzled3, LRP5/6, and -catenin. More thorough examinations on the effect of Wnt5a mimetic ligands on both canonical and noncanonical Wnt signaling are certainly worthy of further investigations in the future.

Our data reveal that the Foxy5 peptidemediated activation of noncanonical Wnt signaling is essential for regulating the expression and localization of critical signaling molecules involved in cell adhesion and mechanotransduction, including YAP, ROCK2, and p-FAK, which are essential for the osteogenesis of MSCs. The subtypes of ROCK, ROCK1, and ROCK2 have been shown to play distinct roles in regulating cytoskeletal tension. ROCK1 is a nonsecreted protein that destabilizes the actin cytoskeleton by regulating myosin light chain phosphorylation and peripheral actomyosin contraction, whereas ROCK2 is required for stabilizing the actin cytoskeleton by regulating cofilin phosphorylation (30). Previous studies have revealed that ROCK2 activity is effectively activated upon Wnt5a ligation to its receptors (22). We observed the up-regulation of ROCK2 expression and the down-regulation of ROCK1 expression, along with a significant increase in the focal adhesion levels in the MSCs presented with hydrogel-conjugated Foxy5 peptide. Therefore, the elevated ROCK2 activity results in enhanced cytoskeletal stability and more robust mechanotransduction signaling, both of which contribute to enhanced osteogenesis. When we inhibited ROCK activity in the Y-27632Foxy5 + RGD group using 10 M Y-27632, the expression of osteogenic genes was greatly reduced, thereby further confirming the important role of ROCK2 in Foxy5 peptideinduced osteogenesis.

Apart from RhoA activation, noncanonical Wnt5a activation has also been reported to lead to the mobilization of free intracellular calcium, which regulates multiple cellular behaviors, including the motility and differentiation of MSCs (31). To test the effect of Foxy5 peptide on the intracellular calcium level, we subjected hMSCs to Furaacetoxymethyl (AM) staining after being seeded on 2D peptide-conjugated MeHA hydrogels and cultured in osteogenic media. After 7 days of osteogenic culture, Fura-AM staining showed that cells on Foxy5 + RGD hydrogels exhibited 122 and 127% higher fluorescence intensity than those on RGD and Scram + RGD hydrogels, respectively (Fig. 2F). This finding suggests that the conjugated Foxy5 peptide is capable of activating noncanonical Wnt signaling to elevate the intracellular calcium level of MSCs, promoting osteogenesis.

Calcium-dependent noncanonical Wnt signaling pathways are known to participate in osteoblast differentiation, maturation, and bone formation (31, 32). Intracellular Ca2+ and calcium-binding/activatable signaling factors (calmodulin, calmodulin kinase II, calcineurin, etc.) are critical to the growth and differentiation of osteoblasts (33). Our biochemistry analysis and histological staining further showed that the amount of bone ECM production by hMSCs was significantly enhanced together with the intracellular calcium concentration in the hydrogels conjugated with the Foxy5 peptide, and this indicates that the elevated intracellular calcium level contributes to the enhanced osteogenesis of MSCs seeded in Foxy5 peptidefunctionalized hydrogels.

The guided lineage commitment of stem cells is a critical prerequisite for successful and efficient tissue regeneration, which is known to be modulated by the concerted actions of multiple microenvironmental signals (34). We next examined whether the hydrogels functionalized with the Wnt5a mimetic peptide could promote the osteogenic differentiation of hMSCs. We cultured hMSCs on 2D hydrogel substrates that were functionalized with RGD alone (RGD) or RGD with either Foxy5 peptide (Foxy5 + RGD) or scrambled Foxy5 peptide (Scram + RGD) in osteogenic induction media. Supplementation of the culture media with nonconjugated soluble Foxy5 peptide was previously reported to affect the chemotaxis of cancer cells (35). To compare the effects of the freely diffusing soluble form and the hydrogel-immobilized form of Foxy5 peptide on hMSCs, we included two control groups in which the osteogenic medium was supplemented with soluble, free, nonconjugated Foxy5 or scrambled Foxy5 peptide (free Foxy5 and free Scram) in the same amounts as those present in the conjugated hydrogels (Foxy5 + RGD and Scram + RGD).

Previous studies have demonstrated the critical role of YAP/TAZ-mediated mechanotransduction signaling in osteogenesis (36). We performed immunofluorescence staining for YAP and RUNX2 after 7 days of osteogenic culture. The hMSCs cultured on Foxy5 + RGD hydrogels consistently exhibited more YAP nuclear localization than those in all other control groups on 2D hydrogels (Fig. 3A). Specifically, quantification of the average nuclear-to-cytoplasmic staining intensity ratio (N/C ratio) of YAP in at least 20 representative cells from each group showed that the YAP nuclear localization in the Foxy5 + RGD group was 134 and 88% higher than that in the RGD and Scram + RGD groups, respectively (Fig. 3, A and D). Moreover, the addition of soluble Foxy5 peptide in the culture media (free Foxy5) failed to significantly increase the YAP nuclear localization as much as the hydrogel-conjugated Foxy5 peptide (only a 53% increase compared with the RGD group), whereas the free, soluble scrambled peptide had no significant effect (Fig. 3, A and C). This finding indicates that the hydrogel-conjugated Foxy5 peptide has significantly higher bioactivity than the unconjugated Wnt5a peptide directly added to the media in terms of promoting mechanosensing and osteogenesis. The immobilization of this ligand on the porous scaffold greatly enhanced the local effective concentration in the microenvironment of hMSCs, thereby facilitating the ligation of Wnt5a ligands to the receptors on the cell membrane. In contrast, the direct supplementation of the ligand resulted in its dilution in the entire volume of the media and therefore reduced the local effective ligand concentration. We also speculated that the immobilized ligands are unlikely to be internalized by cells upon ligation to membranous receptors, whereas the free ligands can be quickly internalized by cells and lose their activation function (37).

(A) Fluorescence micrographs of hMSCs stained for F-actin (red), nuclei (blue), and the mechanosensing marker YAP (green) or the osteogenic marker RUNX2 (green) (B) and ALP (blue in bright-field) (C), cultured on the RGD, Foxy5 + RGD, and Scram + RGD hydrogels. (D) Analysis of the nuclear localization of YAP determined by the nuclear-to-cytoplasmic fluorescence intensity ratio (N/C ratio) (n = 20) and (E) RUNX2 nuclear localization (n = 20) and (F) ALP expression of representative cells cultured on 2D hydrogels in the different experimental groups (n = 9). Scale bars represent 50 m in the fluorescence micrographs and 200 m in the bright-field images. Data are shown as the means SD. Statistical significance: *P < 0.05, **P < 0.01, and ***P < 0.001 significant difference.

To examine the effect of YAP nuclear accumulation on the osteogenesis of hMSCs, we analyzed the early osteogenic lineage commitment by immunofluorescence staining for RUNX2, an essential osteogenic transcription factor, after 7 days of osteoinductive culture. Cells in the Foxy5 + RGD group showed RUNX2 nuclear-to-cytoplasmic ratio 97 and 116% greater than that in the RGD and Scram + RGD groups, consistent with the YAP nuclear localization results (Fig. 3, B and E). In contrast, the expression levels of RUNX2 in the free Foxy5 and free Scram groups were only slightly higher than those in the RGD group. Furthermore, staining for ALP, another key osteogenesis marker, showed that the average percentage of ALP-positive cells in the Foxy5 + RGD group was 55, 52, 94, and 77% higher than that in the RGD, Scram + RGD, free Foxy5, and free Scram groups, respectively (Fig. 3, C and F). These findings indicate that hydrogel-conjugated Foxy5 peptide promotes the mechanosensing-dependent osteogenic differentiation of hMSCs and that the immobilization of Foxy5 peptide on hydrogels is more effective than the continuous supplementation of media with soluble Foxy5 peptide to enhance the osteogenesis of hMSCs. To further examine the effectiveness of the immobilized Foxy5 peptide on the substrates with different stiffness, we analyzed the mechanosensing and the early osteogenic lineage commitment by immunofluorescence staining for YAP and RUNX2 on the 2D MeHA hydrogels with varying stiffness of 2, 5, and 14 kPa (38). Cells in the Foxy5 + RGD group showed significantly higher YAP and RUNX2 nuclear-to-cytoplasmic ratio than that in the RGD and Scram + RGD groups at each of the selected hydrogel stiffness levels (fig. S6). This indicates that the biomaterial-conjugated Foxy5 peptide promotes osteogenesis in a wide range of substrate stiffness, and we found that the pro-osteogenic effect of the conjugated Foxy5 peptide is more significant at low substrate stiffness (2 kPa) (fig. S6).

We next examined the effect of Foxy5 peptide conjugated to 3D porous hydrogels on the osteogenic differentiation of seeded hMSCs from three different donors after 7 days (Fig. 4, A and B, fig. S7A, and tables S1 and S2) and 14 days (fig. S7B) of osteogenic culture. The real-time quantitative polymerase chain reaction (RT-qPCR) data showed that the expression levels of type I collagen, ALP, RUNX2, and OPN in cells seeded in the Foxy5 peptidefunctionalized porous hydrogels (Foxy5 + RGD group) were up-regulated by 33, 57, 35, and 422%, respectively, compared with those in cells seeded in the hydrogels without Foxy5 functionalization (RGD group) (Fig. 4B) after 7 days of osteogenic culture. In contrast, presentation of the nonfunctional scrambled peptide (Scram + RGD group) had no significant influence on the expression levels of these osteogenic genes compared with corresponding levels in the RGD group. The pro-osteogenic effect of the conjugated Foxy5 peptide diminished after 14 days of culture (fig. S7B). The diminishing effect of Foxy5 peptide can be attributed to the decreasing membrane presence of available LRP5/6 in the osteogenically differentiating hMSCs (39, 40). In addition, the increasing extracellular matrix that accumulated around hMSCs over time may have also contributed to the effect of conjugated Foxy5 peptide. It is noteworthy that the declining expression of Wnt receptors and Wnt signaling are essential for the formation of mineralized matrix (39). Therefore, this diminished effect of Foxy5 peptide over time may be beneficial to the osteogenesis of seeded hMSCs and subsequent neobone formation. Consistent with the gene expression data, both Alizarin Red and von Kossa staining revealed more substantial calcification in the Foxy5 + RGD group than in the other control groups. Quantitative analysis showed that the Alizarin Red and von Kossa staining intensities in the Foxy5 + RGD group were 262 and 107% higher than those in the RGD groups after 14 days of culture, respectively (Fig. 4, C and D). Furthermore, we assessed the organic bone matrix synthesis of stem cells by type I collagen staining. The Foxy5 + RGD group exhibited 163 and 179% higher type I collagen staining than the RGD and Scram + RGD groups, respectively (Fig. 4, C and D). These findings suggest that Foxy5 conjugated to the 3D porous hydrogel scaffold significantly promotes the expression of both early- and late-stage osteogenic genes in hMSCs and inorganic/organic bone matrix synthesis.

(A) Schematic illustration of the seeding of hMSCs in the Foxy5/Scram + RGD peptidefunctionalized 3D hydrogel scaffolds. (B) Quantitative gene expression of osteogenic markers (type I collagen, RUNX2, ALP, and OPN) in hMSCs seeded in porous hydrogels conjugated with RGD peptide alone (RGD), Foxy5 and RGD peptides (Foxy5 + RGD), or Scram and RGD peptides (Scram + RGD) in osteogenic culture. (C) von Kossa staining, Alizarin Red S staining, and immunohistochemistry staining of type I collagen and (D) quantification of the staining intensities after 14 days of osteogenic culture. Scale bars, 50 m. Data are shown as the means SD (n = 9). Statistical significance: * P < 0.05, **P < 0.01, and ***P < 0.001.

In mature bone tissues, the unique osteoblastic microenvironment niche provides MSCs with the necessary biological cues, including stromal cellderived factor 1, angiopoietin 1, and OPN, derived from osteoblasts, osteoclasts, osteocytes, and endothelial cells in trabecular bone and bone marrow (19, 41). Many previous studies have reported the regulation of MSC signaling and lineage commitment by systemic hormones or localized growth factors (42). Fu et al. demonstrated that Wnt3a-mediated canonical Wnt signaling activation antagonizes the terminal osteogenic differentiation of MSCs, while Wnt5a-mediated noncanonical Wnt signaling mitigates the inhibitory effect of Wnt3a. In the natural osteoblastic niche, Wnt5a proteins are secreted by the surrounding tissues and bind to the Frizzled/Ror2 surface Wnt receptors of hMSCs via paracrine mechanisms (43). We used porous hydrogels functionalized with Wnt5a mimetic Foxy5 peptide to emulate this pro-osteogenic niche and promote the osteogenesis of hMSCs. In addition to Foxy5 peptide, RGD peptide was also conjugated to all hydrogels to provide adhesive motifs for the hMSCs because Foxy5 peptide alone cannot support effective cell adhesion. The promechanotransduction and pro-osteogenic effects of Foxy5 peptide were therefore not studied in the absence of RGD peptides, which is a limitation of the study. Nevertheless, integrin ligands are important components of the natural osteogenic niche in bones. The potential crosstalk between integrin signaling and Wnt signaling and the associated effects on stem cell differentiation certainly warrant further investigation.

We further evaluated the efficacy of the Foxy5 peptide conjugated to the hydrogel in assisting in vivo bone regeneration in rat calvarial defects. Rat MSCs (rMSCs) with trilineage differentiation potential (4446) were first seeded in porous hydrogels functionalized with RGD, Foxy5 + RGD, or Scram + RGD peptides and cultured in osteogenic media for 7 days prior to transplantation into the defects (Fig. 5A). The RT-qPCR data showed that the expression levels of type I collagen, ALP, RUNX2, OPN, Dvl2, RhoA, and vinculin in rMSCs of the Foxy5 + RGD group were all significantly higher compared with those in the control groups (RGD group, Scram + RGD) after 7 days of osteogenic culture (fig. S8, A and B). Eight weeks after transplantation, both hematoxylin and eosin (H&E) staining and immunohistochemical staining for osteocalcin and type I collagen revealed enhanced osteoblastic marker expression and bone matrix formation in the Foxy5 + RGD group compared with the RGD, Scram + RGD, and blank groups (Fig. 5B). The average staining intensity for osteocalcin was 124, 114, and 240% higher and that of type I collagen was 105, 104, and 144% higher in the Foxy5 + RGD group than in the blank, RGD, and Scram + RGD groups, respectively (Fig. 5D). The average staining intensity for osteocalcin and type I collagen in the Foxy5 + RGD group was still around 30% lower than that in the native calvarial tissue (Fig. 5D). Furthermore, the microcomputed tomography (micro-CT) reconstruction data revealed considerably more new bone formation in the defects treated with hydrogels conjugated with Foxy5 and RGD peptides (Foxy5 + RGD group) than in those treated with the control hydrogels (blank, RGD, and Scram + RGD groups) (Fig. 5C). Quantitative analysis showed that the bone volumetototal tissue volume (BV/TV) ratio in the Foxy5 + RGD group was 107, 57, and 198% higher than that in the RGD, Scram + RGD, and sham blank groups, respectively. Notably, the average BV/TV ratio of healthy calvarial bone was determined to be 35.25% due to other skeletal components, such as fibrous connective tissues. The average BV/TV ratio in the Foxy5 + RGD group was 25.19%, suggesting a substantial recovery of approximately 71.49% of the healthy calvarial bone volume. These findings demonstrate that the functionalization of biomaterial scaffolds with this Wnt5a mimetic peptide can substantially enhance bone regeneration in vivo. No significant abnormalities in tissue structure or morphology were observed around the implantation site. We believe that the restricted bioactivity of the mimetic peptide (compared with that of the parent protein) and the immobilization of this Wnt5a ligand on the biomaterial for local implantation will limit potential undesired nonspecific actions that may arise due to peptide transportation to other off-target sites (47).

(A) Schematic illustration of the implantation of rMSC-seeded and peptide-functionalized porous hydrogels in rat calvarial defects. (B) H&E staining and immunohistochemical staining of the native healthy bone tissue and the calvarial defects treated with the RGD hydrogels, Foxy5 + RGD hydrogels, Scram + RGD hydrogels, and no hydrogels (blank) 8 weeks after implantation (n = 3). High-magnification images showing the defect/native bone boundaries highlighted in yellow and red boxes and defect center areas in blue boxes in the low-magnification images of H&E-stained sections. The dotted lines indicate the boundary between the defect and native bone. The newly formed bone was seamlessly integrated with the neighboring native bone in the Foxy5 + RGD group. Scale bars, 50 m. (C) Top view of 3D micro-CT images showing calvarial bone defects after 8 weeks in all groups (n = 3). (D) Bone volume (normalized to total tissue volume, BV/TV) in the calvarial defects in all groups after 8 weeks (n = 3). The bone volume of healthy rat calvarial bone is shown as the benchmark. Quantification of the immunohistochemical staining intensity of the osteogenic markers, including osteocalcin and type I collagen, showing the higher intensity in the Foxy5 + RGD group compared with those of the RGD and Scram + RGD control groups. Data are shown as the means SD (n = 9). Statistical significance: *P < 0.05, **P < 0.01, and ***P < 0.001 significant difference.

MeHA macromolecules were synthesized from sodium hyaluronate powder (molecular weight, ~74 kDa; Lifecore, Chaska, Minnesota, USA), as previously reported (8). Briefly, 100 ml of 1% (w/v) sodium hyaluronate solution was reacted for 24 hours with 4 or 1.5 ml of methacrylic anhydride at pH 9.5, adjusted with 2 M NaOH solution. After complete dialysis and lyophilization, 100% methacrylation or 30% methacrylation was confirmed using proton nuclear magnetic resonance (1H NMR). The RGD peptide (GCGYGRGDSPG) and Foxy5 peptide (MDGCEL) (GenScript, Nanjing, Jiangsu, China) with a cysteine amino acid at the C-terminal end were conjugated to the MeHA backbone with a Michael addition reaction between the methacrylate groups and the thiol groups of each peptide in basic phosphate buffer (pH 8.0) containing 10 M tris(2-carboxyethyl)phosphine at 37C. The molar ratio of methacrylate to each peptide thiol was 100:3. RGD-functionalized, Foxy5-conjugated porous MeHA hydrogels were fabricated from 50 l of the peptide-conjugated MeHA solution (3% w/v, 100% methacrylation) after 2 hours, with 1.51 mol of DTT as the cross-linker to consume all residual methacrylic groups, in round polyvinyl chloride molds fully packed with a poly(methyl methacrylate) (PMMA) microsphere porogen ( 200 m). The constructs generated were immersed in acetone and shaken at 90 rpm to dissolve the PMMA porogen, sterilized with 75% ethanol for 1 day, and rinsed three times with sterile phosphate-buffered saline (PBS). In the directly Foxy5 peptidesupplemented MeHA (free Foxy5) group and the directly scrambled peptidesupplemented MeHA (free Scram) group, we only used the same Foxy5 + RGDfunctionalized MeHA solution or Scram + RGDfunctionalized MeHA solution (3% w/v, 100% methacrylation) to fabricate the porous hydrogels, respectively.

We used MeHA with 30% methacrylation supplemented with 0.05% (w/v) photoinitiator I2959 (Sigma-Aldrich, MO, USA) to make Foxy5 + RGDfunctionalized MeHA solution, Scram + RGDfunctionalized MeHA solution, or RGD-functionalized MeHA solution (3% w/v, 30% methacrylation) and to fabricate 2D hydrogels with different stiffness in polyvinyl chloride molds under 367, 467, 667, or 1067 seconds of UV exposure. All 2D hydrogels were sterilized before cell culture. The surface roughness and modulus were determined by atomic force microscopy (Bruker, MA, USA).

2D-biofunctionalized substrates were fabricated by polymerizing peptide-conjugated MeHA precursor solutions (3% w/v, 30% methacrylation) under UV light (wavelength, 365 nm; intensity, 7 mW/cm2) on methacrylated glass coverslips. The porous MeHA hydrogel constructs (height, ~1.5 mm; 1 mm) were polymerized in molds filled with 200-m PMMA microbeads to form an interconnected porous structure for in vitro experiments and for in vivo calvarial defect regeneration (Fig. 1, B and C) (9). Homogenous, interconnected spherical structures within the hydrogels were characterized through bright-field images captured using a fluorescence microscope (Nikon, Japan) (Fig. 1D). The Young moduli of the hydrogels were determined using a mechanical tester (Mach-1, Biomomentum Inc., Suite, Canada), and the strain-controlled frequency sweep mechanical tests were performed using a rheometer (Malvern Inc., Malvern, Britain).

Passage-4 hMSCs (Lonza, Walkersville, Maryland, USA) were expanded in basal growth medium [-minimal essential medium (MEM) supplemented with 16.7% (v/v) fetal bovine serum (FBS), penicillin-streptomycin (P/S; 100 U ml1), and 2 mM l-glutamine]. Growth medium (50 l) containing 5 105 hMSCs (108 cells ml1) was injected into one semidry, porous MeHA-RGD hydrogel, which was incubated at 37C for 4 hours to allow cell attachment to the hydrogels. Then, 1 ml of osteogenic medium [-MEM, 16.67% FBS, 1% P/S, 2 mM l-glutamine, 10 mM -glycerophosphate disodium, l-ascorbic acid 2-phosphate (50 mg ml1), and 100 nM dexamethasone] was added to all the hydrogels, and the medium was changed every 2 days. In the control group, Foxy5 peptide or scrambled peptide solution was added directly to the hydrogels at the beginning of osteogenic culture. Samples were collected on days 7 and 14 to evaluate the degree of osteogenesis by traditional qPCR and immunofluorescence staining. Cell viability was determined by alamarBlue assay (Invitrogen, Carlsbad, California, USA) after 7 days in osteogenic culture. Live/dead staining was performed by adding 3 M calcein AM and 3 M propidium iodide (Thermo Fisher Scientific, Waltham, Massachusetts, USA) to the hydrogels. After incubation for 30 min at 37C, the hydrogels were washed three times with PBS, and fluorescence images were captured using a confocal microscope (Nikon C2, Tokyo, Japan). The quantification of immunofluorescence staining results was conducted by using the ImageJ software [National Institutes of Health (NIH), Baltimore, Maryland, USA]. First, we adjusted the color images of the immunofluorescence staining to the 8-bit grayscale images, and then we selected the region of cells that best represent the overall staining intensity of the samples in the immunofluorescence staining results. The average grayscale values of the region of interest taken from at least 20 cells in each group were determined and compared to get the quantification results. The reported data of biochemical assays are the pooled results from three experiments.

All samples were homogenized in 1 ml of TRIzol reagent (Invitrogen), and total RNA was extracted according to the manufacturers protocol. The RNA concentration was measured using a NanoDrop One spectrophotometer (NanoDrop Technologies, Waltham, Massachusetts, USA). Total RNA (1 g) was reverse transcribed into cDNA using the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific). qPCR was performed on an Applied Biosystems StepOnePlus Real-Time PCR System with TaqMan primers and probes (Applied Biosciences, Waltham, Massachusetts, USA) specific for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and other osteogenic genes, including those encoding RUNX2, ALP, and type I collagen. The sequences of the TaqMan primers and probes used are listed in table S2. The osteogenic gene expression levels were normalized to that of GAPDH, and the relative expression levels were calculated with the 2Ct method.

Hydrogel samples were fixed overnight in 4% paraformaldehyde at 4C, dehydrated in a graded series of ethanol, crystalized in a graded series of xylene, and embedded in paraffin. Histological sections (7 m) were stained for type I collagen using the VECTASTAIN ABC Kit and the DAB Substrate Kit (Vector Laboratories, Burlingame, California, USA). Briefly, hyaluronidase (0.5 g liter1) was applied to the rehydrated samples to predigest them at 37C for 30 min. The samples were then incubated with 0.5 N acetic acid for 4 hours at 4C to induce swelling, followed by incubation at 4C overnight with a primary antibody directed against type I collagen (antitype I collagen, diluted 1:200; sc-59772, Santa Cruz Biotechnology). Immunofluorescence staining for the osteogenic-related proteins (YAP and RUNX2) and cellular contractionrelated proteins (RhoA) was conducted as previously reported (9). The calcification of phosphates and calcium ions was identified with von Kossa staining and Alizarin Red S staining, respectively. Briefly, von Kossa stain was applied to the rehydrated sections, as previously reported. To stain with Alizarin Red S, 1 ml of 0.5% (w/v) Alizarin Red S solution (Sigma) was applied to each hydrogel sample; the samples were then incubated for 5 min at room temperature before being washed, dehydrated, cleared, and sealed. Images were captured using a bright-field microscope (Nikon). The quantification was conducted by using the ImageJ software (NIH). First, we adjusted the color images of immunohistochemistry (IHC) staining to the 8-bit grayscale images, and then we selected regions of interests of identical size that best represent the overall staining intensity of the samples in the IHC staining results. The average grayscale values of the region of interest taken from three parallel samples in each group were determined and compared to get the quantification results. The reported data of biochemical assays are pooled results from three experiments.

Strictly following the guidelines of the Institutional Animal Care and Use Committee at The Chinese University of Hong Kong, 12-week-old male Sprague-Dawley rats were randomly divided into four groups, shaved, and prepped for aseptic surgery. A midline skin flap was raised over the parietal bones and reflected caudally to expose the midsagittal and transverse sutures. The periosteum was incised along the midsagittal suture and the right or left transverse suture and removed to expose the parietal bone. A 5-mm-diameter defect was created using a trephine with normal saline irrigation during processing, and a section of the bone was removed to expose the dura mater. 3D porous peptidefunctionalized HA hydrogels (n = 3 per group) 5 mm in diameter and 1 mm thick were seeded with 1 million rMSCs with trilineage differentiation potential (46). After 7 days of in vitro osteogenic induction in the incubator, the hydrogels were implanted into the calvarial defects. All experimental animals were maintained until 8 weeks from the day of defect creation. After the rats were euthanized, the parietal bones were harvested and decalcified with 10% EDTA solution. The subsequent H&E staining and histological analysis were performed as described in previous publications (9).

All data are presented as the means SD. Statistica (Statsoft, Tulsa, Oklahoma, USA) was used to perform the statistical analyses using two-way analysis variance (ANOVA) and Tukeys honest significant difference post hoc test of the means; the culture period and experimental groups were used as independent variables.

Acknowledgments: We are grateful for the technical support from J. Lai, S. Wong, and A. Cheung from the School of Biomedical Sciences (The Chinese University of Hong Kong). We thank M. Zhu and K. Zhang for proofreading the manuscript. We sincerely thank M. Wong, N. So, K. Wei, M. Zhu, B. Yang, H. Chen, K. Zou, K. Zhang, Y. Jing, D. Siu Hong Wong, X. Xu, E. Yingrui Deng, X. Chen, and W. Li for the valuable discussions, support, and love. Funding: Project 31570979 is supported by the National Natural Science Foundation of China. The work described in this paper is supported by a General Research Fund grant from the Research Grants Council of Hong Kong (project nos. 14202215 and 14220716). This research is also supported by project BME-p3-15 of the Shun Hing Institute of Advanced Engineering (The Chinese University of Hong Kong). This work is supported by the Health and Medical Research Fund, the Food and Health Bureau, the Government of the Hong Kong Special Administrative Region (reference no. 04152836). This research is supported by the Chow Yuk Ho Technology Centre for Innovative Medicine (The Chinese University of Hong Kong). The work was partially supported by the Hong Kong Research Grants Council Theme-based Research Scheme (reference no. T13-402/17-N, Functional Bone Regeneration in Challenging Bone Disorders and Defects, 1 November 2017 to 31 October 2022). Author contributions: S.L. contributed to the animal experiments and analysis. M.Z. and J.X. contributed to the peptide synthesis and porous gel fabrication. Y.D. contributed to the cell culture and qPCR assay. X.C. contributed to the polymer synthesis and NMR characterization. K.W. contributed to the macromer synthesis and proofreading of the manuscript. R.L. contributed to the rest of the experiments and the manuscript. G.L. led the in vivo study of the project. L.B. led the project as the supervisor. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Here is the original post:
Synthetic presentation of noncanonical Wnt5a motif promotes mechanosensing-dependent differentiation of stem cells and regeneration - Science Advances

The Prognostic Importance of EVI1 Expression – Cancer Network

In AML, the role of ecotropic virus integration site-1 (EVI1) expression is debated. To date, results of studies have been mixed with only some studies demonstrating EVI1 expression related to poorer survival. In a meta-analysis published in the Annals of Hematology, researchers set out to uncover the predictive capability of this marker.

As a malignant disorder in hematology usually with a poor prognosis, AML needs an accurate prediction of prognosis to indicate protocoling the appropriate therapy regimens for patients hoping for survival improvement, wrote authors, led by Xia Wu, Department of Hematology, West China Hospital, Sichuan University, Sichuan Province. Molecular markers increasingly play an utmost significant role in the diagnosis and risk stratification of AML.

In the current meta-analysis, Wu et al. mined 11 studies for 4767 AML patients with intermediate cytogenetic risk (ICR), according to National Comprehensive Cancer Network (NCCN), International System for Human Cytogenetic Nomenclature (ISCN), or European leukemia network (ELN) guidance. The findings indicated that EVI1 expression negatively impacted OS (HR = 1.73, 95%CI 1.432.11) and event=free survival or EFS (HR = 1.17, 95%CI 1.051.31). Furthermore, EVI1 was a negative predictor of prognosis in patients with normal cytogenetics (NC) and younger patients (< 60 years).

Importantly, the investigators noted that due to location, altered EVI1 most often accompanies 3q26 rearrangements. However, it remains to be elucidated whether increased EVI1 expression is related to AML outcomes in those without 3q mutations. On a related note, higher levels of EVI1 may affect AML subgroups differently, which, according to the authors, is of utmost significance for clinical physicians.

In other findings, EVI1H expression was rarely found with NPM1, FLT3-ITD and DNMT3A mutations. Wu et al point to these mutations and mutations as avenues of further research.EVI1 is a transcription factor on chromosome 3. It was first discovered two decades ago in murine models. It has stem cell specific expression patterns and mediates growth of hematopoietic stem cells, and plays a role in AML, myelodysplastic syndrome (MDS), and CML.

The investigators suggested that the findings of the current study could assist clinicians with risk stratification and treatment decisionsespecially because most patients are NC.

EVI1, which also goes by MECOM, encodes a 145 kDa-unique zinc finger that attaches with DNA. This transcription factor is hypothesized to interfere with granulocyte and erythroid cell differentiation, as well as promotion of megakaryocyte breakdown, to aid with the differentiation and proliferation of hematopoetic stem cells.Several drug targets for EVI1 have been suggested such those involved in leukemogenesis and stem cell maintenance. Examples include the transcription factor Pre-B Cell leukemia Homeobox 1 (PBX1) and Phosphatase and Tensin Homolog (PTEN), which is a tumor suppressor gene. However, none of these targets have proven related to EVI1-deregulated AML.

Per the authors the current study had several limitations. First, most studies in the meta-analysis were observational and not randomized-controlled trials. Second, the sample contained cases of therapy-related AML and secondary AML, which have a worse prognosis and could thus confound results. Third, limited OS data precluded the ability to study AML patients without 3q alterations. Fourth, the studies were highly heterogeneous in a clinical sense.

Reference

Wu X et al. Prognostic significance of the EVI1 gene expression in patients with acute myeloid leukemia: a meta-analysis. Annals of Hematology. 2019 Sep 3. doi: 10.1007/s00277-019-03774-z.

View post:
The Prognostic Importance of EVI1 Expression - Cancer Network

Global Longevity & Anti-Senescence Therapy Market Review 2017-2018 and Forecast to 2023 – ResearchAndMarkets.com – Business Wire

DUBLIN--(BUSINESS WIRE)--The "Global Longevity and Anti-Senescence Therapy Market" report has been added to ResearchAndMarkets.com's offering.

Global longevity and anti-senescence market will witness rapid growth over the forecast period (2018-2023) owing to an increasing emphasis on Stem Cell Research and increasing demand for cell-based assays in research and development.

An increasing geriatric population across the globe and rising awareness of antiaging products among generation Y and later generations are the major factors expected to promote the growth of global longevity and anti-senescence market. Factors such as a surging level of disposable income and increasing advancements in anti-senescence technologies are also providing traction to the global longevity and anti-senescence market growth over the forecast period (2018-2023).

Senolytics, placenta stem cells and blood transfusions are some of the hot technologies picking up pace in the longevity and anti-anti-senescence market. Companies and start-ups across the globe such as Unity Biotechnology, Human Longevity Inc., Calico Life Sciences, Acorda Therapeutics, etc. are working extensively in this field for the extension of human longevity by focusing on the study of genomics, microbiome, bioinformatics, and stem cell therapies, etc. These factors are poised to drive market growth over the forecast period.

The report provides analysis based on each market segment including therapies and application. The therapies segment is further sub-segmented into Senolytic drug therapy, Gene therapy, Immunotherapy, and Others. Senolytic drug therapy held the largest market revenue share in 2017. The fastest growth of the gene therapy segment is due to the Large investments in genomics.

Report Scope

The scope of this report is broad and covers various therapies currently under trials in the global longevity and anti-senescence therapy market. The market estimation has been performed with consideration for revenue generation in the forecast years 2018-2023 after the expected availability of products in the market by 2023.

The global longevity and anti-senescence therapy market has been segmented by the following therapies: Senolytic drug therapy, Gene therapy, Immunotherapy and Other therapies which includes stem cell-based therapies, etc.

Revenue forecasts from 2028 to 2023 are given for each therapy and application, with estimated values derived from the expected revenue generation in the first year of launch.

The report also includes a discussion of the major players performing research or the potential players across each regional longevity and anti-senescence therapy market. Further, it explains the major drivers and regional dynamics of the global longevity and anti-senescence therapy market and current trends within the industry.

The report concludes with a special focus on the vendor landscape and includes detailed profiles of the major vendors and potential entrants in the global longevity and anti-senescence therapy market.

The report includes:

Key Topics Covered

Chapter 1 Introduction

Chapter 2 Summary and Highlights

Chapter 3 Market Overview

Chapter 4 Global Longevity and Anti-senescence Market by Therapy

Chapter 5 Global Longevity and Anti-senescence Market by Application

Chapter 6 Global Longevity and Anti-senescence Market by Region

Chapter 7 Industry Structure in Longevity and Anti-senescence Market

Chapter 8 Company Profiles

For more information about this report visit https://www.researchandmarkets.com/r/zy7jt

Read more:
Global Longevity & Anti-Senescence Therapy Market Review 2017-2018 and Forecast to 2023 - ResearchAndMarkets.com - Business Wire

ROOT OF SKIN Skincare Products Sell Out in Tenth Consecutive Appearance on QVC Japan – Associated Press

Press release content from PR Newswire. The AP news staff was not involved in its creation.

Click to copy

IRVINE, Calif., Oct. 15, 2019 /PRNewswire/ -- AIVITA Biomedical, Inc., a biotech company specializing in innovative stem cell applications, announced today that the Companys ROOT of SKIN line of rejuvenating skincare products sold out in its tenth appearance on the Japanese home shopping channel QVC Japan.

ROOT of SKIN is AIVITAs proprietary skincare line for skin rejuvenation, made possible through the same proprietary knowledge and expertise used to develop its cutting-edge stem cell therapies. SourceCode Technology, the proprietary actives complex in ROOT of SKIN, contains the complete set of factors and supporting biological components present in young, healthy skin.

AIVITA Biomedical uses 100% of the proceeds from ROOT of SKIN sales to support the treatment of women with ovarian cancer.

Outstanding market traction, a product that truly works, and a benevolent use of proceeds, said Hans Keirstead, AIVITAs Chief Executive Officer. This sets the stage for global expansion of our ROOT of SKIN product line.

About ROOT OF SKIN

ROOT of SKIN is a rejuvenating line of skincare products fueled by an unrelenting pursuit for advancements in life-changing and life-saving treatments. Harnessing breakthroughs in stem cell therapy, AIVITA Biomedical developed a technology that does more than just boost regeneration. The patented actives complex SourceCode Technology renews, repairs and protects, just as your skin did at its youngest and healthiest stage. Rich with every biological component healthy skin needs for development, and free of any unnecessary ingredients. All proceeds support treatment of women with ovarian cancer.

About AIVITA Biomedical

AIVITA Biomedical is a privately held company engaged in the advancement of commercial and clinical-stage programs utilizing curative and regenerative medicines. Founded in 2016 by pioneers in the stem cell industry, AIVITA Biomedical utilizes its expertise in stem cell growth and directed, high-purity differentiation to enable safe, efficient and economical manufacturing systems which support its therapeutic pipeline and commercial line of skin care products.

View original content to download multimedia: http://www.prnewswire.com/news-releases/root-of-skin-skincare-products-sell-out-in-tenth-consecutive-appearance-on-qvc-japan-300938926.html

SOURCE AIVITA Biomedical, Inc.

Read more:
ROOT OF SKIN Skincare Products Sell Out in Tenth Consecutive Appearance on QVC Japan - Associated Press

The global T-cell therapy market size is expected to reach USD 7.51 billion, expanding at a CAGR of 15.4% by 2026 – Yahoo Finance

The landmark approvals of Yescarta and Kymriah have spurred unprecedented advancements in the market. The launch of these breakthrough therapies has bolstered cash inflow for innovation, thereby driving the growth.

New York, Oct. 16, 2019 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "T-Cell Therapy Market Size, Share & Trends Analysis Report By Modality, By Therapy, By Indication And Segment Forecasts, 2019 - 2026" - https://www.reportlinker.com/p05822974/?utm_source=GNW

Expansion of the market for T-cell therapy significantly relies on shifting preference from first-line stem cell transplants and chemotherapy to third-line CAR T-cell therapy.Moreover, the ever-expanding plethora of medical conditions for which the T cell therapies is projected to bode well for the market growth.

Rise in oncological disorders is projected to drive interest as well as investments in the T-cell therapy market in near future.

In contrast with the small-molecule landscape, engineered T cells market landscape is distinguished by an extensive network that encompasses several entities marked by connections academically, financially, and via technology licensing. Research bodies, and manufacturers, and regulators engage in assessing the long-term efficacy and safety of therapies to ensure safe access to patients.

By far, the antigen challenge and linked toxicity concerns have impeded the development of CAR T therapies in non-hematological malignancies. Market players are applying a data-driven approach of exploring this space to mitigate the challenge and expand the usage of T-cell therapy in indication type such as brain cancer and melanoma.

Further key findings from the report suggest: In the coming years, the number of hospitals implementing CAR T therapies is expected to increase, thereby driving the commercialized business model Research-based business modality accounted for the highest revenue generation over the past years, attributed to the presence of several research programs CAR-T cell therapy market share accounted for the larger revenue share of the overall T-cell therapy market in 2018 owing to the highest investment by sponsors in this therapy type Presence of approved products for B cell lymphoma and acute lymphocytic leukemia has resulted in the dominance of hematological malignancies in the market Therapy for solid tumors is expected to emerge as the lucrative source of revenue generation in the forthcoming years Rising research activities in CAR T-cell therapy for solid tumors, particularly, for brain & central nervous system and melanoma, is expected to benefit the key players North America led the global market in 2018 owing to the presence of a large number of cancer centers engaging in research activities. Moreover, U.S.-based pharma companies like Pfizer Inc. and Celgene Corporation have shifted their focus from conventional drug development to T-cell therapy space Asia Pacific is estimated to witness the fastest growth with China at the forefront. China has surpassed the number of CAR T clinical trials conducted in U.S. Moreover, Novartis is strategizing to secure approval for Kymriah by China regulatory authorities in the forthcoming years Gilead Sciences, Novartis AG, TCR2 Therapeutics Inc., Celgene Corporation, Sorrento Therapeutics, bluebird bio, and Fate Therapeutics are some key players operating in the market. They engage in mergers and acquisitions with therapy developers. Acquisition of Juno Therapeutics by Celgene in January 2018 and Kite Pharma by Gilead in August 2017 are some notable examples of acquisitions in this marketRead the full report: https://www.reportlinker.com/p05822974/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Clare: clare@reportlinker.comUS: (339)-368-6001Intl: +1 339-368-6001

Read the original here:
The global T-cell therapy market size is expected to reach USD 7.51 billion, expanding at a CAGR of 15.4% by 2026 - Yahoo Finance

Sarah Ferguson opens up about years of plastic surgery from Botox to fillers to stem cell therapy – Evening Standard

The hottest luxury and A List news

Ahead of her 60th birthday on TuesdaySarah Fergusonhas opened up about her cosmetic treatments at the hands of her friendDr.GabrielaMercik- an aesthetician who has given her everything from laser facelifts to organic fillers.

In a candid interview with the Daily Mail, Ferguson and Mercik talked about thecosmetic procedures the Duchess of York has had done over the years,with Ferguson revealing she was Mercik'sguinea pig with new treatments.

The pair spoke to The Daily Mail about their close relationship, as well as Fergusons history with both invasive and non-invasive procedures including botox, mesotherapy and even stem cell therapy - specifically for Fergusons feet.

Sarah Ferguson in October 2019 (Getty Images for BFI)

Ferguson said she was comfortable talking about her treatments, sayingIm really happy to be open about what Ive had done.

Sarah Ferguson in 2010 (Getty Images)

Ferguson revealed in the interview that she used to get Botox, however as technology has advanced shes opted to move away from it. She explained, I had Botox a long time ago when there was nothing else available.

With her aesthetician calling it passe now, Ferguson added, I really dont like the frozen look. Im so animated and I like to be myself. I dont like the thought of needles and am very glad if I look well and happy.

Botox is a cosmetic procedure which is designed to help diminish wrinkles and fine lines, by injecting a chemical solution with a micro needle into specific target areas.

Sarah Ferguson in 2019 (PA)

It was revealed in the Daily Mail that Ferguson started getting mesotherapy in 2013, though she has since moved away from it in favour of other treatments.

Ferguson said that she had chosen mesotherapy to tackle sun damage, saying, I need to repair the damage that was done on the beach when I was a child. Its why I had the mesotherapy, the vitamin cocktail to hydrate and boost the skin.

According to HealthLine, mesotherapy involvesinjecting a mixture of vitamins, enzymes, hormones, and plant extracts. Designed to tighten skin and rejuvenate it, it also removes excess fat and is used by people to do everything from reduce cellulite, diminish wrinkles and tighten loose skin.

HealthLine continues, The technique uses very fine needles to deliver a series of injections into the middle layer (mesoderm) of skin. The idea behind mesotherapy is that it corrects underlying issues like poor circulation and inflammation that cause skin damage.

(Getty Images for GFI)

Following this, Ferguson chose to move onto organic fillers.

Face fillers are designed to both fade wrinkles as well as plump up parts of your face that you want to add volume to. In the case of Fergusons, hers were organic and were described as being non-invasive injectables.

Sarah Ferguson in 2017 (Getty Images)

One of Fergusons more unusual facial procedures involved something called a thread lift. She explained, Before I had it done I thought,Oh this is going to be painful, but it wasnt bad. My skin responded well. I think if you look at photos of me after I had it done, I look much better.

However, Mercik added that Ferguson had since swapped the threads for laser because its non-invasive.

Both Ferguson and Mercik explained what a thread lift involves. Patients have medical threads inserted into the skin to create a supportive mesh that pulls the face upwards - with the threads dissolving after 6-8 months and results lasting two years.

Ferguson explained, Its like garden trellising for sweet peas. You insert the threads under the skin with a fine needle and they hold everything up. They also encourage collagen production. It takes a couple of months, then the sweet peas bloom!

Mercik went into more technical details, explaining, We inserted nano peptides (synthetic growth factors) under the skin which, with the synthetic threads, stimulate collagen production.

Sarah Ferguson at Princess Eugenie's wedding (Getty Images)

Sarah Ferguson revealed that she personally swears by Merciks 6-Dimension Ultimate Laser Treatment facelift. Revealing to the Daily Mail that she much prefers it to Botox, Ferguson explained that she had actually had it done by Mercik prior to her daughter Princess Eugenies wedding.

She explained, Above all, it was being joyful for Eugenie that made me look good. But Id had some laser treatment on my face which helped, too.

She also added that she was undergoing it at the moment, ahead of her birthday on Tuesday. She said, Ive started the laser treatment, but its not finished yet. The collagen needs to rebuild. I hope it will all be done by my birthday.

Merciks laser facelift is non-invasive, pain-free, involves no recovery time and accomplished in no more than 90 minutes. It reportedly helps promote the skins natural production of youth-restoring collagen and is said to continue the work as the weeks pass.

Following a sunscreen-averse childhood (which involved Fergusons mother thinking Nivea moisturiser was sunscreen), Ferguson revealed that she was now very careful about preventing sun damage now - especially after her father and best friend died of skin cancer. She explained, It made me realise you have to look after your skin just as much as your other organs. It isnt just about aesthetics. We have to think about our skin health.

Thats why I dont go in the sun now, she continued. The tan I have is out of a bottle. Fake.

One of Fergusons more recent procedures includes a trip off to the Bahamas, which saw her undergo stem cell therapy to improve her feet. She explained, I think my toes were ruined by all the riding I did when I was young. They shaved the bone here and implanted stem cells 20 million of them taken from my midriff into my feet to make new cartilage.

View original post here:
Sarah Ferguson opens up about years of plastic surgery from Botox to fillers to stem cell therapy - Evening Standard

Targeting CCR5 trafficking to inhibit HIV-1 infection – Science Advances

Abstract

Using a cell-based assay monitoring differential protein transport in the secretory pathway coupled to high-content screening, we have identified three molecules that specifically reduce the delivery of the major co-receptor for HIV-1, CCR5, to the plasma membrane. They have no effect on the closely related receptors CCR1 and CXCR4. These molecules are also potent in primary macrophages as they markedly decrease HIV entry. At the molecular level, two of these molecules inhibit the critical palmitoylation of CCR5 and thereby block CCR5 in the early secretory pathway. Our results open a clear therapeutics avenue based on trafficking control and demonstrate that preventing HIV infection can be performed at the level of its receptor delivery.

A large number of pathologies, from infectious and developmental diseases to cancers, depend on the activity of plasma membrane receptors, adhesion proteins, channels, etc. that are delivered from their site of synthesis in the endoplasmic reticulum (ER) to the plasma membrane through the secretory pathway. To perturb these protein functions, several tracks have been followed such as the development of agonists and antagonists, inhibitors of signaling, or enzymatic activity. Nevertheless, inhibition of the intracellular transport of these proteins has not been considered because intracellular routes were considered as too generic to represent a therapeutic target. However, a clear diversity of secretion routes for many different cargos has recently been unambiguously revealed (1). Taking advantage of this diversity, we set out to identify small molecules specifically inhibiting the transport of virus receptor, focusing on HIV-1 entry.

HIV-1 infects immune cells, in particular CD4+ T lymphocytes and macrophages, leading to AIDS. The cell entry of HIV-1 is initiated by the interaction of its surface envelope glycoprotein, gp120, with two host cell surface receptors: CD4 and a co-receptor. CC chemokine receptor 5 (CCR5) is the principal co-receptor for R5-tropic strains, responsible for the transmission and establishment of HIV-1 infection (26). Genetic polymorphism in the CCR5 gene has been correlated with HIV resistance. Individuals homozygous for the CCR5 delta32 allele do not express CCR5 at the cell surface and are resistant to HIV-1 infection (7, 8). An additional demonstration of the crucial role CCR5 plays in HIV-1 infection came from the long-term control of infection in a patient transplanted with stem cells from a delta32/delta32 individual (9). CCR5 delta32 individuals do not show major deficiencies due to the absence of cell surface CCR5, and as such, the therapy shows great promise. Consequently, several anti-HIV therapies targeting CCR5 have been developed, such as the drug maraviroc (10, 11), CCR5-blocking antibodies (12, 13), and CCR5 gene editing (14, 15). Of these, maraviroc is the only anti-HIV therapy targeting CCR5 currently used for the treatment of patients. By binding to CCR5, this small, nonpeptidic CCR5 ligand prevents the interaction of the HIV-1 gp120 to CCR5 via an allosteric mechanism.

CCR5 is a member of the class A G proteincoupled receptor (GPCR) family, containing seven transmembrane domains, which enters the secretory pathway at the level of the ER. It is exported from the ER to reach the Golgi complex and is then delivered to the plasma membrane. Little is known about the transport of CCR5 to the cell surface along the secretory pathway, and we tested whether specifically inhibiting delivery could provide an alternative therapeutic strategy. We used the retention using selective hooks (RUSH) assay (16) to quantitatively monitor the anterograde transport of CCR5. Furthermore, we coupled it to a high-content screening of chemical libraries to identify small molecules able to specifically inhibit CCR5 delivery to the plasma membrane. Of the three molecules identified, two inhibit the palmitoylation of the cysteine residues present in the cytoplasmic tail of CCR5, a molecular event that is critical for CCR5 to be transported to the plasma membrane. The incubation of the human primary target cells with either of the three molecules therefore resulted in a significant reduction in HIV-1 entry and de novo virus production.

Together, our data indicate that perturbation of CCR5 modification and more generally of its transport to the plasma membrane through the secretory pathway is a clear avenue for treatment. It also shows that the diversity of secretory routes represents an important and underexploited source for drug discovery.

The quantity of CCR5 present at the plasma membrane at steady state corresponds to a balance between the delivery of newly synthesized CCR5 and its endocytosis followed by recycling and degradation. To study the delivery of CCR5 to the plasma membrane and identify compounds that affect its anterograde transport, we synchronized its transport using the RUSH assay (16). Briefly, the cargo of interest is fused to a streptavidin binding peptide (SBP) and coexpressed with a resident protein of the ER, which is fused to streptavidin. The streptavidin hook retains the cargo upon synthesis due to the streptavidin-SBP interaction and prevents its export from the ER. The synchronized transport of the cargo is induced by the addition of biotin that rapidly enters cells, binds to streptavidin, and competes out SBP. We engineered a HeLa cell line stably expressing a version of CCR5 adapted to the RUSH assay (Str-KDEL_SBP-EGFP-CCR5). In the absence of biotin, CCR5 was localized in the ER (Fig. 1A, 0 min). As expected, addition of biotin enabled export of CCR5 from the ER toward the Golgi complex and its subsequent appearance at the cell surface (Fig. 1A, 30 to 120 min). Compared to another RUSH-adapted cargo, tumor necrosis factor (TNF), the transport kinetics were very different (Fig. 1A) (16, 17). For instance, while transport intermediates containing TNF were clearly visible from ER to Golgi and from Golgi to the plasma membrane, very few were detected for CCR5 (Fig. 1A and movies S1 and S2). To confirm this, we performed the visualization of simultaneously expressed CCR5 and TNF. The two cargos were segregated, especially at the level of the Golgi complex. First, CCR5 and TNF do not perfectly colocalize, and TNF is exported from the Golgi complex in tubular and vesicular transport carriers from which CCR5 was excluded (Fig. 1, B and C, and movie S3). Second, CCR5 appeared to reach the plasma membrane more slowly than TNF. To confirm this apparent kinetics difference, we quantified transport using flow cytometry. Enhanced green fluorescent protein (EGFP) is exposed to the extracellular face of the plasma membrane in both CCR5 and TNF constructs. This allows quantification of the kinetics of cell surface appearance using nonpermeabilized cells labeled with an anti-GFP antibody. This analysis confirmed that CCR5 is transported more slowly than TNF to the plasma membrane (Fig. 1D). Furthermore, it also revealed that once delivered at the plasma membrane, CCR5 is stable, while TNF rapidly disappears, consistent with our previous studies (16). Together, these results indicate that CCR5 and TNF have different transport characteristics that are likely sustained by distinct molecular machineries that could be selectively targeted.

(A) Synchronized transport of CCR5 (top) and TNF (bottom) in HeLa cells stably expressing Str-KDEL_SBP-EGFP-CCR5 or Str-KDEL_TNF-SBP-EGFP. Trafficking was induced by addition of biotin at 0 min. Scale bar, 10 m. (B) Dual-color imaging of the synchronized transport of SBP-EGFP-CCR5 and TNF-SBP-mCherry transiently coexpressed in HeLa cells. Streptavidin-KDEL was used as an ER hook. Release from the ER was induced by addition of biotin at 0 min. Scale bar, 10 m. (C) Magnification (2.8) of the Golgi complex region is displayed. Scale bar, 10 m. (D) Kinetics of arrival of CCR5 (magenta) or TNF (cyan) to the cell surface after release from the ER measured by flow cytometry. Ratio of cell surface signal divided by GFP intensity was used for normalization. a.u., arbitrary units. The mean SEM of three experiments is shown. See also movies S1 to S3.

To identify molecules that specifically inhibit the CCR5 plasma membrane delivery, we conducted high-content screenings of chemical libraries using HeLa cells stably expressing either RUSH-adapted CCR5 (Str-KDEL_SBP-EGFP-CCR5) or TNF (Str-KDEL_TNF-SBP-EGFP). They were plated in 384-well plates and incubated for 1.5 hours with small molecules (10 M) from the following two chemical libraries: (i) an approved drug collection of 1200 drugs from Prestwick Chemicals and (ii) a drug collection of 2824 drugs obtained from the U.S. National Cancer Institute (NCI). As the molecules were dissolved in dimethyl sulfoxide (DMSO), an identical concentration of DMSO was used as negative control. Brefeldin A (BFA), which blocks secretion (18), and nocodazole, which disrupts microtubules and perturbs Golgi organization (19), were used as additional controls. In addition, biotin was omitted in some wells to validate the screening procedure and the analysis. Transport to the cell surface was induced by incubation with biotin for 2 hours (for CCR5) or 45 min (for TNF) according to the determined delivery kinetics (see Fig. 1). The localization of the cargos was determined using GFP fluorescence, while the fraction of the cargo present at the cell surface was quantified by immunolabeling using an anti-GFP antibody on fixed, but nonpermeabilized, cells. Nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI) for imaging and segmentation purposes (Fig. 2A).

(A) Outline of the chemical screening strategy. (B) Micrographs from screening plates showing controls. DMSO without biotin and DMSO with biotin correspond to the conditions where no transport and normal transport occurred, respectively. HeLa cells stably expressing Str-KDEL_SBP-EGFP-CCR5 and Str-KDEL_TNF-SBP-EGFP are displayed in the top and bottom panels, respectively. Cargo at the plasma membrane was detected using anti-GFP antibodies on nonpermeabilized cells. (C and D) Clustering of molecules obtained after bioinformatics analysis of the Prestwick (C) and NCI (D) chemical library screening of CCR5 secretion. Below the dendrogram, each bar corresponds to a well of the plate. Molecules identified as hits were shifted one lane below for better visualization. BFA, brefeldin A; Noco, nocodazole. (E) Micrographs showing the three classes of hits detected. CCR5 and TNF hit corresponds to a molecule affecting transport of both CCR5 and TNF. CCR5-specific hit or TNF-specific hit corresponds to a molecule inhibiting only CCR5 or only TNF transport. HeLa cells stably expressing Str-KDEL_SBP-EGFP-CCR5 and Str-KDEL_TNF-SBP-EGFP are displayed in the top and bottom panels, respectively. Cargo at the plasma membrane was detected using anti-GFP antibodies on nonpermeabilized cells.

As expected, in the absence of biotin (DMSO without biotin), the GFP signal was restricted to the ER for both CCR5 and TNF, and almost no surface anti-GFP signal was visible (Fig. 2B). After incubation with biotin (DMSO with biotin), CCR5 and TNF reached the plasma membrane, as shown by a strong cell surface staining (see Fig. 2B). Using features obtained from image segmentation of these control conditions, a bioinformatics analysis was conducted to identify molecules from the Prestwick (Fig. 2C) and NCI libraries (Fig. 2D) that alter not only different parameters, such as CCR5 and TNF localization and plasma membrane delivery, but also cell organization or that induce cell death. Principal component analysis (PCA) and the resulting hierarchical clustering grouped conditions that altered secretion (i.e., DMSO without biotin, BFA with biotin, and nocodazole with biotin) and separated them from conditions inducing secretion (i.e., DMSO with biotin). The same approach was used to identify molecules from the libraries that altered transport and delivery of CCR5 or TNF. Several small molecules prevented secretion of both CCR5 and TNF (CCR5 and TNF hit). However, in addition to these generic inhibitors, several molecules specifically perturbed the secretion of either CCR5 (CCR5-specific hit) or TNF (TNF-specific hit) (Fig. 2E). This shows that the apparent qualitative and quantitative differences reported above that distinguish transport of CCR5 and TNF can be translated to specific inhibition.

The 15 strongest CCR5 hits (Table 1) were selected for further analysis. First, as a secondary screen, we evaluated their effects on the trafficking of two other chemokine receptors, CCR1 and CXCR4, closely related to CCR5. CCR5, CCR1, and CXCR4 belong to the class A subfamily (rhodopsin like) of GPCR, and CCR5 shares several ligands with CCR1 (namely, CCL3, CCL4, and CCL5). CCR1 and CXCR4 transport out of the ER was synchronized using the RUSH assay. The secretion of CCR1 and CXCR4 was slightly faster than that of CCR5, but like CCR5, they then remained stably expressed at the cell surface over several hours (Fig. 3A). To evaluate whether the 15 CCR5 hits also affect the delivery of CCR1 and CXCR4, we used an end-point analysis using the RUSH assay. After 2 hours of incubation with biotin, the presence of the cargo at the plasma membrane was quantitated using flow cytometry. CCR5 plasma delivery was monitored again, and the molecules were ranked according to their relative impact. Molecules 1 to 10 reduced the transport of CCR5 to the cell surface by less than 50%, while a stronger effect was observed for molecules 11 to 15. In particular, molecules 13, 14, and 15 reduced the cell surface delivery of CCR5 by more than 75% (Fig. 3B). These three molecules had only moderate effects on CCR1 and CXCR4 delivery (Fig. 3, C and D), demonstrating their specificity of action on the transport of CCR5 toward the cell surface. As an example, dual-color imaging of the synchronized transport of coexpressed CCR5 and CCR1 in cells treated or not with molecule 13 confirmed that it specifically inhibits CCR5 delivery (Fig. 3, E and F). Note that CCR5 was still observed in the ER and in the Golgi complex after more than 2 hours of biotin addition, indicating that molecule 13 inhibits the trafficking of CCR5 in the early secretory pathway. Together, these results demonstrate that molecules 13, 14, and 15 are not broad inhibitors of chemokine receptor transport but instead specifically target CCR5 transport.

(A) Kinetics of synchronized transport of three chemokine receptorsCCR5 (black), CCR1 (red), and CXCR4 (green)using the RUSH assay. Trafficking was induced by addition of biotin at time 0. Surface expression of CCR5, CCR1, and CXCR4 was measured by flow cytometry using an anti-GFP antibody. Ratio of cell surface signal to GFP intensity was used for normalization. The mean SEM of three experiments is shown. End-point measurement (2 hours) of the effects of the hit molecules on the trafficking of CCR5 (B), CCR1 (C), and CXCR4 (D) in HeLa cells. Cells were pretreated for 1.5 hours with molecules at 10 M. Cargo present at the cell surface 2 hours after release from the ER was measured by flow cytometry using an anti-GFP antibody. Ratio of cell surface signal to GFP intensity was used for normalization. The mean SEM of three experiments is shown. Real-time synchronized secretion of CCR5 and CCR1 was monitored using dual-color imaging in nontreated HeLa cells (E) and in HeLa cells pretreated for 1.5 hours with 10 M molecule 13 (F). Scale bars, 10 m.

Little is known about the key players controlling the CCR5 secretion and trafficking in the secretory pathway. CCR5 is a seven-transmembrane domain protein, with its N terminus facing the luminal/extracellular space and its C terminus in the cytoplasm (Fig. 4A). As the main differences between CCR1 and CCR5 are found in the C-terminal sequences, we examined the role of CCR5 cytoplasmic tail in mediating the effects of molecules 13, 14, and 15 on plasma membrane delivery. Chimeric receptors were constructed, whereby cytoplasmic tails of CCR5 and CCR1 were interchanged (Fig. 4B) and were tested in the RUSH assay in the presence of molecules 13, 14, and 15. First, all receptors either wild type (CCR5wt and CCR1wt) or chimeric (CCR5-CCR1tail and CCR1-CCR5tail) reach the cell surface with similar kinetics (Fig. 4C). However, incubation with molecules 13, 14, and 15 affected the secretion of the chimeras in different ways. The transport of both chimeras (CCR5-CCR1tail and CCR1-CCR5tail) was inhibited after exposure to molecule 15 by more than 40%, suggesting that the effect of this molecule is not targeted to the tail of CCR5. In contrast, molecules 13 and 14 inhibited the secretion of the constructs bearing the cytoplasmic tail of CCR5 (i.e., CCR5wt and CCR1-CCR5tail) by more than 40%. They were, however, quite inefficient against receptors bearing CCR1 tail (Fig. 4D). Although this inhibition was not as strong as the effect of these molecules on CCR5wt (40% inhibition for CCR1-CCR5 tail versus 90% for CCR5wt), this indicated that the presence of the cytoplasmic tail of CCR5 was necessary for the reduction of trafficking induced by molecules 13 and 14. The cytoplasmic tail of CCR5 contains three cysteine residues that require palmitoylation to ensure efficient secretion (20, 21). In contrast, the CCR1 cytoplasmic tail does not contain palmitoylated cysteine residues.

(A) Schematic representation of CCR5 with three palmitoylated cysteine residues indicated in blue. (B) Amino acid sequence of CCR5, CCR1, their chimeras, and the cysteine to alanine mutants used in this study. (C) Kinetics of the synchronized transport of CCR5/CCR1 chimeras to the cell surface measured by flow cytometry in HeLa cells transiently expressing the constructs. Release was induced by addition of biotin at time 0. The mean SEM of three experiments is shown. (D) End-point measurement (2 hours) by flow cytometry of the effects of molecules 13, 14, and 15 on the transport of the CCR5/CCR1 chimeras in HeLa cells after transient expression. Cells were pretreated for 1.5 hours with molecules at 10 M. The mean SEM of three experiments is shown. (E) Kinetics of the synchronized transport of CCR5 cysteine mutants to the cell surface measured by flow cytometry in HeLa cells transiently expressing the corresponding constructs. Release was induced by addition of biotin at time 0. The mean SEM of three experiments is shown. (F) End-point measurement (2 hours) by flow cytometry of the effects of molecules 13, 14, and 15 on the transport of CCR5 cysteine mutants. HeLa cells transiently expressing the cysteine mutants were pretreated for 1.5 hours with molecules at 10 M. The mean SEM of three experiments is shown. (G and H) Quantification of palmitoylation of either GFP-CCR5 or GFP-CCR5 Cys3A transiently expressed in HEK293T cells. [3H]Palmitate was incorporated for 4 hours in the presence of the compounds following a pretreatment with DMSO () and molecules 13, 14, and 15 for 30 min. A representative autoradiogram and immunoblot are shown (G), and the mean SEM of four experiments is shown.

To further study the role of the three cysteine residues in mediating the effect of molecules 13 and 14, a series of mutants were created with cysteine substituted by alanine, independently or in a combinatorial way (Fig. 4B). The kinetics of plasma membrane delivery of the CCR5 cysteine mutants were consistent with previous reports (20, 21). The secretion of the single cysteine mutants was decreased by 20%, while the secretion of the double and triple cysteine mutants was decreased by 50%, with the exception of the CCR5 C323A-C324A mutant that was decreased by only 20% (Fig. 4E).

We then tested the effect of molecules 13, 14, and 15 on the transport of the cysteine mutants. Molecule 13 did not reduce the secretion of CCR5 C321A-C323A, CCR5 C321A-C324A, and CCR5 Cys3A, while other mutants were affected (e.g., CCR5 C324A) (Fig. 4F). Similarly, although molecule 14 is more potent than molecule 13, it leads to the same relative inhibition. CCR5 C324A delivery was affected the strongest and to the same extent as CCR5wt. In contrast, in agreement with the results presented above, the inhibitory effect of molecule 15 was not affected by any of the cysteine mutation and relies on different CCR5 molecular features.

Because these cysteine residues were reported to be palmitoylated, we directly assessed the effects of molecules 13, 14, and 15 on CCR5 palmitoylation. In vivo metabolic labeling using radioactive palmitate of cells expressing either GFP-CCR5 or GFP-CCR5 Cys3A was performed (Fig. 4, G and H). Molecules 13 and 14 decreased the level of palmitoylated GFP-CCR5 by 70%. As expected, molecule 15 did not affect the palmitoylation level of GFP-CCR5.

As expected, CCR5 Cys3A showed a reduced level of palmitoylation (about 50%) compared to CCR5wt, although some palmitoylation signal was still observed. This may suggest that residual palmitoylation on cysteine other than Cys321, Cys323, and Cys324 may be occurring in the mutant. This residual signal was also decreased after incubation with molecules 13 and 14, while molecule 15 had no effect.

The palmitoyltransferase responsible for the palmitoylation of CCR5 is not known. We looked for pamitoyltransferases able to modify CCR5. DHHC3, DHHC7, and DHHC15 overexpression was found to increase palmitoylation of CCR5 (fig. S1A). Autopalmitoylation of DHHC3 and DHHC7 was inhibited to about 50% following incubation with molecules 13 and 14, whereas molecule 15 had no effect (fig. S1, B and C). These results suggest that molecules 13 and 14 may inhibit autopalmitoylation of DHHCs responsible for CCR5 palmitoylation and consequently palmitate transfer to CCR5.

Together, our results indicate that molecules 13 and 14 may share a similar mode of action inducing a strong reduction of CCR5 palmitoylation. In contrast, molecule 15 seems to affect the secretion of CCR5 by another, still elusive, mechanism.

To validate the effect of molecules 13, 14, and 15 on the delivery of CCR5 to the cell surface, we monitored the expression of endogenous CCR5 in human monocytederived macrophages (hMDMs) after overnight treatment by flow cytometry.

These molecules, alone or in combination, after overnight incubation induced a small but significant decrease of CCR5 cell surface expression (19.1 to 23.8%) compared with DMSO treatment. The cell surface expression of CXCR4, however, was not significantly modified under the same conditions (P > 0.05; Fig. 5A and fig. S2A). These three molecules, alone or in combination, also did not induce major cytotoxicity (fig. S2B).

Primary human macrophages differentiated for 4 days with rhM-CSF were treated during 18 hours with molecule 13 at 10 M, molecule 14 at 3 M, molecule 15 at 1 M, and molecules 14 and 15 at 1 M (or DMSO at 0.1%). (A) Cell surface expression of CCR5 was measured by flow cytometry with specific antibodies. (B) Principles of the HIV-1 entry test used (22). Inhibition of fusion of HIV-1ADA (R5 tropic strain) (C) or HIV-1VSVG (VSVG pseudotyped) (D) containing BlaM-Vpr (BV) with CCF2/AM primary macrophages mediated by compounds. Total p24 amount (supernatants and lysates) of HIV-1ADAinfected macrophages was measured by ELISA (E). Each black point represents one donor analyzed independently. Statistical analyses were performed using Prism software. A one-sample t test was applied, and significant P values (<0.05) are indicated for each treatment compared to DMSO in (A), (C), and (E). The absence of a P value indicates that the results were not significantly different. Error bars correspond to SEM.

CCR5 is critical for HIV particles to bind target cells and mediate their entry by fusion. HIV entry was then investigated using the BlaM-Vpr fusion assay (22) after overnight treatment with molecules 13, 14, and 15 (Fig. 5B). The fusion of HIV-1 ADA (a strain that uses CCR5 as a co-receptor) with hMDMs was strongly decreased upon incubation with these molecules (by 45.7 to 78.0%) when compared with DMSO (Fig. 5C). Treatment with both molecules 14 and 15 led to further perturbation of viral entry. Under the same conditions, the entry of a vesicular stomatitis virus glycoprotein (VSVG)pseudotyped virus (used as a CCR5-independent control) was not affected (Fig. 5D).

These data indicate that a small reduction of neosynthesized CCR5 expressed at the cell surface is sufficient to significantly affect R5-tropic HIV-1 entry into human macrophages. To further assess whether the perturbation of viral entry was sufficient to alter the viral cycle and production, the total amount of p24 capsid protein produced by macrophages was quantified. Viral production and secretion were both strongly reduced by 31.4 to 76.0% (Fig. 5E). Together, these results demonstrate that molecules specifically reducing CCR5 secretion at the cell surface impair HIV-1 infection of human macrophages.

The development of many pathologies relies on the efficient intracellular transport of proteins. Transport to the cell surface is particularly important, as adhesion proteins, channels, proteases, or receptors, for example, have to reach the plasma membrane to fulfill their functions. We thus reasoned that, instead of looking for molecules able to perturb their function when expressed at the plasma membrane, we may target their transport pathway to prevent their normal expression at the cell surface, hence exploring a novel therapeutic option. This option has been underexploited for at least two reasons.

On the one hand, it has long been thought that the diversity of secretory routes was low and that the bulk flow of membranes was responsible for most nonspecialized pathways. We now know that the diversity of pathways is high with several coats, adaptors, Golgi matrix proteins, or molecular motors active at the same transport stage. In addition, not only the molecular machinery of transport may be targeted but also the cargo itself may be targeted. Perturbation of its folding, modifications, or interaction with transport partners or membrane partitioning may perturb, or prevent, its transport.

On the other hand, as compared to the power and precision of the study of endocytosis and retrograde pathways, the diversity of the secretory pathway has long been difficult to study and target. Quantitative monitoring of the transport of proteins was only possible for selected proteins, and assays were hardly amenable to screening. The development of the RUSH assay (16) that allows us to cope with the diversity now allows us to overcome this limitation and specifically screen for inhibitory molecules.

To validate this new paradigm, we used the RUSH assay to screen for small molecules able to inhibit specifically the transport of CCR5 to the cell surface. CCR5 is essential for R5-tropic HIV-1 strain infections of human cells and represents a valuable therapeutic target. Individuals devoid of CCR5 expressed at the cell surface are resistant to HIV-1 infection, while people heterozygous for this deletion, who show a reduction of CCR5 cell surface expression, display slower progression of HIV infection (23). The absence of functional CCR5 seems not to be deleterious to these individuals, although increased susceptibility to infections, such as West Nile virus (24, 25) and tick-borne encephalitis (26), has been reported.

Several large-scale screens were conducted to identify protein regulators of HIV-1 infection, but none of them led to the identification of CCR5 secretion regulators (2730). Little is known about the molecular players that regulate the secretion of CCR5. The involvement of the small guanosine triphosphatases (GTPases) Rab1, Rab8, and Rab11 has been proposed (31). Rab43 was recently reported to play a role in the export of several class A GPCRs from the ER (32), although its role in controlling the transport of CCR5 was not evaluated. The importance of palmitoylation of CCR5 was also revealed (20, 21). However, the palmitoyltransferase responsible for palmitoylation of CCR5 remains unknown.

RUSH-based differential screening, using TNF as a control reporter, allowed the identification of a set of inhibitory molecules. In particular, three molecules that strongly perturbed CCR5 transport were found to have no, or only moderate, effects on the secretion of the closely related CCR1 and CXCR4. Molecules 13, 14, and 15 were active on endogenous CCR5 secretion and reduced HIV-1 infection of human macrophages isolated from donors. Molecules 13, 14, and 15 are cadmium chloride (CdCl2), zinc pyrithione (C10H8N2O2S2Zn), and tetrocarcinA (C67H96N2O24), respectively. Cd and zinc pyrithione were found to share similar mechanisms of action because they both rely on the C-terminal cytoplasmic tail of CCR5 and, in particular, the cysteine residues in positions 321, 323, and 324 and inhibit CCR5 palmitoylation. At the molecular level, Cd affects protein function by binding to thiol groups. Direct binding of Cd to cysteine residues may prevent efficient palmitoylation of CCR5, hence affecting its transport, as previously reported (20, 21). Alternatively, palmitoyltransferase may represent the target of these molecules. Palmitoylation occurs in a two-step mechanism. First, palmitoylcoenzyme A (CoA) is transferred to the DHHC cysteine-rich domain, leading to autoacylation of the palmitoyltransferase (33). In the second step, the palmitoyl group is transferred to the cysteine residues of the target protein. DHHC contains bound Zn (34). Cd is known to displace essential metals like Zn in metalloproteins [see (35) for review]. Zn pyrithione is an antifungal and antibacterial zinc chelator. As these two molecules may affect Zn-dependent enzymes, it is tempting to propose that Zn pyrithione and Cd bind to, and perturb, the palmitoyltransferase responsible for palmitoylation of CCR5.

Tetrocarcin A represents another class of CCR5 inhibitory molecule because it does not depend on the C-terminal tail and does not affect palmitoylation. It is an antibiotic (36), which antagonizes Bcl-2 anti-apoptotic function (37). The putative mode of action of tetrocarcin A on the trafficking of CCR5 remains unclear. Further studies are required to obtain a clearer view of tetrocarcin As mechanism of action, but it may represent an interesting unprecedently identified class of CCR5 inhibitory molecule.

The three molecules identified in our study exhibited inhibitory effects on HIV-1 infection for R5-tropic viruses at both the level of virus entry and viral particle production in human macrophages. Of major concern in anti-HIV therapies, particularly those targeting a receptor such as CCR5, is the emergence of escape viruses. To date, maraviroc is the only approved anti-HIV therapy targeting CCR5. Reports of the emergence of resistant viruses have since been published (38, 39). Targeting the host secretory pathway may avoid the emergence of such escape viruses. The molecules identified in this study induced a decrease in secretion of CCR5, resulting in a reduced expression at the cell surface. Reduction was small in primary cells but may target the conformations recognized by HIV-1. Because such molecules target the cellular machinery, viruses are less likely to escape. For example, if mutations were to arise in R5-tropic viruses, they would not be able to induce normal secretion of CCR5 and restore infection. This is a clear advantage over treatments based on competition or allosteric modifications. Combinatorial treatment may also reduce the amount of CCR5 at the cell surface and may therefore improve the efficacy of blocking antibodies or maraviroc.

In conclusion, our study confirms our model that proposes that the diversity of secretory routes can be exploited to identify molecules that specifically affect the transport of a given receptor. Targeting the transport and the function of target protein may thus represent a novel therapeutic paradigm.

HeLa cells were cultured in Dulbeccos modified Eagles medium (DMEM) (Thermo Fisher Scientific) supplemented with 10% fetal calf serum (FCS; GE Healthcare), 1 mM sodium pyruvate, and penicillin and streptomycin (100 g/ml) (Thermo Fisher Scientific). HeLa cells stably expressing Str-KDEL as a hook and either SBP-EGFP-CCR5 or TNF-SBP-EGFP as a reporter were obtained by transduction with lentiviral particles produced in human embryonic kidney (HEK) 293T. A clonal population was then selected using puromycin resistance and limiting dilution.

Human primary macrophages were isolated from the blood of healthy donors (Etablissement Franais du Sang Ile-de-France, Site Trinit, #15/EFS/012) by density gradient sedimentation in Ficoll (GE Healthcare), followed by negative selection on magnetic beads (catalog no. 19059, Stem Cells) and adhesion on plastic at 37C for 2 hours. Cells were then cultured in the presence of complete culture medium [RPMI 1640 supplemented with 10% FCS (Eurobio), streptomycin/penicillin (100 g/ml), and 2 mM l-glutamine (Invitrogen/Gibco)] containing recombinant human macrophage colony-stimulating factor (rhM-CSF) (10 ng/ml) (R&D Systems) (40) for 4 to 5 days.

The DNA sequences corresponding to human CCR5 (P51681, UniProt), CCR1 (P322246, UniProt), and CXCR4 (P61073, UniProt) were purchased either as synthetic genes (GeneArt, Thermo Fisher Scientific) or as complementary DNA (cDNA) (Open Biosystems). They were cloned into RUSH plasmids downstream of Str-KDEL_IL2ss-SBP-EGFP or Str-KDEL_IL2ss-SBP-mCherry using Fse I and Pac I restriction enzymes (16). Str-KDEL_TNF-SBP-EGFP and Str-KDEL_TNF-SBP-mCherry plasmids have been described elsewhere (16). The CCR5-CCR1tail and CCR1-CCR5tail chimeras were generated from synthetic genes (GeneArt, Thermo Fisher Scientific) and cloned between Fse I and Pac I restriction sites. Mutations from cysteine to alanine in CCR5 tail were generated either by polymerase chain reaction assembly or by the insertion of small synthetic DNA fragments (gBlock from Integrated DNA Technologies). Protein sequences of chimeras and mutants are depicted in Fig. 4B. GFP-CCR5 and GFP-CCR5-Cys3A bear the interleukin-2 (IL-2) signal peptide upstream of GFP and either CCR5 wild-type or CCR5-Cys3A downstream of GFP. A modified version of pEGFP (Clontech) was used for their generation. All plasmids used in this study were verified by sequencing. HeLa cells were transfected using calcium phosphate as described previously (41).

The HIV-1ADA provirus plasmid (pHIV-1ADA) expressing the env gene of the HIV-1 R5-tropic strain ADA has been described elsewhere (42). pNL4.3 pNL4.3f was a gift from P. Benaroch (Institut Curie, Paris, France). The plasmid expressing the env gene of VSVG (pEnvVSVG) was a gift from S. Benichou (Institut Cochin, Paris, France).

Chemical compounds were purchased from Prestwick Chemicals (Illkirch, France) corresponding to 1200 approved drugs [U.S. Food and Drug Administration (FDA), European Medicines Agency (EMA), and other agencies] dissolved in DMSO at 10 mM. A second library of 2824 compounds was provided by the NCI chemical libraries as follows: diversity set III, 1596 compounds; mechanistic set, 879 compounds; approved oncology drugs set II, 114 agents; and natural products set II, 235 agents. All NCI stock compounds were received in DMSO at a concentration of 10 mM except for mechanistic set (at 1 mM) (in a 96-well plate format). All libraries were reformatted in-house in 384-well plates. BFA and nocodazole were purchased from Sigma-Aldrich and used as control molecules.

For compound screening, cells (5.0 103 per well) were seeded on black clear-bottom 384-well plates (ViewPlate-384 Black, PerkinElmer) in 40 l of complete medium. The screen was performed at the similar early cell passages (2) for both replicates. Twenty-four hours after cell seeding, compounds were transferred robotically to plates containing cells using TeMO (MCA 384) (TECAN) to a final concentration of 10 M and 0.5% of DMSO. Controls were added to columns 1, 2, 23, and 24 of each plate. After 90 min of compound incubation, cells were treated with 40 M biotin for 45 min (for TNF) or 120 min (CCR5) at 37C. Compound screens were performed in two independent replicate experiments at the BioPhenics Screening Laboratory (Institut Curie).

Cells were processed immediately after biotin treatment for immunofluorescence. Briefly, cells were fixed with 3% paraformaldehyde for 15 min and quenched with 50 mM NH4Cl in phosphate-buffered saline (PBS) solution for 10 min. For cell surface labeling, cells were incubated with anti-mouse GFP (1:800, Roche, catalog no. 814 460 001) diluted in 1% bovine serum albumin blocking solution for 45 min. Cells were then washed with PBS and incubated for 1 hour with Cy3-conjugated anti-mouse (1:600; catalog no. 715-165-151, Jackson ImmunoResearch). Nuclei were counterstained with DAPI (Life Technologies) for 45 min.

Image acquisition was performed using an INCell 2200 automated high-content screening fluorescence microscope (GE Healthcare) at a 20 magnification (Nikon 20/0.45). Four randomly selected image fields were acquired per wavelength, well, and replicate experiment. Image analysis to identify cells presenting predominantly cell surface or intracellular CCR5 and/or TNF localization was performed for each replicate experiment using the Multi Target analysis application module in the INCell analyzer Workstation 3.7 software (GE Healthcare). Results were reported as mean values from four image fields per well.

Fields with less than 50 cells were filtered out after image segmentation. All cell features extracted from the image analysis step were normalized within each plate by subtracting the median value of control wells containing DMSO and biotin and dividing by the median absolute deviation of the same controls.

PCA was applied to normalized data for each dataset separately as a denoising method. From this PCA, the coordinates of wells in the subspace, defined by principal component with eigenvalue greater than one, were used to compute the Euclidean distance between wells. Hierarchical clustering with Wards agglomerative criterion was then applied on these distances. Two groups were identified from the clustering. The group with the positive controls was defined as the hits list. All analyses were performed using R statistical software.

Cells (1 106) expressing RUSH constructs per condition were treated with 40 M biotin to induce trafficking of the reporter and incubated at 37C. At the desired time point, cells were washed once with PBS supplemented with 0.5 mM EDTA and incubated with PBS supplemented with 0.5 mM EDTA for 5 min at 37C. Plates containing cells were then put on ice. Cells were resuspended and transferred to ice-cold tubes for centrifugation at 300g for 5 min at 4C. Cell pellets were resuspended in cold PBS supplemented with 1% FCS for blocking and incubated for at least 10 min. After centrifugation, cell pellets were incubated in a solution of Alexa Fluor 647coupled anti-GFP (catalog no. 565197, BD Pharmingen) prepared in PBS supplemented with 1% serum for 40 min on ice. Cells were washed three times in cold PBS and 1% serum and fixed with 2% paraformaldehyde (Electron Microscopy Sciences) for 15 min. Cells were washed twice with PBS before acquisition with an Accuri C6 flow cytometer. The intensity of the GFP signal (FL1) and the Alexa Fluor 647conjugated antibody (FL4) was measured on GFP-positive cells. The FL4 signal was divided by the FL1 signal to normalize for the transfection level. The FL4/FL1 ratio for each condition was then normalized to the DMSO control.

HeLa cells expressing either stably or transiently RUSH constructs were grown on 25-mm glass coverslips. Before imaging (after treatment), coverslips were transferred to an L-shape tubingequipped Chamlide chamber (Live Cell Instrument). Trafficking was induced by exchanging Leibovitz medium (Life Technologies) with prewarmed Leibovitz medium supplemented with 40 M biotin (Sigma-Aldrich). Imaging was performed at 37C in a thermostat-controlled chamber using an Eclipse 80i microscope (Nikon) equipped with a spinning disc confocal head (Perkin) and an Ultra897 iXon camera (Andor). Image acquisition was performed using MetaMorph software (Molecular Devices). Maximum intensity projections of several z slices are shown (Figs. 1, A and C, and 3, E and F).

HEK293T cells were transfected with GFP-CCR5 or GFP-CCR5 Cys3A mutant. Twenty-four hours after transfection, cells were labeled with [3H]palmitate (0.5 mCi/ml) for 4 hours. Cells were incubated with 10 M of individual compounds for 30 min before labeling and for 4 hours together with [3H]palmitate. For compound (), DMSO was added. For fluorography, after SDSpolyacrylamide gel electrophoresis of cell lysates, the gels were exposed for 11 to 16 days. n = 4 independent experiments. The mean SEM is shown.

The following antibodies were used: Alexa Fluor 647coupled anti-GFP (catalog no. 565197, BD Pharmingen); Alexa Fluor 647 rat immunoglobulin G2a (IgG2a), isotype control (catalog no. 400526); Alexa Fluor 647 anti-human CD195 (catalog no. 313712) from BioLegend; phycoerythrin (PE) mouse IgG1, isotype control (catalog no. 550617); PE mouse IgG2a, isotype control (catalog no. 553457); fluorescein isothiocyanate (FITC) mouse IgG2a, isotype control (catalog no. 555573); FITC mouse IgG1 isotype control (catalog no. 555748); PE mouse anti-human CD184 (catalog no. 555974); FITC mouse anti-human CD4 (catalog no. 555346); FITC mouse anti-human CD3 (catalog no. 555332); and PE mouse anti-human CD11b/Mac1 (catalog no. 555388) from BD Biosciences.

The amount of lactate dehydrogenase (LDH) released into supernatants was quantified using a Pierce LDH Cytotoxicity Assay kit (catalog no. 88953, Thermo Fisher Scientific). The Alliance HIV-1 p24 ELISA (enzyme-linked immunosorbent assay) Kit (catalog no. NEK050, PerkinElmer) was used to determine the amount of capsid p24 protein in supernatants and cell lysates. LDH and p24 quantification were performed following the manufacturers instructions.

Cells were washed once with cold PBS and detached using 2 mM EDTA in PBS on ice. To analyze cell surface expression of receptors, cells were washed with PBS and stained with antibodies (see above) for 1 hour on ice in PBS and 2% FCS. Cells were then washed twice in cold PBS and analyzed by flow cytometry (Accuri C6, BD Biosciences). Propidium iodide (catalog no. P4864, Sigma-Aldrich), diluted in cold PBS at 0.1 g/ml, was added to cells just before analysis.

Viral stocks. HIV-1 particles or pseudoparticles containing BlaM-Vpr were produced by cotransfection of HEK293T cells with proviral plasmids (pHIV-1ADA or pNL4.3Env and pEnvVSVG), pCMV-BlaM-Vpr encoding -lactamase fused to the viral protein Vpr, and pAdvantage, as described elsewhere (22). After 48 hours of culture at 37C, the virus-containing supernatant was filtered and stored at 80C. Pseudoparticles containing BlaM-Vpr were ultracentrifuged at 60,000g for 90 min at 4C on a sucrose cushion (20%). The virion-enriched pellet was resuspended in PBS and aliquoted for storage at 80C. The amount of p24 antigen in the supernatants was quantified using an ELISA kit (PerkinElmer). HIV-1 infectious titers were also determined in HeLa TZM-bl cells (LTRlacZ, NIH reagent program) by scoring -lactamasepositive cells 24 hours after infection, as described previously (43).

BlaM-Vpr viral fusion assay. After 18 hours of incubation with compounds, 1.5 105 primary macrophages were inoculated with the BlaM-Vprcontaining viruses (15 ng of p24 Gag) by 1-hour spinoculation at 4C and incubated for 2.5 hours at 37C. Cells were then loaded with CCF2/AM, the BlaM-Vpr substrate (2 hours at room temperature), and fixed. Enzymatic cleavage of CCF2/AM by -lactamase (22) was measured by flow cytometry (LSR II, BD), and data were analyzed with FACSDiva software. The percentage of fusion corresponds to the percentage of cells displaying increased cleaved CCF2/AM fluorescence (447 nm).

HIV-1 infections. After treatment for 18 hours, human primary macrophages were infected with HIV-1ADA in six-well trays with a multiplicity of infection of 0.2, incubated for 24 hours at 37C, and washed with culture medium without FCS. Cells were cultured for 24 hours at 37C in complete culture medium supplemented with library compounds. After 24 hours, supernatant was harvested, and cells were lysed for 15 min at 4C in lysis buffer [20 mM tris-HCl (pH 7.5), 150 mM NaCl, 0.5% NP-40, 50 mM NaF, and 1 mM sodium orthovanadate, supplemented with complete protease inhibitor cocktail; Roche Diagnostic]. Lysates were centrifuged at 10,000g for 10 min at 4C, and the quantity of HIV-1 p24 in the postnuclear supernatants was determined by ELISA.

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/5/10/eaax0821/DC1

Fig. S1. Molecules 13 and 14 inhibit autopalmitoylation of DHHC3 and DHHC7.

Fig. S2. Molecules 13, 14, and 15 do not alter CXCR4 surface expression or induce cytotoxicity in primary macrophages.

Movie S1. Synchronized transport of CCR5.

Movie S2. Synchronized transport of TNF.

Movie S3. Synchronized transport of CCR5 and TNF.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

Acknowledgments: We thank A. Mularski and C. Rabouille for carefully reading and commenting on the manuscript. Funding: We acknowledge the Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, a member of the French National Research Infrastructure, France-BioImaging (ANR10-INBS-04). This work was supported by grants from CNRS, INSERM, Universit Paris Descartes, Agence Nationale de la Recherche (2011 BSV3 025 02), and Agence Nationale de Recherches sur le Sida et les Hpatites (ANRS, AO2012-2) to A.B., F.P., and F.N., and Fondation pour la Recherche Mdicale (FRM DEQ20130326518) to F.N. This work has received support under the Investissements dAvenir program launched by the French government and implemented by ANR with the references ANR-10-LABX-62-IBEID and ANR-10-IDEX-0001-02 PSL. Author contributions: G.B., A.B., F.N., and F.P. designed the study and analyzed data. G.B., F.H., I.S., Y.F., and M.F. performed experiments and analyzed data. S.T., A.L., and E.D.N. set up, performed, and analyzed the chemical screening. P.G. conducted the bioinformatics analysis of the screens. G.B., F.H., A.B., F.N., F.H., and F.P. wrote the manuscript, which all coauthors commented on. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

See more here:
Targeting CCR5 trafficking to inhibit HIV-1 infection - Science Advances