5 Stem Cell Therapy Benefits, Uses & How It Works – Dr. Axe

Fact Checked

This Dr. Axe content is medically reviewed or fact checked to ensure factually accurate information.

With strict editorial sourcing guidelines, we only link to academic research institutions, reputable media sites and, when research is available, medically peer-reviewed studies. Note that the numbers in parentheses (1, 2, etc.) are clickable links to these studies.

The information in our articles is NOT intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice.

This article is based on scientific evidence, written by experts and fact checked by our trained editorial staff. Note that the numbers in parentheses (1, 2, etc.) are clickable links to medically peer-reviewed studies.

Our team includes licensed nutritionists and dietitians, certified health education specialists, as well as certified strength and conditioning specialists, personal trainers and corrective exercise specialists. Our team aims to be not only thorough with its research, but also objective and unbiased.

The information in our articles is NOT intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice.

By Jillian Levy, CHHC

March 23, 2018

Clinical research regarding stem cell therapy benefits has grown dramatically in recent decades. The most promising thing about stem cell therapy and similar prolotherapy treatments including PRP is that they offer relief for patients with chronic pain and difficult-to-heal injuries, all without medications or risky reconstructive surgeries. Today researchers are also uncovering ways to apply stem cell treatments for common chronic conditions such as heart disease,neurodegenerative diseases and diabetes.

The most common use of stem cell treatments in prolotherapy is managing pain. Most consider stem cell therapy to be a form of interventional pain-management, meaning its a minimally invasive technique. Treatment involves injecting stem cells (along with an anesthetic and sometimes other substances) around painful and damaged nerves, tendons, joints or muscle tissue.

What specific types of conditions can stem cell therapy help treat? Some of the most common include osteoarthritis knee pain, tennis elbow, shoulder pains or rotator cuff injuries, tendonitis, Achilles tendon injuries and now cardiovascular diseases likeatherosclerosis.

There are now more options available to patients than ever before for various types of prolotherapy treatments, but the type of prolotherapyI recommend the most is the unique approach to stem cell therapy offered by the Regenexxclinic. I have personally visited the Regenexx clinic in the Cayman Islands to receive treatments performed by Dr. Chris Centeno, Dr. John Schultz and Dr. John Pitt for back and tendon injuries. The form of stem cell therapy offered by these doctors is considered to be one of themost thoroughly researched and effective in the world.

Stem cell therapy is a type of treatment option that uses a patients own stem cells to help repair damaged tissue and repair injuries. Its usually performed relatively quickly through injections, and is a simple outpatient or in office procedure.

This type of treatment has also been found to help:

According to the National Institute of Health,

Stem cells are important for living organisms for many reasons. In the 3- to 5-day-old embryo, called a blastocyst, the inner cells give rise to the entire body of the organism, including all of the many specialized cell types and organs such as the heart, lungs, skin, sperm, eggs and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for other cells that are lost through normal wear and tear, injury, or disease.

The California Stem Cell Agency reports that there is no limit to the types of diseases that could be treated with stem cell research. Because of their amazing abilities to help with regrowth, stem cell therapy treatments are now being used (or continuously researched) in regards to treating:

Stem cells are usually taken from one of two areas in the patients body: bone marrow or adipose (fat) tissue in their upper thigh/abdomen. Because its common to remove stem cells from areas of stored body fat, some refer to stem cell therapy as Adipose Stem Cell Therapy in some cases. (1)

Once stem cells from removed from one of these locations, they are placed in a centrifuge machine that spins them very, very quickly and concentrates the substances that are most valuable (including up to seven different types of natural growth factors). The sample of concentrated stem cells is then injected directly into the patients affected, painful area allowing the cells growth factors to go to work immediately, building new skin cells, connective tissue and so on.

What exactly makes stem cells so beneficial and gives stem cell injections the power to do this healing? Stem cells have the following unique characteristics, uses and healing abilities:

The type of stem cells being used in the most cutting-edge orthopedic practices including those offered at the Regenexx clinic mentioned above are called Mesenchymal stem cells (MSCs). A growing body of research shows that MSCs have the capability of differentiating and forming new orthopedic tissues that make up muscle, bones, cartilage and tendons, ligaments and adipose tissue. (3)

Research suggests that in treating orthopedic problems,fat-derived MSCs tend to under-perform bone marrow derived stem cells, therefore bone derived is the preferred method. (4) This is especially true when bone marrow cells are dramatically concentrated using advanced centrifuge equipment. Certain studies have found that these advanced samples can contain up to 25 different growth factors and other beneficial rebuilding substances.

In studies regarding orthopedic care such as those used for cartilage replacement,bone repairand soft-tissue repair bone marrow stem cells injections have been found to: reduce chronic pain, heal stubborn injuries, improve functionality and return patients to their normal routine sometimes within just one week.

Wondering if MSCs for orthopedic injuries are safe? There is no evidence of overgrowth of MSCs in damaged tissue or reason to believe theres risk for tumor growth. Advanced clinics such as Regenexx actually count cells before injecting them and carefully monitor progress. According to research used by Regenexx, MSCs safely stop proliferating once they physically contact each other, because this signals to them that the affected area has reached its full potential in growth. (5)

Cardiovascular diseases can deprive heart tissue of oxygen and cause scar tissue to form which changes blood flow/blood pressure. Research suggests that stem cells taken from adult bone marrow have the ability to differentiate into those needed to repair the heart and blood vessels, thanks to the secretion of multiple growth factors. Several ways in which stem cell therapy is now being used and further researched in regards to improving recovery of heart disease are:

Although more research is needed to assess the safety and efficacy of this approach, stem cell types used in heart disease treatment include: embryonic stem (ES) cells, cardiac stem cells,myoblasts (muscle stem cells), adult bone marrow-derived cells, umbilical cord blood cells, mesenchymal cells (bone marrow-derived cells) and endothelial progenitor cells (these form the interior lining of blood vessels).

Studies have found that stem cell treatments can help improve the growth of healthy new skin tissue, improve collagen production, stimulate hair growth after loss or incisions, and help replace scar tissue with newly formed healthy tissue.

One of the ways stem cells help facilitate wound healing is by increasingcollagen concentrations in the skin, which shrinks as it matures and thereby strengthens and tightens the damaged area. This same mechanism also applies to treating connective tissue injuries related to collagen/cartilage loss, such as those caused by osteoarthritis or overuses that affect ligaments or tendons.

Recent progress in the treatment of diseases like Parkinsons, Huntingtons, Alzheimers and stroke recovery show that transplanted adult stem cells can be used to form new brain cells, neurons and synapses following cognitive degeneration or brain injuries. (6) Research conducted by the Research Center for Stem Cell Biology and Cell Therapy in Sweden is still underway, but current findings show that stem cells can improve synaptic circuits, optimize functional recovery, offer relief from degeneration symptoms, slow down disease progression and potentially even more.

Some of the ways that stem cell injections/grafts work in neurodegeneration treatment are: normalizing striatal dopamine release, impairing akensia (loss of voluntary movement), replacing neurons destroyed by the ischemic lesions following strokes and halting destruction of nigrostriatal dopaminergic neurons.

Immune rejection is the term used to describe damage to healthy tissue and cells in patients with autoimmune disorders and other inflammatory conditions. In people who suffer from type1 diabetes, for example, the cells of the pancreas that normally produce insulin are destroyed by the patients own immune system; in people with thyroid disorders, the thyroid gland is attacked and damaged.

Research continues to show us that certain adult stem cells are capable of differentiating and producing needed cells, such as insulin-producing cells that eventually could be used in with people diabetes. This strategy is still being researched extensively and is not yet widely available, as scientists continue to experiment with reliable strategies for generating new cells/tissues that will not be rejected or harm the patient once implanted.

Meanwhile, a promising clinical trial led by Dr. Richard Burt of Northwestern University that explores the potential benefits of stem cell therapy for multiple sclerosis is underway as of March 2018. The 110 patients participating either received a drug treatment or hematopoietic stem cell transplantation (HSCT).The clinical trial looks promising given that after one year of treatment only one relapse occurred among patients in the stem cell group compared with 39 relapses in the drug treatment. And, after about three years, the stem cell transplants had a 6 percent failure rate compared with a failure rate of 60 percent in the control (drug treatment) group.

The researchers note that stem cell therapy doesnt work for all cases of MS and its not an easy process. First patients must undergo chemotherapy to destroy their faulty immune system. Then stem cells that help make blood through a process called hematopoiesis are removed from the patients bone marrow and reinfused into the patients bloodstream. These fresh stem cells, which are not affected by MS, rebuild the patients immune system. Despite this challenging process, preliminary results demonstrate that this could be an effective treatment in the future. (7, 8)

For decades researchers and doctors primarily used two kinds of stem cells taken from animals and humans, especially when they were still embryos (not yet born). These are calledembryonic stem cells and non-embryonic (somatic or adult) stem cells. In the late 1990s, it was discovered that stem cells could be taken from human embryos and grown inside of laboratoriesfor reproductive purposes, including for in vitro fertilization.

Then in 2006 a breakthrough discovery was made that some specialized adult stem cells could be reprogrammed and used in many other ways to help repair damaged tissue. These are referred to as induced pluripotent stem cells (iPSCs) and are the type used in many of the treatments described above.There remains a lot to learn about the potential uses of stem cell therapies, and how scientists can continue to explore transforming unspecialized adult stem cells into the types of specialized cells needed.

The NIH reports that in future years some of the primary goals of stem cell therapy research are to: identify howundifferentiated stem cells become the differentiated cells that form the tissues and organs, determine how stem cells can turn humangenes on and off, learn to predictably control cell proliferation and differentiation, and investigate more uses for stem cells in serious medical conditions such as cancerand birth defects.

The hope going forward is that stem cells can also be used as a renewable source of replacement cells and tissues to treat common and serious diseases without the need for organ transplants or surgeries, including: maculardegeneration, spinal cord injury, stroke, burns, heart disease, diabetes, osteoarthritis, rheumatoid arthritis and cancer.

Cancer treatment is a particular important area under investigation, as early studies are showing that stem cells are safe and well-tolerated in patients with acute and chronic leukemia, lymphoma, multiple myeloma and other cancers. (9)

Stem cell treatments are offered by various doctors who practice pain-management and other techniques, including orthopedics and anesthesiologists.Depending on the type of treatment needed, its also possible to visit a neurologist, cardiologist, etc.Commonly these treatments are offered at clinics with ateam of doctors who work together to specialize in diagnosing, preventing and/or correcting a range of musculoskeletal, neurological or connective tissue disorders/injuries.

If youre planning on visiting a doctor for pain management, look for a physician who has board certification through an organization like the American Board of Anesthesiology orAmerican Board of Pain Medicine. I recommend viewing this Physician Finder tool to locate a practitioner who performs the advanced type of stem cell applications described above.

Personally, I most suggest checking out Regenexx, one of the only organizations to run large-scale analysis of patient stem cell procedure outcome data. It has published numerous findings from tracking their own patients on their website. Much more detailed information on improvements that can be expected following PRP procedures including those for knee meniscus, arthritis, hip dysfunction, knee pain, wrist/hand injuries, ankle/foot pain and shoulder/rotator injuries can be accessed through Regenexx directly.

Once you find a qualified physician, heres a brief overview of what you can expect from stem cell therapy treatments:

Although stem cell treatment is considered to be very safe, there are also side effects that are possible. Make sure to find a qualified practitioner and let them know if your experience following a treatment does not sound like the typical one described above.Like other types of non-invasive treatments and prolotherapy techniques, some mild side effects after injections are normal. Side effects of stem cell treatments can sometimes include:

From the sound of it, you might think leaky gut only affects the digestive system, but in reality it can affect more. Because Leaky Gut is so common, and such an enigma, Im offering a free webinar on all things leaky gut. Click here to learn more about the webinar.

Dr. Josh Axe is on a mission to provide you and your family with the highest quality nutrition tips and healthy recipes in the world...Sign up to get VIP access to his eBooks and valuable weekly health tips for FREE!

Free eBook to boost metabolism & healing

30 Gluten-Free Recipes & detox juicing guide

Shopping Guide & premium newsletter

Read more:
5 Stem Cell Therapy Benefits, Uses & How It Works - Dr. Axe

Stem Cell Therapy in Dallas, TX | National Stem Cell Centers

The doctors affiliated with National Stem Cell Centers in Dallas, TX specialize in harvesting tissue and having the cells processed at our registered tissue processing lab.

The physicians follow compliant protocols where the tissue is not manipulated and there is no tissue or cell expansion.

We also do not use enzymes as per FDA guidelines.

Stem cell procedures hold great potential for the management of joint pain, arthritis, hair loss, cosmetic and other disorders as well as auto-immune, renal, and neurological disorders.

There are various types of stem cells, particularly as they pertain to potential procedures, including umbilical cord cells, adipose (fat-derived), amniotic cells, placenta, bone marrow, exosomes, and others.

The physician will go over your options during your complimentary consultation.

Dr. Baker is a general surgeon by training and a native of Northeast Texas.

His general surgery training makes him uniquely qualified as an excellent stem cell physician.

After graduating from the University of Arkansas with the highest honors,

Dr. Baker attended the University of Texas Medical School at Houston where he was awarded the prestigious Parents and Alumni Scholarship.

During medical school, Dr. Baker was selected to participate in the competitive summer research program and remained active in research throughout medical school.

Following medical school and research commitments, Dr. Baker moved to Phoenix, Arizona where he began his surgical education. It was in the Scottsdale area that Dr. Baker began to hone his artistic eye for body sculpting. Dr. Baker also garnered broad experience in regenerative medicine around this time as aesthetic improvement and restorative complementary medicine techniques often go hand in hand.

In the six years since Dr. Baker has treated thousands of cosmetic patients and a near equal quantity of functional medicine patients. He strives to remain on the cutting edge through continued education and a meticulous attention to detail for all of his patients with a willingness to think outside the box and look for options that traditional medicine might otherwise not consider.

Dr. Thiele is a General Surgeon with five years of training in general surgery.

He is a Diplomate of the American Board of Management Wound which has helped hone his hair transplant techniques including FUT, graft harvesting, recipient site making, anesthesia, pain management and wound healing.

He has worked as a Physician at the East Texas Medical Center and Mother Francis Hospital in Tyler, and served as a Physician with VOHRA Would Physicians, TeleHealth, Murdock & Applegate Recovery.

He attended medical school at the University of Texas in Galveston and trained at Mercer University in Georgia and Charleston Area Medical Center in W. Virginia.

Dr. Thiele performs the FUT as well as FUE procedures at MAXIM Hair Restoration in Houston and Dallas, Texas.

Dr. Smith is Facial Plastic and Reconstructive Surgeon in Dallas, Texas.

He specializes in all types of aesthetic surgery for the face and performs stem cell procedures.

Dr. Smith received his undergraduate degree from Baylor University. He began his medical education at the University of Texas Southwestern Medical Center in Dallas where he received his MD degree.

Dr. Smith completed his internship in general surgery followed by a residency and specialization in Otolaryngology-Head and Neck Surgery at the University of Texas Southwestern Medical Center in Dallas, including Parkland Hospital System.

Dr. Smith was then chosen for a highly specialized Fellowship in Facial Plastic and Reconstructive Surgery sponsored by the American Academy of Facial Plastic and Reconstructive Surgery at the University of California, Los Angeles. During his fellowship at UCLA, his entire experience focused on cosmetic and reconstructive surgery of the face, head, and neck.

He received his training in stem cell therapy with Dr. David Mayer at National Stem Cell Centers in New York City.

Schedule your complimentary stem cell therapy consultation today with one of our affiliated physicians in Dallas, Texas, by calling (972) 865-8810 or submit the Contact Form on this page.

This location serves Dallas, Fort Worth, Arlington, Euless-Bedford-Hurst, Plano, and surrounding areas.

Phone: (972) 865-8810

Address: 8111 LBJ Freeway, Suite 655 Dallas, TX 75251

See the original post here:
Stem Cell Therapy in Dallas, TX | National Stem Cell Centers

Atmospheric & Environmental Chemistry | Aerodyne Research …

Development of a NOx chemistry module for EDMS/AEDT to predict NO2 concentrations, R. Miake-Lye, S. Herndon, M. Kenney, ACRP, National Academy of Sciences, 2017.

Revisiting global fossil fuel and biofuel emissions of ethane, Z. A. Tzompa-Sosa, E. Mahleu, B. Franco, C. A. Keller, A. J. Turner, D. Helmig, A. Fried, D. Richter, P. Welbring, J. Walega, T. L. Yacovitch, S. C. Herndon, D. R. Blake, F. Hase, J. W. Hannigan, S. Conway, K. Strong, M. Schnelder, E. V. Fischer,J. Geophys. Atmos,, 122, 2493-2512, 2017.

Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate decidious forest, validated by carbonyl sulfide uptake, R. Wehr, R. Commane, J. Munger, J. B. McManus, D. Nelson, M. Zahniser, S. Saleska, S. Wofsy, Biogeosciences,14, 389-401, 2017.

Interannual variability of ammonia concentrations over the United States: sources and implications, L. D. Schiferl, C. L. Heald, M. Van Damme, L. Clarisse, C. Clerbaux, P. Coheur, J. B. Nowak, J. A. Neuman, S. C. Herndon, J. R. Roscioli, S. J. Ellerman, Atmos. Chem. Phys., 16, 12305-12328, 2016.

Using airborne technology to quantify and apportion emissions of CH4 and NH3 from feedlots, J. M. Hacker, D. Chen, M. Bai, C. Ewenz, W. Junkermann, W. Lieff, B. McManus, B. Neininger, J. Sun, T. Coates, T. Denmead, T. Flesch, S. McGinn, J. Hill, Animal Production Science, 56, 190-203, 2016.

Exhaust emissions from in-use general aviation aircraft, T. I. Yacovitch, Z. Yu, S. C. Herndon, R. Miake-Lye, D. Liscinsky, W. B. Knighton, M. Kenney, C. Schoonard, P. Pringle, Airport Cooperative Research Program, 2016.

Continuous and high-precision atmospheric concentration measurements of COS, CO2, CO and H2O using a quantum cascade laser specrometer (QCLS), L. M. J. Kooijmans, N. A. M. Uitslag, M. S. Zahniser, D. D. Nelson, S. A. Montzka, H. Chen, Amos. Meas. Tech., 9, 5293-5314, 2016.

Characterization of ammonia, methane, and nitrous oxide emissions from concentrated animal feeding operations in northeastern colorado, S. J. Eilerman, J. Peischl, J. A. Neuman, T. B. Ryerson, K. C. Aikin, M. W. Holloway, M. A. Zondlo, L. M. Golston, D. Pan, C. Floerchinger, S. Herndon, Env. Sci. & Technol., 50, 10885-10903, 2016.

Impacts of the Denver Cyclone on regional air quality and aerosol formation in the Colorado Front Range during FRAPPE 2014, K. T. Vu, J. H. Dingle, R. Bahreini, P. J. Reddy, E. C. Apel, T. L. Campos, J. P. DiGangi, G. S. Diskin, A. Freid, S. C. Herndon, A. J. Hills, R. S. Hornbrook, G. Huey, L. Kaser, D. D. Montzka, J. B. Nowak, S. E. Pusede, D. Richter, J. R. Roscioli, G. W. Sachse, S. Shertz, M. Stell, D. Tanner, G. S. Tyndall, J. Walega, P. Weibring, A. J. Weinheimer, G. Pfister, F. Flocke, Atmos. Chem. Phys., 16, 12039-12058, 2016.

Seasonal and diurnal variation in CO fluxes from an agricultural bioenergy crop, M. Pihlatie, U. Rannik, S. Haapanala, O. Peltola, N. Shurpali, P. J. Martikainen, S. Lind, N. Hyvonen, P. Virkajarvi, M. Zahniser, I. Mammarella, Biogeosciences, 13, 5471-5485, 2016.

Surface-atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling, U. Zoll, C. Brummer, F. Shcrader, C. Ammann, A. Ibrom, C. R. Flechard, D. D. Nelson, M. Zahniser, W. L. Kutsh, Atmos. Chem. Phys. 16, 11283-11299, 2016.

Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) 2014 summertime field campaign, Colorado, USA, J. H. Dingle, K. Vu, R. Bahreini, E. C. Apel, T. L. Campos, F. FLocke, A. Fried, S. Herndon, A. J. Hills, R. S. Hornbrook, G. Huey, L. Kaser, D. D. Montzka, J. B. Nowak, M. Reeves, D. Richter, J. R. Roscioli, S. Shertz, M. Stell, D. Tanner, G. Tyndall, J. Walega, P. Weibring, A. Weinheimer, Atmos. Chem. Phys., 16, 11207-11217, 2016.

Direct and indirect measurements and modeling of methane emissions in Indianapolis, Indiana, B. K. Lamb, M. Cambaliza, K. J. Davis, S. L. Edburg, T. W. Ferrara, C. Floerchinger, A. M. Heimburger, S. Herndon, T. Lauvaux, T. Lavoie, D. R. Lyon, N. Miles, K. R. Prasad, S. Richardson, J. R. Roscioli, O. E. Salmon, P. B. Shepson, B. H. Stirm, J. Whetstone, Environ. Sci. Technol, 16, 8910-7, 2016.

Seasonality of temperate forest photosynthesis and daytime respiration, R. Wehr, J.W. Munger, J. B. McManus, D. D. Nelson, M. S. Zahniser, E. A. Davidson, S. C. Wofsy, S. R. Saleska, Nature Letter, 534, 680-683, 2016.

Dynamics of Ammonia Volatilisation Measured by Eddy Covariance During Slurry Spreading in North Italy, Rossana Monica Ferrara, Marco Carozzi, Paul Di Tommasi, David D. Nelson, Gerardo Fratini, Teresa Bertolini, Vincenzo Magliulo, Marco Acutis, Gianfranco Rana, Agriculture, Ecosystems & Environment, 219, 1-13, 2016.

The Development and Evaluation of Airborne in Situ N2O and CH4 Sampling Using a Quantum Cascade Laser Absorption Spectrometer (QCLAS) J. R. Pitt, M. LeBreton, G. Allen, C. J. Percival, M. W. Gallagher, S. J.-B. Bauguitte, S. J. O'Shea, J. B. A. Muller, M. S. Zahniser, J. Pyle, P. I. Palmer, Atmos. Meas. Tech., 9, 63-77, 2016.

Reconciling Divergent Estimates of Oil and Gas Methane Emissions, Daniel Zavala-Araizaa, David R. Lyona, Ramn A. Alvareza, Kenneth J. Davisb, Robert Harrissa, Scott C. Herndon, Anna Kariond, Eric Adam Kortf, Brian K. Lambg, Xin Lanh, Anthony J. Marchesei, Stephen W. Pacalaj, Allen L. Robinsonk, Paul B. Shepsonl, Colm Sweeneyd, Robert Talboth, Amy Townsend-Smallm, Tara I. Yacovitchc, Daniel J. Zimmerlei, Steven P. Hamburg, PNAS, 112, 1559715602, 2015.

Air Pollutant Mapping with a Mobile Laboratory During the BEE-TEX Field Study, Tara I. Yacovitch1, Scott C. Herndon, Joseph R. Roscioli1, Cody Floerchinger,W. Berk Knighton, Charles E. Kolb, Supplementary Issue: Ambient Air Quality (B), Environmental Health Insights, 9, 7-13, 2015.

New Approaches to Measuring Sticky Molecules: Improvement of Instrumental Response Times Using Active Passivation, J. R. Roscioli, M. S. Zahniser, D. D. Nelson, S. C. Herndon, C. E. Kolb, J. Phys. Chem. A, (Web): June 24, 2015.

Seasonal fluxes of carbonyl sulfide in a midlatitude forest, R. Commanea, L. K. Meredith, I. T. Baker, J. A. Berry, J. W. Munger, S. A. Montzka, P. H. Templer, S. M. Juice, M. S. Zahniser, S. C. Wofsy, PNAS, 112, 14162-14167, 2015.

Recent progress in laser-based trace gas instruments: performance and noise analysis, J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. C. Herndon, D. Jervis, M. Agnese, R. McGovern, T. I. Yacovitch, J. R.Roscioli, Appl. Phys. B: Lasers Opt., 119, 203-218, 2015.

Methane Emissions from United States Natural Gas Gathering and Processing, A. J. Marchese, T. L. Vaughn, D. J. Zimmerle, D. M. Martinez, L. L. Williams, A. L. Robinson, A. L. Mitchell, R. Subramanian, D. S. Tkacik, J. R. Roscioli, S. C. Herndon, Environ. Sci. Technol., 49, 10718-10727, 2015.

Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts, K. McKain, A. Down, S. M. Raciti, J. Budney, L. R. Hutyra, C. Floerchinger, S. C. Herndon, T. Nehrkorn, M. S. Zahniser, R. B. Jackson, N. Phillips, S. C. Wofsy PNAS, 112, 1941-1946, 2015.

Meteorology, Air Quality, and Health in London: The ClearfLo Project, S. I. Bohnenstengel, S. E. Belcher, A. Aiken, J. D. Allan, G. Allen, A. Bacak, T. J. Bannan, J. F. Barlow, D. C. S. Beddows, W. J. Bloss, A. M. Booth, C. Chemel, O. Coceal, C. F. Di Marco, M. K. Dubey, K. H. Faloon, Z. L. Fleming, M. Furger, J. K. Gietl, R. R. Graves, D. C. Green, C. S. B. Grimmond, C. H. Halios, J. F. Hamilton, R. M. Harrison, M. R. Heal, D. E. Heard, C. Helfter, S. C. Herndon, R. E. Holmes, J. R. Hopkins, A. M. Jones, F. J. Kelly, S. Kotthaus, B. Langford, J. D. Lee, R. J. Leigh, A. C. Lewis, R. T. Lidster, F. D. Lopez-Hilfiker, J. B. McQuaid, C. Mohr, P. S. Monks, E. Nemitz, N. L. Ng, C. J. Percival, A. S. H. Prvt, H. M. A. Ricketts, R. Sokhi, D. Stone, J. A. Thornton, A. H. Tremper, A. C. Valach, S. Visser, L. K. Whalley, L. R. Williams, L. Xu, D. E. Young, P. Zotter, Bull. Amer. Meteor. Soc., 96, 779804, 2015.

Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region, D. R. Lyon, D. Zavala-Araiza, R. A. Alvarez, R. Harriss, V. Palacios, X. Lan, R. Talbot, T. Lavoie, P. Shepson, T. I. Yacovitch, S. C. Herndon, A. J. Marchese, D. Zimmerle, A. L. Robinson, S. P. Hamburg, Environ. Sci. Technol., 49, 81478157, 2015.

Mobile Laboratory Observations of Methane Emissions in the Barnett Shale Region, T. I. Yacovitch, S. C. Herndon, G. Ptron, J. Kofler, D. Lyon, M. S. Zahniser, C. E. Kolb, Environ. Sci. Technol., 49, 78897895, 2015.

Airborne Ethane Observations in the Barnett Shale: Quantification of Ethane Flux and Attribution of Methane Emissions, M. L. Smith, E. A. Kort, A. Karion, C. Sweeney, S. C. Herndon, T. I. Yacovitch, Environ. Sci. Technol., 49, 81588166, 2015.

Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region, A. Karion, C. Sweeney, E. A. Kort, P. B. Shepson, A. Brewer, M. Cambaliza, S. A. Conley, K. Davis, A. Deng, M. Hardesty, S. C. Herndon, T. Lauvaux, T. Lavoie, D. Lyon, T. Newberger, G. Ptron, C. Rella, M. Smith, S. Wolter, T. I. Yacovitch, P. Tans, Environ. Sci. Technol., 49, 81248131, 2015.

Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin, T. N. Lavoie, P. B. Shepson, M. O. L. Cambaliza, B. H. Stirm, A. Karion, C. Sweeney, T. I. Yacovitch, S. C. Herndon, X. Lan, D. Lyon, Environ. Sci. Technol., 49, 79047913, 2015.

Atmospheric Emission Characterization of Marcellus Shale Natural Gas Development Sites, J. D. Goetz, C. Floerchinger, E. C. Fortner, J. Wormhoudt, P. Massoli, W. B. Knighton, S. C. Herndon, C. E. Kolb, E. Knipping, S. L. Shaw, P. F. DeCarlo, Environ. Sci. Technol., 49, 70127020, 2015.

Vehicle emissions of radical precursors and related species observed in the 2009 SHARP campaign, J. Wormhoudt, E. C. Wood, W. B. Knighton, C. E. Kolb, S. C. Herndon, E. P. Olague, J. Air Waste Manage. Assoc., 65, 699-706, 2015.

Airborne in situ vertical profiling of HDO/H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign, C. Dyroff, S. Sanati, E. Christner, A. Zahn, M. Balzer, H. Bouquet, J. B. McManus, Y. Gonzlez-Ramos, M. Schneider, Atmos. Meas. Tech. Discuss., 8, 121155, 2015.

Design and performance of a dual-laser instrument for multiple isotopologues of carbon dioxide and water, J. B. McManus, D. D. Nelson, M. S. Zahniser, Opt. Express, 23, 6569-6586, 2015.

Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions, . Rannik, S. Haapanala, N. J. Shurpali, I. Mammarella, S. Lind, N. Hyvnen, O. Peltola, M. Zahniser, P. J. Martikainen, T. Vesala, Biogeosciences, 12, 415-431, 2015.

Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer, B. Xiang, D. D. Nelson, J. B. McManus, M. S. Zahniser, R. A. Wehr, S. C. Wofsy, Atmos. Meas. Tech., 7, 4445-4453, 2014.

Feasibility and Potential Utility of Multicomponent Exhaled Breath Analysis for Predicting Development of Radiation Pneumonitis after Stereotactic Ablative Radiotherapy, J. M. Mor, N. C.W. Eclov, M. P. Chung, J. F. Wynne, J. H. Shorter, D. D. Nelson, A. L. Hanlon, R. Burmeister, P. Banos, P. G. Maxim, B. W. Jr Loo, M. Diehn, J. Thorac. Oncol., 9, 957-964, 2014.

Demonstration of an Ethane Spectrometer for Methane Source Identification, T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Ptron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nhle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, C. E. Kolb, Environ. Sci. Technol., 48, 8028-8034, 2014.

Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains, K. Maseyk, J. A. Berry, D. Billesbach, J. E. Campbell, M. S. Torn, M. Zahniser, U. Seibt, PNAS, 111, 9064-9069, 2014.

Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy, S. Ono, D. T. Wang, D. S. Gruen, B. S. Lollar, M. S. Zahniser, B. J. McManus, D. D. Nelson, Anal. Chem., 86, 64876494, 2014.

Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration, L. Merbold, W. Eugster, J. Stieger, M. Zahniser, D. Nelson, N. Buchmann, Global Change Biol., 20, 19131928, 2014.

Simulation of semi-explicit mechanisms of SOA formation from glyoxal in a 3-D model, C. Knote, A. Hodzic, J. L. Jimenez, R. Volkamer, J. J. Orlando, S. Baidar, J. Brioude, J. Fast, D. R. Gentner, A. H. Goldstein, P. L. Hayes, W. B. Knighton, H. Oetjen, A. Setyan, H. Stark, R. Thalman, G. Tyndall, R. Washenfelder, E. Waxman, Q. Zhang, Atmos. Chem. Phys., 14, 6213-6239, 2014.

Evaluation of the airborne quantum cascade laser spectrometer (QCLS) measurements of the carbon and greenhouse gas suite CO2, CH4, N2O, and CO during the CalNex and HIPPO campaigns, G. W. Santoni, B. C. Daube, E. A. Kort, R. Jimnez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, Atmos. Meas. Tech., 7, 1509-1526, 2014.

Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy, S. Ono, D. T. Wang, D. S. Gruen, B. S. Lollar, M. S. Zahniser, B. J. McManus, D. D. Nelson, Anal.Chem, (Web): June 4, 2014.

Intercomparison of field measurements of nitrous acid (HONO) during the SHARP campaign, J. P. Pinto, J. Dibb, B. H. Lee, B. Rappenglck, E. C. Wood, M. Levy, R.-Y. Zhang, B. Lefer, X.-R. Ren, J. Stutz, C. Tsai, L. Ackermann, J. Golovko, S. C. Herndon, M. Oakes, Q.-Y. Meng, J. W. Munger, M. Zahniser,J. Zheng, J. Geophys. Res. Atmos., 119, 55835601, DOI: 10.1002/2013JD020287, 2014.

Development of a Spectroscopic Technique for Continuous Online Monitoring of Oxygen and Site-Specific Nitrogen Isotopic Composition of Atmospheric Nitrous Oxide, E. Harris, D. D. Nelson, W. Olszewski, M. Zahniser, K. E. Potter, B. J. McManus, A. Whitehill, R. G. Prinn, S. Ono, Anal. Chem., 86, 17261734, 2014.

Urban measurements of atmospheric nitrous acid: A caveat on the interpretation of the HONO photostationary state, B. H. Lee, E. C. Wood, S. C. Herndon, B. L. Lefer, W. T. Luke, W. H. Brune, D. D. Nelson, M. S. Zahniser, J. W. Munger, J. Geophys. Res. Atmos., 118, 12,27412,281, doi:10.1002/2013JD020341 2013.

Carbonyl sulfide in the planetary boundary layer: Coastal and continental influences, R. Commane, S. C. Herndon, M. S. Zahniser, B. M. Lerner, J. B. McManus, J. W. Munger, D. D. Nelson, S. C. Wofsy, JGR, Atmos. 118, Issue 14, 80018009, DOI:10.1002/jgrd.5058, 2013.

Measurements of methane emissions at natural gas production sites in the United States, D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, J. H. Seinfeld, PNAS, 110, 17768-17773, 2013.

Contribution of Nitrated Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United Kingdom during Winter Time, C. Mohr, F. D. Lopez-Hilfiker, P. Zotter, A. S. H. Prvt, L. Xu, N. L. Ng, S. C. Herndon, L. R. Williams, J. P. Franklin, M. S. Zahniser, D. R. Worsnop, W. B. Knighton, A. C. Aiken, K. J. Gorkowski, M. K. Dubey, J. D. Allan, J. A. Thornton, Environ. Sci. Technol., 47, 63166324, 2013.

Long-term eddy covariance measurements of the isotopic composition of the ecosystematmosphere exchange of CO2 in a temperate forest, R. Wehr, J. W. Munger, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. C. Wofsy, S. R. Saleska, Agric. For. Meteorol., 181, 69-84, 2013.

Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft, E. S. Cross, J. F. Hunter, A. J. Carrasquillo, J. P. Franklin, S. C. Herndon, J. T. Jayne, D. R. Worsnop, R. C. Miake-Lye, and J. H. Kroll, Atmos. Chem. Phys., 13, 7845-7858, 2013.

Towards a stable and absolute atmospheric carbon dioxide instrument using spectroscopic null method, B. Xiang, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. C. Wofsy, Atmos. Meas. Meas. Tech., 6, 1611-1621, 2013.

Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy, B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, L. Emmenegger, Atmos. Meas. Tech. Discuss., 5, 89698993, 2012.

Detecting fugitive emissions of 1,3-butadiene and styrene from a petrochemical facility: An application of a mobile laboratory and a modified proton transfer reaction mass spectrometer, W. B. Knighton, S. C. Herndon, E. C. Wood, E. C. Fortner, T. B. Onasch, J. Wormhoudt, C. E. Kolb, B. H. Lee, M. Zavala, L. Molina, M. Jones, Industrial & Engineering Chemistry Research, 51, 1267412684, 2012.

Direct measurement of volatile organic compound emissions from industrial flares using real-time online techniques: Proton transfer reaction mass spectrometry and tunable infrared laser differential absorption spectroscopy, W. B. Knighton, S. C. Herndon, J. F. Franklin, E. C. Wood, J. Wormhoudt, W. Brooks, E. C. Fortner, D. T. Allen, Industrial & Engineering Chemistry Research, 51, 1267412684, 2012.

Industrial flare performance at low flow conditions. 1. Study overview, V. M. Torres, S. Herndon, Z. Kodesh, D. T. Allen, Ind. Eng. Chem. Res., 51, 12559-12568, 2012.

Industrial flare performance at low flow conditions. 2. Steam- and air-assisted flares, V. M. Torres, S. Herndon, D. T. Allen, Ind. Eng. Chem. Res., 51, 12569-12576, 2012.

Application of the carbon balance method to flare emissions characteristics, S. C. Herndon, D. D. Nelson, Jr., E. C. Wood, W. B. Knighton, C. E. Kolb, Z. Kodesh, V. M. Torres, D. T. Allen, Ind. Eng. Chem. Res., 51, 12577-12585, 2012.

Emissions of nitrogen oxides from flares operating at low flow conditions, V. M. Torres, S. Herndon, E. Wood, F. M. Al-Fadhli, D. T. Allen, Ind. Eng. Chem. Res., 51, 12600-12605, 2012.

Effective line strengths of trans-nitrous acid near 1275 cm-1 and cis-nitrous acid at 1660 cm-1 , B. H. Lee, E. C. Wood, J. Wormhoudt, J. H. Shorter, M. S. Zahniser, J. W. Munger, J. Quant. Spectrosc. Radiat. Transfer, 113, 1905-1912, 2012.

Mass fluxes and isofluxes of methane (CH4) at a New Hampshire fen measured by a continuous wave quantum cascade laser spectrometer. G. W. Santoni, B. H. Lee, J. P. Goodrich, R. K. Varner, P. M. Crill, J. Barry McManus, D. D. Nelson, M. S. Zahniser, S. C. Wolfsy, JGR 117, D10301, doi:10.1029/2011JD016960, 15pp., 2012.

Modelled and measured concentrations of peroxy radicals and nitrate radical in the US Gulf Coast region during TexAQS 2006, R. Sommariva, T. S. Bates, D. Bon, D. M. Brookes, J. A. de Gouw, S. C. Herndon, W. C. Kuster, B. M. Lerner, P. S. Monks, H. D. Osthoff, A. E. Parker, J. M. Roberts, S. C. Tucker, C. Warneke, E. J. Williams, M. S. Zahniser, S. S. Brown, J. Atmos. Chem. 68, 331-362, 2012.

Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region, D. D. Parrish, T. B. Ryerson, J. Mellqvist, J. Johansson, A. Fried, D. Richter, J. G. Walega, R. A. Washenfelder, J. A. de Gouw, J. Peischl, K. C. Aikin, S. A. McKeen, G. J. Frost, F. C. Fehsenfeld, S. C. Herndon, Atmos. Chem. Phys. 12, 3273-3288, 2012.

Establishing Policy Relevant Background (PRB) Ozone Concentrations in the United States, E. C. McDonald-Buller, D. T Allen, N. Brown, D. J. Jacob, D. Jaffe, C. E. Kolb, A. S. Lefohn, S. Oltmans, D. D. Parrish, G. Yarwood, L. Zhang, Environ. Sci. Tech. 45, 9484-9497, 2011.

Measurements of nitrous acid in commercial aircraft exhaust at the alternative aviation fuel experiment, B. H. Lee, G. W. Santoni, E. C. Wood, S. C. Herndon, R. C. Miake-Lye, M. S. Zahniser, S. C. Wofsy, J. W. Munger, Environ. Sci. Tech. 45, 7648-7651, 2011.

Monomer, clusters, liquid: an integrated spectroscopic study of methanol condensation, H. Laksmono, S.Tanimura, H. C. Allen, G. Wilemski, M. S. Zahniser, J. H. Shorter, D. D. Nelson, J. B. McManus, B. E. Wyslouzil, Phys. Chem. Chem. Phys., 13, 5855-5871, 2011.

Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution, D. M. Bon, I. M. Ulbrich, J. A. de Gouw, C. Warneke, W. C. Kuster, M. L. Alexander, A. Baker, A. J. Beyersdorf, D. Blake, R. Fall, J. L. Jimenez, S. C. Herndon, L. G. Huey, W. B. Knighton, J. Ortega, S. Springston, O. Vargas, Atmos. Chem. Phys., 11, 2399-2421, 2011.

Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals TexAQS 2006, R. Sommariva, S. S. Brown, J. M. Roberts, D. M. Brookes, A. E. Parker, P. S. Monke, T. S. Bates, D. Bon, J. A. De Gouw, G. .J. Frost, J. B. Gilman, P. D. Goldan, S. C. Herndon, W. C. Kuster, B. M. Lerner, H. D. Osthuff, S. C. Tucker, C. Warneke, E. J. Williams, M. S. Zahniser, Atmos. Chem. Phys., 11, 2471-2485, 2011.

Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number, J. B. McManus, M. S. Zahniser, D. D. Nelson, Appl. Opt., 50, A74-A84, 2011.

Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston, E. C. Wood, M. R. Canagaratna, S. C. Herndon, T. B. Onasch, C. E. Kolb, D. R. Worsnop, J. H. Kroll, W. B. Knighton, R. Seil, M. Zavala, L. T. Molina, P. F. DeCarlo, J. L. Jimenez, A. J. Weinheimer, D. J. Knapp, B. T. Jobson, J. Stutz, W. C. Kuster, and E. J. Williams, Atmos. Chem. Phys 10, 8947-8968, 2010.

Application of quantum cascade lasers to high-precision atmospheric trace gas measurements, J. B. McManus, M. S. Zahniser, D. D. Nelson Jr., J. H. Shorter, S. Herndon, E. Wood, F. Wehr, Opt. Eng. 49, 111124, 2010.

Gas turbine engine emissions - Part I: Volatile organic compounds and nitrogen oxides, M. T. Timko, S. C. Herndon, E. C. Wood, T. B. Onasch, M. J. Northway, J. T. Jayne, M. R. Canagaratna, R. C. Miake-Lye, W. B. Knighton, J. Eng. Gas Turb. Power, 132, 06154 (14 pages), 2010.

Gas turbine engine emissions - Part II: Chemical properties of particulate matter, M. T. Timko, T. B. Onasch, M. J. Northway, J. T. Jayne, M. R. Canagaratna, S. C. Herndon, E. C. Wood, R. C. Miake-Lye, W. B. Knighton, J. Eng. Gas Turb. Power, 132, 061505 (15 pages), 2010.

Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City, D. A. Thornhill, A. E. Williams, T. B. Onasch, E. Wood, S. C. Herndon, C. E. Kolb, W. B. Knighton, M. Zavala, L. T. Molina, L. C. Marr, Atmos. Chem. Phys. 10, 3629-3644, 2010.

Characterizing a quantum cascade tunable infrared laser differential absorption spectrometer (QC-TILDAS) for measurements of atmospheric ammonia, R. A. Ellis, J. G. Murphy, E. Pattey, R. van Haarlem, J. M. O'Brien, S. C. Herndon, Atmos. Meas. Tech. 3, 397-406, 2010.

Multicomponent breath analysis with infrared absorption using room-temperature quantum cascade lasers, J. H. Shorter, D. D. Nelson, J. Barry McManus, M. S. Zahniser, D. K. Milton, IEEE Sensors J., 10, 76-84, 2010.

Quantum cascade lasers in chemical physics, R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, Chem. Phys. Lett. 487, 1-18, 2010.

Long-term continuous sampling of 12CO2, 13CO2 and 12C18O16O in ambient air with a quantum cascade laser spectrometer, J. B. McManus, D. D. Nelson, M. S. Zahniser, Isot. Environ. Health Stu. 46, 49-63, 2010.

Adaptation of a proton transfer reaction mass spectrometer instrument to employ NO+ as reagent ion for the detection of 1,3-butadiene in the ambient atmosphere, W. B. Knighton, E. C. Fortner, S. C. Herndon, E. C. Wood, R. C. Miake-Lye, Rapid Commun. Mass Spectrom., 23, 3301-3308, 2009.

Hit from both sides: tracking industrial and volcanic plumes in Mexico City with surface measurements and OMI SO2 retrievals during the MILAGRO field campaign, B.deFoy, N.A.Krotkov, N.Bei, S.C.Herndon, L.G.Huey, A.-P.Martnez, L.G.Ruiz-Surez, E.C.Wood, M.Zavala, L.T.Molina, Atmos. Chem. Phys. 9, 9599-9617, 2009.

High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl sulfide using mid-IR quantum cascade laser, K. Stimler, D. Nelson, D. Yakir, Glob. Change Biol. 16, 2496-2503, 2010.

HCN detection with a proton transfer reaction mass spectrometer, W. B. Knighton, E. C. Fortner, A. J. Midley, A. A. Viggiano, S. C. Herndon, E. C. Wood, C. E. Kolb, Int. J. Mass. Spectrom. 283, 112-121, 2009.

Emissions of NOx SO2, CO, and HCHO from commercail marine shipping during Texas Air Quality Study (TEXAQS) 2006, E. J. Williams, B. M. Lerner, P. C. Herndon, M. S. Zahniser, JGR, 114, D21306, doi:10.1029/2009JD012094, 2009.

Measurements of volatile organic compounds during the 2006 TexAQS/GoMACCS campaign: Industrial influences, regional characteristics, and diurnal dependencies of the OH reactivity, J. B. Gilman, W. C. Kuster, P. D. Goldan, S. C. Herndon, M. S. Zahniser, S. C. Tucker, W. A. Brewer, B. M. Lerner, E. J. Williams, R. A. Harley, F. C. Fehsenfeld, C. Warneke, J. A. de Gouw, JGR, 114, D00F06, doi:10.1029/2008JD011525, 2009.

Aircraft hydrocarbon emissions at Oakland International Airport, S. C. Herndon, E. C. Wood, M. J. Northway, R. Miake-Lye, L. Thornhill, A. Beyersdorf, B. E. Anderson, R. Dowlin, W. Dodds, W. B. Knighton, Environ. Sci. Technol., 43, 1730-1736, 2009.

Comparison of emissions from on-road sources using a mobile laboratory under various driving and operational sampling modes, M.Zavala, S.C.Herndon, E.C.Wood, J.T.Jayne, D.D.Nelson, A.M.Trimborn, E.Dunlea, W.B.Knighton, A.Mendoza, D.T.Allen, C.E.Kolb, M.J.Molina, and L.T.Molina, Atmos. Chem. Phys.,9,1-14,2009.

ACRP Report 7: Aircraft and Airport-Related Hazardous Air Pollutants: Research Needs and Analysis, E. Wood, S. Herndon, R. C. Miake-Lye, D. Nelson, M. Seeley, 65p. (2008). Airport Cooperative Research Program, Transportation Research Board, Washington, DC

Correlation of secondary organic aerosol with odd oxygen in Mexico City, S. C. Herndon, T. B. Onasch, E. C. Wood, J. H. Kroll, M. R. Canagaratna, J. T. Jayne, M. A. Zavala, W. B. Knighton, C. Mazzoleni, M. K. Dubey, I. M. Ulbrich, J. L. Jimenez, R. Seila, J. A. de Gouw, B. de Foy, J. Fast, L. T. Molina, C. E. Kolb, doi:10.1029/2008GL034058, 2008.

Spatial and temporal variability of particulate polycyclic aromatic hydrocarbons in Mexico City, D. A. Thornhill, B. de Foy, S. C. Herndon, T. B. Onasch, E. C. Wood, M. Zavala, L. T. Molina, J. S. Gaffney, N. A. Marley, L. C. Marr1, Atmos. Chem. Phys., 8, 3093-3105, 2008.

High precision and continuous field measurements of 13C and 18O in carbon dioxide with a cryogen-free QCLAS, B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, L. Emmenegger, Appl. Phys. B, DOI: 10.1007/s00340-008-3085-4, 2008.

Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air, J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, R. M. McGovern, Appl. Phys. B., 92, 387-392, 2008.

Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere, P. Veres, J. M. Roberts, C. Warneke, D. Welsh-Bon, M. Zahniser, S. Herndon, R. Fall, J. de Gouw, Int. J. Mass Spectrom., 274, 48-55, 2008.

New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 m pulsed quantum cascade laser, D. D. Nelson, J. B. McManus, S. C. Herndon, M. S. Zahniser, B. Tuzson, L. Emmenegger, Appl. Phys. B, 90, 301-310, 2008. Special Issue: 6th International Conference on tunable laser spectroscopy.

Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements, B. Tuzson, M. J. Zeeman, M. S. Zahniser, L. Emmenegger, Infrared Physics & Technology, 51, (1), 198-206, 2008.

Suitability of quantum cascade laser spectroscopy for CH4 and N2O eddy covariance flux measurements, P. S. Kroon, A. Hensen, H. J. J. Jonker, M. S. Zahniser, W. H. van't Veen, A. T. Vermeulen, Biogeosciences, 4, Special issue, 715-728, 2007.

Laboratory evaluation of an aldehyde scrubber system specifically for the detection of acrolein, W. B. Knighton, S. C. Herndon, J. H. Shorter, R. C. Miake-Lye, M. S. Zahniser, K. Akiyama, A. Shimono, K. Kitasaka, H. Shimajiri, K. Sugihara, J. Air & Waste Manage. Assoc. 57,, 1370-1378, 2007.

Tunable diode laser absorption spectroscopy study of CH3CH2OD/D2O binary condensation in a supersonic Laval nozzle, S. Tanimura, B. E. Wyslouzil, M. S. Zahniser, J. H. Shorter, D. D. Nelson, J. B. McManus, J. Chem.Phys. 127, 034305 (13), 2007.

Towards realization of reactive gas amount of substance standards through spectroscopic measurements, P. M. Chu, D. D. Nelson, Jr., M. S. Zahniser, J. B. McManus, Q. Shi, J. C. Travis, IEEE T. Instrum. Meas., 56, 305-308, 2007.

Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment, E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina1, M. J. Molina, Atmos. Chem. Phys., 7, 26912704, 2007.

Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer, S.C. Herndon, M.S. Zahniser, D.D. Nelson Jr., J. Shorter, J.B. McManus, R. Jimnez, C. Warneke, J.A. DeGouw, J. Geophys. Res., 112, D10S03, doi:10.1029/2006JD007600, 2007.

Link:
Atmospheric & Environmental Chemistry | Aerodyne Research ...

Stem Cell Docu Series

2019 The Healing Miracle. All Rights Reserved. support@thehealingmiracle.com

Terms & Conditions | Privacy Policy

Disclaimer

Information on this web site is provided for informational purposes only. The information is a result of years of practice and experience by the author. This information is not intended as a substitute for the advice provided by your physician or other healthcare professional or any information contained on or in any product label or packaging. Do not use the information on this web site for diagnosing or treating a health problem or disease, or prescribing medication or other treatment. Always speak with your physician or other healthcare professional before taking any medication or nutritional, herbal or homeopathic supplement, or using any treatment for a health problem. If you have or suspect that you have a medical problem, contact your health care provider promptly. Do not disregard professional medical advice or delay in seeking professional advice because of something you have read on this web site. Information provided on this web site and the use of any products or services purchased from our web site by you DOES NOT create a doctor-patient relationship between you and any of the physicians affiliated with our web site. Information and statements regarding dietary supplements have not been evaluated by the Food and Drug Administration and are not intended to diagnose, treat, cure, or prevent any disease.

Read more here:
Stem Cell Docu Series

Rutgers New Jersey Medical School

Department of Cell Biology & Molecular Medicine

(T) 973-972-8920 (F) 973-972-7489

Through its medical and graduate programs, the department offers training and research opportunities that prepare medical, dental, and graduate students, as well as postdoctoral fellows, for careers in medicine and biomedical research. Departmental research focuses on the physiological, developmental, cellular, molecular, and environmental factors responsible for the initiation and progression of human disease. Faculty research interests include regulation of gene expression, DNA repair, mitochondrial stability, cell cycle control, and signal transduction pathways in normal and diseased tissue, with particular emphasis on cardiovascular control, cardiovascular disease, cancer, angiogenesis, and the application of stem cells for regenerative medicine. Approaches include animal models of cardiac disease, cutting-edge technologies in cell biology, molecular biology, molecular genetics, genomics, and proteomics, and advanced histological and cell / tissue culture methods. The department has access to exceptional laboratory and animal facilities, equipment, and computational services, as well as to shared, state-of-the-art, core research facilities providing transgenic, molecular, genomic, proteomic, microscopic, flow cytometry, and biostatistics/bioinformatics support. Potential applicants are encouraged to use this web site to learn more about our research and training opportunities.

Go here to read the rest:
Rutgers New Jersey Medical School

Do You Know the 5 Types of Stem Cells? | BioInformant

*Post also available in: Espaol Romn

As you start to learn about stem cells, one of the most common questions tohave is, What types of stem cells exist?There is not an agreed-upon number of stem cell types, because one can classify stem cells either by differentiation potential(what they can turn into) or by origin (from where they are sourced).This post is dedicated to explaining the five types of stem cells, based on differentiation potential.

The five different types of stem cells discussed in this article are:

All stem cells that exist can be classified into one of five groups based on their differentiation potential. Each of these stem cell types is explored in greater detail below.

The Rise of Direct Cell Reprogramming | BioInformant https://t.co/q0vwT6CffR#allogeneic #totipotent #pluripotent #multipotent #autologous pic.twitter.com/ycoDP8mYa6

Todd C Bertsch (@todd_bertsch) February 19, 2018

These stem cells are the most powerful that exist.

They can differentiate into embryonic, as well as extra-embryonic tissues, such as chorion, yolk sac, amnion, and the allantois. In humans and other placental animals, these tissues form the placenta.

The most important characteristic of a totipotent cell is that it can generate a fully-functional, living organism.

The best-known example of a totipotent cell is a fertilized egg (formed when a sperm and egg unite to form a zygote).

It is at or around four days post-fertilization that these cells begin to specialize into pluripotent cells, which as described below are flexible cell types, but cannot produce an entire organism.

Theyre aliveeee!! Turned our human pluripotent stem cells into beating cardio!!! ::happy tears:: Next up crispR KO fun #stemcellscientist #WomenInScience #futureBIOhacker pic.twitter.com/GVg4pb9Xri

Kristin Pagel (@DeeDeeTroit84) March 31, 2018

The next most powerful type of stem cell is the pluripotent stem cell.

The importance of this cell type is that it can self-renew and differentiate into any of the three germ layers, which are: ectoderm, endoderm, and mesoderm. These three germ layers further differentiate to form all tissues and organs within a human being.

There are several known types of pluripotent stem cells.

Among the natural pluripotent stem cells, embryonic stem cells are the best example.However, a type of human-made pluripotent stem cell also exists, which is the induced pluripotent stem cell (iPS cell).

iPS cells were first produced from mouse cells in 2006 and human cells in 2007, and are tissue-specific cells that can be reprogrammed to become functionally similar to embryonic stem cells.

Because of their powerful ability to differentiate in a wide diversity of tissues and their non-controversial nature, induced pluripotent stem cells are well-suited for use in cellular therapy and regenerative medicine.

Did you know that bone marrow contains multipotent stem cells that give rise to all the cells of the blood? pic.twitter.com/NcYJsdPJXi

caremotto (@caremotto) January 17, 2018

Multipotent stem cells are a middle-range type of stem cell, in that they can self-renew and differentiate into a specific range of cell types.

An excellent example of this cell type is the mesenchymal stem cell (MSC).

Mesenchymal stem cells can differentiate into osteoblasts (a type of bone cell), myocytes (muscle cells), adipocytes (fat cells), and chondrocytes (cartilage cells).

These cells types are fairly diverse in their characteristics, which is why mesenchymal stem cells are classified as multipotent stem cells.

The next type of stem cells, oligopotent cells, are similar to the prior category (multipotent stem cells), but they become further restricted in their capacity to differentiate.

While these cells can self-renew and differentiate, they can only do so to a limited extent. They can only do so into closely related cell types.

An excellent example of this cell type is the hematopoietic stem cell (HSC).

HSCs are cells derived from mesoderm that can differentiate into other blood cells. Specifically, HSCs are oligopotent stem cells that can differentiate into both myeloid and lymphoid cells.

Myeloid cells includebasophils, dendritic cells, eosinophils, erythrocytes, macrophages, megakaryocytes, monocytes, neutrophils, and platelets, while lymphoid cells include B cells, T cells, and natural kills cells.

Finally, we have the unipotent stem cells, which are the least potent and most limited type of stem cell.

An example of this stem cell type would be muscle stem cells.

While muscle stem cells can self-renew and differentiate, they can only do so into a single cell type. They are unidirectional in their differentiation capacity.

The purpose of these stem cellcategories is to assess thefunctional capacity of stem cells based on their differentiation potential.

Importantly, each category has different stem cell research applications, medical applications, and drug development applications.

Watch this video and learn about the 5 types of stem cells:

If you found this article valuable, subscribe to BioInformants stem cell industry updates.

We are the industry leaders in stem cell research, with research cited by The Wall Street Journal, Xconomy, AABB, and Vogue Magazine. Bringing you breaking news on an ongoing basis, join more than half a million loyal readers, including physicians, scientists, investors, and philanthropists.

In your opinion, which of the following types of stem cells have the best potential to form any tissue type? Mention them in the comments section below.

To learn more, view:Stem Cell Fact Sheet Types of Stem Cells and their Use in Medicine

Do You Know The 5 Types Of Stem Cells?

Cade Hildrethis the Founder ofBioInformant.com, the world's largest publisher of stem cell industry news.Cade is a media expert on stem cells, recently interviewed by theWall Street Journal,Los Angeles Business Journal, Xconomy,andVogue Magazine.

Read the rest here:
Do You Know the 5 Types of Stem Cells? | BioInformant

Global transcriptome analysis of pig induced pluripotent …

The progress of next-generation sequencing technology has caused a technological breakthrough at the whole-genome level in a large number of species1. Especially, RNA-sequencing (RNA-Seq) has enabled us to take a snapshot of global gene expression in various organs and cells, regardless of any information of a reference genome. RNA-Seq outputs are digital data that can be uploaded to the public database, and sequence information can be shared worldwide.

RNA-Seq analysis also allows us to compare the biological similarity of embryonic stem cells (ES cell) with induced pluripotent stem (iPS) cells. In general, stem cells can be classified into two major subtypes: nave and primed states2,3. ES/iPS cells at nave state of pluripotency, reflect the characteristics of pre-implantation embryos and are applicable in rodents, which contribute to chimeras and germ line4,5. The growth of nave stem cell depends on the activation of LIF (Leukemia Inhibitory Factor) signaling, whereby the cell forms colonies with three-dimensional shape.

On the other hand, primed cells have the characteristics of post-implantation embryos and rarely contribute to chimeras and germ line. In brief, primed cells are already at a more differentiated stage compared to nave cells. Primate ES/iPS cells were conventionally believed to be established in primed state6,7. However, recent publications have demonstrated a reliable method for transforming human ES cells from primed to nave state8,9. Transcriptome analysis using RNA-Seq played an important role in identifying the cellular characteristics reported in those articles.

In the case of pig iPS cells, the status of the cellsnave or primedremains inconclusive since the pluripotent genes have a wide variety of phenotypes. To understand the biological variety of pig iPS cells, multiple datasets of global gene expression profiling would be needed. Although a significant number of reports on the establishment of pig iPS cells have been published10,11,12,13,14,15,16,17,18,19,20, expression profiling data in Sequence Read Archive (SRA) database are quite limited. Therefore, detailed biological features of pig iPS cells need to be addressed with whole expression profiling.

In our previous publication, we had reported that pig iPS cell, derived from six reprogramming factors, has more advantageous than that derived from four factors. Especially, the expression of six reprogramming factors was suitable for X chromosome re-activation21, which is one of the mile-stone characteristics of nave-type stem cells. Our previous data using Ion Torrent sequencing also proved that the expression of six reprogramming factors was more advantageous to activate various pluripotent genes. Although the data obtained from Ion Torrent is suggestive, at least 20M reads would be necessary to obtain a quantitative evaluation of the relatively low-expressing genes. The data obtained in our previous publication seem insufficient in terms of the number of sequencing reads required to conclude. This situation led us to detect the global expression profile of pig iPS cells, derived from the expression of six reprogramming factors, using Illumina short-read sequencer, HiSeq 2500. Currently, there are no publicly available dataset of six factor-derived pig iPS cells using Illumina sequencing platform.

The aim of this study was to clarify the difference of mRNA expression profiles between pig iPS cells derived from six and four reprogramming factors. We found relevant submitted data from two research groups on pig iPS cells with four reprogramming factors, in SRA22,23. We could compare ours with these gene expressions since both datasets were obtained with Illumina sequencer. In this study, we describe the detailed expression profile of pig iPS cells derived from four and six reprogramming factors. Multiple analyses demonstrated that the pig iPS cells derived from six factors formed independent clusters compared to those derived from four factors, and were distant from fibroblasts. Furthermore, we detected that the expression levels of various nave-specific genes were relatively elevated in pig iPS cells derived from six factors. Our data set would contribute to the understanding of biological differences between the iPS cells derived from six and four reprogramming factors, and provide the scientific explanation of how diversity of pluripotency-related genes related to the process of animal evolution.

Read more:
Global transcriptome analysis of pig induced pluripotent ...

Stem Cell Clinic Treatment Jupiter FL Alternative …

Umbilical cord cells include stem cells, growth factors and a range of other beneficial proteins and compounds. We use blood from the umbilical cord which has been purified to get rid of any harmful substances that might cause rejection of the treatment by your body. We inject the treated cord blood into the affected area, where the various active compounds found in cord cells go to work immediately to begin inflammation reduction and the promotion of healthy cell division and renewal. Some of the active compounds at work include VEGF (Vascular Endothelial Growth Factor), IL-LRA (Interleukin-1, a receptor antagonist, stem cell factors (SCF), FGF-2 (Fibroblast Growth Factor-2) and Transforming Growth Factor-beta (TGF-beta). Each of these compounds has a slightly different effect, but the net result is that the damaged cells in your joints are given the ingredients they need to kick-start healthy renewal and regeneration. The injection changes the chemistry inside the joint, creating a healthier environment that encourages positive, healing changes to take place. A better blood supply to the area, a reduction in damaging chronic inflammation and stimulation of healthy tissue growth are all typical consequences of the minimally invasive stem cell treatments we provide. By using umbilical cord cells in this way, its possible to transform joint therapy into a holistic healing process that prompts the body to enhance its own regenerative efforts. This results in a natural process of joint health improvement in the weeks or months following the injection.

Read more:
Stem Cell Clinic Treatment Jupiter FL Alternative ...

Stem Cell Therapy in Dallas, TX – atlasmedicalcenter.com

Stem Cell Therapy An Alternative To Surgery

Stem cell therapy is a revolutionary regenerative procedure that uses your own mesenchymal stem cells from your fat cells (adipose cells) or from your bone marrow to help repair the damaged or degenerative cells in your joints and encourages healing. These procedures use state-of-the-art techniques that are very ethical and safe. All of our procedures follow the FDA guidelines for MINIMAL MANIPULATION (WE DONT ADD ANY ENZYMES OR CHANGE YOUR CELLS IN ANY WAY).

Mesenchymal stem cells from your fat OR bone marrow are also called adult stem cells, and they help facilitate the regeneration of tissue naturally in the joint. These stem cells are considered to be raw potential or multipotent meaning they have the potential to differentiate into the tissue cells needed in a specific area. These cells normally function alongside the immune system and work to replace skin and tissue when the body experiences trauma. Stem Cell Therapy takes that natural regenerative ability and focuses it on the region where your body needs help repairing itself. Mesenchymal stem cells direct cytokines and growth factors from your immune system to the targeted area to create an ongoing healing process as your body repairs itself organically. Research has shown that stem cells have the potential to repair damaged cartilage, bone, tendons, muscle, skin, and connective cell tissue.

The stem cells being used are from YOUR OWN BODY. This helps eliminate the potential for your immune system to reject the cells and also eliminates the potential for disease transmission. Medications like NSAIDs and pain relievers can affect your vital organs. Invasive surgeries to replace joints with prosthetics can lead to a list of adverse outcomes; including death. Stem Cell Therapy is minimally invasive leaving a narrow margin for complications and adverse reactions.

If youve exhausted all traditional treatments or are not interested in surgery then you may want to consider stem cell therapy.

In the PAST the devices used to aspirate bone marrow were considered VERY painful, time-consuming, and extremely invasive. In 2017, this all changed when a new proprietary device for bone marrow aspiration received FDA clearance. This new device is THE ONLY bone marrow aspiration device makes the procedure virtually painless and is less invasive compared to other bone marrow aspiration methods.

Currently, Atlas Medical Center is one of the only offices in the DFW Metroplex that has been trained to use this revolutionary device for aspirating bone marrow.

Once your buttock areas has been thoroughly numbed and the cells are extracted they are immediately injected directly into the joint or area that is injured. Once injected, the healing process begins, and the stem cells begin sending signals to your immune system to get to work repairing the damage. This is all performed under ultrasound guidance so that there is ZERO guesswork (and the provider can see in REAL TIME exactly where the injection needs to be injected).

Our patients have reported that the procedure is virtually PAINLESS. The procedure requires NO general anesthesia (just local), is considered very safe, is the least invasive, requires no downtime, no hospitalization, and has shown to yield more cells (CFUs) compared to any other method. The proprietary method Atlas uses allows you to be in and out of our office in 45 minutes to 1 hour.

Patients are amazed that they can walk right out of our office and continue their usual daily activities without a single stitch- just a band aid (on their buttock and area that was treated). For example, the difference in recovery time between knee surgery versus a stem cell therapy procedure is astounding. So many patients have avoided sacrificing half a year of their life recovering from surgery by choosing stem cell therapy that has you returning to work usually on the same day!

The adipose technique that our medical providers utilize is also a virtually painless process, compared to other older techniques.

Using a local anesthetic, our medical team will take a small sample of fat tissue from your buttock. This process is usually painless, but some patients experience a slight, minimal discomfort. Once your fat cells have been collected and processed using a powerful centrifuge, they are injected under ultrasound guidance into the area of injury.

This minimally invasive procedure can be completed in 2-3 hours. The good news is there is no hospitalization, and it is an outpatient procedure. Theres a period where patients feel sore. This feeling usually lasts for a couple of days to a week. Patients are totally awake during the treatment, and most patients return to normal activities within 24-48 hours.

When Mesenchymal stem cells from either your fat or bone marrow are injected into an affected joint/s, they start to work to potentially repair and replace the damaged tissue. These cells incorporate themselves into the damaged area and over time begin to improve the stability of the tissue and reduce any pain being caused by the damage. Because mesenchymal stem cells work with your immune system to heal, they can also have an effect on inflammation. By reducing and regulating the chronic inflammation responsible for many joint conditions, mesenchymal stem cells deliver patients a rapid decrease in pain. Stem cells have been integral in advancing treatments for degeneration in the bones and joints, damaged cartilage in joints, labral and labrum tears, meniscus tears, osteoarthritis, tendinosis and a wide range of other ailments involving the joints.

On average, many patients start noticing improvement as soon as four to six weeks from the procedure, and some patients have experienced a noticeable reduction in pain as soon as a few days after treatment. There is no need for time off of work for a lengthy recovery period like with invasive surgery, and many patients return to work on the same day of their procedure. We encourage you to take it easy while your body embarks on its healing process, but normal to moderate activity is okay. As with any medical procedure, results vary and not everyone is going to be a candidate for stem cell therapy. Some patients may have to repeat the procedure again in a few months or a few years, so discussing treatment options for your specific needs is key. On your consultation day, all of your questions will be answered, and our medical provider will let you know if you qualify for this procedure.

Our purpose at Atlas Medical Center is to get you out of pain, improve mobility, and avoid having unnecessary surgeries. Our unique JointRenew Program is exclusive to the Atlas Medical Center. This advanced regenerative medical procedure uses a combination of two or more of the following: Stem Cell Therapy, Amniotic Cell Therapy, Cord Tissue Cell Therapy, Platelet Rich Plasma therapy, and Advanced Non-invasive laser therapy to optimize healing. Our clinical experience has shown that this combination accelerates healing; by allowing the greatest number of regenerative cells along with non-invasive technology to work together to potentially help regenerate the damaged area.

In addition, all of our medical providers are Board Certified, trained, and highly skilled in stem cell and regenerative cell procedures; and all injections are performed with ultrasound or fluoroscopy (real time x-ray). (This eliminates all guesswork so that the regenerative cells are injected precisely where they need to be.) This ensures that youre always receiving the best possible treatment and gives you the greatest chance for success!

Finally, our providers are currently one of the only ones in the Dallas-Fort Worth Metroplex using the ONLY FDA cleared device to aspirate bone marrow for stem cell therapy that doesnt require any manipulation.

Amniotic and Cord Cell Regenerative Therapy are alternative regenerative procedures for those who are not candidates for Stem Cell Therapy. Unlike bone marrow or adipose stem cell procedures, amniotic or Cord cell therapy is not health or condition dependent and offers those with arthritic joint conditions and soft tissue problems other treatment options.

For Dallas, Fort Worth or surrounding area patients, were located a short drive away in Irving and are looking forward to consulting with you.

See the rest here:
Stem Cell Therapy in Dallas, TX - atlasmedicalcenter.com

What is the Difference Between Embryonic and Somatic Stem Cells

Themain differencebetween embryonic and somatic stem cells is that the embryonic stem cells are pluripotent whereas the somatic stem cells are multipotent.That means; the embryonic stem cells can become all types of cells in the body while somatic stem cells can differentiate into several types of cells, but not all.

Embryonic and somatic stem cells are two types of stem cells that occur during the lifetime of animals. Furthermore, embryonic stem cells occur in the inner cell mass of the embryo while somatic stem cells occur in most of the organs of the body including bone marrow, skin, skeletal muscles, liver, etc.

1. What are Embryonic Stem Cells Definition, Potency, Differentiation 2. What are Somatic Stem Cells Definition, Potency, Differentiation 3. What are the Similarities Between Embryonic and Somatic Stem Cells Outline of Common Features 4. What is the Difference Between Embryonic and Somatic Stem Cells Comparison of Key Differences

Embryonic Stem Cells, Multipotent, Pluripotent, Somatic Stem Cells, Three Germ Layers

Embryonic stem cells are the cells in the early stages of the embryo. The zygote, which is the conceptus of fertilization, divides by mitosis, forming the morula. After 5-6 days of fertilization, the morula develops into the blastocyst that contains two parts; thetrophoblastand the inner cell mass. Thetrophoblastis the outer layer of the embryo, which contains cells that develop into the placenta and umbilical cord. Here, the cells in the inner cell mass are pluripotent and are capable of differentiating into any type of cells in the body.

Figure 1: Stem Cell Differentiation

Moreover, they differentiate into the cells in the three germ layers; ectoderm, endoderm, and mesoderm. The cells in the three germ layers are multipotent stem cells that can differentiate into a particular group of cells in our body. Therefore, the cells in the ectoderm differentiate into the epidermis, lens of the eye, sebaceous glands, hair, nails, toothenamel, etc. In addition, the cells in mesoderm differentiate into muscle, bones, connective tissue, cartilage, adipose tissue, circulatory and the lymphatic system, dermis,notochord, etc. Furthermore, the cells in the endoderm differentiate into the stomach, colon, liver, bladder, pancreas, lungs, etc.

Somatic stem cells are the adult stem cells that occur inside the specialized tissues including bone marrow, skin, skeletal muscles, brain, liver, pancreas, dental pulp, etc. Furthermore, these cells are multipotent and can only differentiate into the several types of functionally-related cells that belong to the tissue of origin of the stem cells. Therefore, they continuously divide to produce new cells. A part of these new cellsdifferentiatesinto the functionally-specialized cells in that tissue and the rest of the cells renew the existing stem cell population.

Figure 2: Stem Cell Uses

For example, dividing hematopoietic stem cells in the bone marrow differentiate into the cells in the blood including red blood cells, white blood cells, and platelets. In addition, the stem cells in the bone marrow are the most studied type of somatic stem cells in the human body. However, somatic stem cells are difficult to identify, purify, and grow in cultures. Therefore, these stem cells are rarely subjected to the studies.

Embryonic stem cells refer to the stem cells derived from the undifferentiated inner mass cells of a human embryo while somatic stem cells refer to the undifferentiated cells found throughout the body that divide to replenish dying cells and regenerate damaged tissues. This is the basic difference between embryonic and somatic stem cells.

Embryonic stem cells occur in the three germ layers of the embryo while somatic stem cells occur in most of the body organs including skeletal muscles, bone marrow, skin, liver, etc.

Potency isthe main difference between embryonic and somatic stem cells. Embryonic stem cells are multipotent. That is; they can differentiate into any cell type in the body. In contrast, somatic stem cells are pluripotent. That is; they can differentiate only into several types of cells in the body, but not all types.

Embryonic stem cell studies are less known while somatic stem cell studies are well known. This is another difference between embryonic and somatic stem cells.

Embryonic stem cells are the stem cells in the inner cell mass of the embryo. Moreover, these cells are multipotent and they can differentiate into any type of cells in the body. On the other hand, somatic stem cells are the stem cells in the adult body organs. These cells can only differentiate into several types of cells in that organ, helping to replenish the damaged or aged cells. Therefore, the main difference between embryonic and somatic stem cells is the potency.

1.Stem Cell Basics V.National Institutes of Health, U.S. Department of Health and Human Services,Available Here

1. 422 Feature Stem Cell new By OpenStax College Anatomy & Physiology, Connexions Web site, Jun 19, 2013. (CC BY 3.0) via Commons Wikimedia 2. Stem cell treatments By Hggstrm, Mikael (2014). Medical gallery of Mikael Hggstrm 2014. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.008. ISSN 2002-4436 (Public Domain) via Commons Wikimedia

Read more:
What is the Difference Between Embryonic and Somatic Stem Cells