Disease-Specific & Patient-Specific Induced Pluripotent Stem …

Stem cell science is progressing at a rapid rate. Keeping up with all the facets of this ever-changing field can be tricky as researchers learn more and more about what stem cells can provide. One branch of research is devoted to the discussion of disease-specific and patient-specific induced pluripotent stem cells. Do you understand the difference between the two? Why are scientists excited about them? How do they work? What are the pros and cons of both? Learn the answers to these questions so you can be familiar with the possible ways this developing field could impact you.

At the base of regenerative medicine and 21st century medical research lies stem cell science and discovery. Stem cells are a starting point for doctors and researchers across the globe, but they are also the starting point of the human body. Every cell, every organ, every tissue begins with a stem cell. Stem cells have lured scientists for decades because of their ability to self-renew and form into a variety of specialized cell types. There are two main categories of stem cells: adult stem cells and embryonic stem cells.

Embryonic stem cells are taken from early on in the stage of development. They are pluripotent meaning they can become any cell type in the body (nerve cells, heart cells or liver cells.) Adult stem cells are considered multipotent. They can form cell types of the tissue or organ they reside in. They are most often found in types of tissues that continuously replenish themselves like blood or skin. Adult stem cells typically generate the cell types of the tissue or organ in which they reside and are called multipotent.

Embryonic stem cells and adult stem cells have garnished a lot of attention recently in drug development centers and disease study labs. In 2006, researchers in Japan gave us new buzzwords induced pluripotent stem cells.

Induced pluripotent cells (iPS cells) are adult cells that have been artificially modified (reprogrammed) to have pluripotent capabilities. This means that cells with a specific function (like blood or skin cells) are reprogrammed to be able to form all cell types of the body. Since this development, scientists have greatly improved the techniques to engineer iPSCs, creating a powerful new way to de-differentiate cells. iPSCs give scientists an alternative, pluripotent cell to human embryonic which could help with some of the ethical concerns surrounding ESCs.

Fast forward a few years, and scientists made other breakthroughs with induced pluripotent stem cells. US scientists produced a robust collection of disease-specific stem cell lines, all of which were developed using the new induced pluripotent stem cell (iPS) technique. These new stem cell lines will make it possible for researchers to explore ten different genetic disordersincluding muscular dystrophy, juvenile diabetes, and Parkinsons diseasein a variety of cell and tissue types as they develop in laboratory cultures. Researchers can study the disease in the test tube instead of in the patient. This method allows scientists to study healthy tissue cultures with the genetic code of the disease as well as the diseased tissue.

These new iPS cell lines will model human diseases better than animal models. Although animal models (like mice) are similar to humans their differences can isolate certain diseases that need research. (One example is Downs syndrome; it does not cause the same symptoms in mice as in humans). Disease-specific iPS cells help researchers:

Patient-specific iPSCs are used for studying diseases with complicated mechanisms. Some diseases are influenced by various factors like genetic background and environmental modifications. Patient-specific iPS cells provide helpful information for understanding the pathophysiology of disease. They provide a better method for drug testing than the current method. By using patient-specific IPS cells from patients who are suffering from specific diseases, researchers can develop more treatment options and improve diagnostic accuracy.

It is difficult to collect sufficient amounts of cells from individuals affected by disease to be able to do these studies. However by transforming a patients cells into an iPSC line that can multiply almost indefinitely, a long-term supply of useful cells can help various research studies without the risk of running out.

Scientists, researchers, universities and medical centers around the globe have come together in an international effort to help the field of stem cell science and research progress. In 2012, StemBANCC was organized with international support to establish a collection of iPS cell lines for drug screening for different diseases. Managed by the University of Oxford, funds and resources were gathered from 10 pharmaceutical companies and 23 universities. The mission of StemBANCC is to create a storehouse of 1,500 iPS cell lines to help with early drug testing through a simulated human disease environment.

The 21st century is an exciting time for the field of stem cell science. Although there are still obstacles to overcome, with the progress that has been made in the last decade alone, the future looks bright for understanding and treating disease with various stem cell applications.

Originally posted here:
Disease-Specific & Patient-Specific Induced Pluripotent Stem ...

INDUCED PLURIPOTENT STEM CELLS – Regents of the University of …

This application is a continuation application and claims the benefit of priority of U.S. patent application Ser. No. 13/811,572, filed Apr. 5, 2013, which is a national stage application under 35 U.S.C. 371 of PCT/US2011/044995, filed Jul. 22, 2011, and published as WO 2012/012708 on Jan. 26, 2012, which claims priority from U.S. Provisional Application Ser. Nos. 61/366,821 filed Jul. 22, 2010 and 61/390,454 filed Oct. 6, 2010, which applications are herein incorporated by reference in their entirety.

This invention was made with Government support under United States Grant No. R01 DK082430-01 awarded by the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health. The government has rights in the invention.

Nuclear reprogramming, the process of converting one cell type into another by resetting the pattern of gene expression, can be achieved through forced expression of defined transcription factors. One example is the induced pluripotent stem cells (iPSCs) prepared by transducing four genes (e.g., Oct4, Sox2, Kif4 and c-Myc, called OSKM hereafter) into a cell type to be dedifferentiated. iPSCs are a type of pluripotent stem cell artificially derived by reprogramming a somatic cell. iPSCs are morphologically similar to embryonic stem cells and are capable of differentiating into a variety of different somatic cell types. This technology allows researchers to obtain pluripotent stem cells for use in a research setting. iPSCs also have therapeutic uses for the treatment of disease without the need for stem cells derived from an embryonic source.

However, generally less than 1% of transduced cells are reprogrammed to form iPSCs, and the entire process of establishing iPSC clones is long (over a month).

Described herein is a novel approach to nuclear reprogramming using a fusion protein (a protein created through the joining of two or more genes or portions thereof in any orientation or copy number (e.g., from about 1 to about 2, about 3, about 4, about 5 or more copies of genes for example) which originally coded for separate proteins or portions thereof) of a transcription activation domain (TAD) of a gene, for example, MyoD and a transcription factor, for example, Oct4 (such a fusion protein is designated herein as M3O) that greatly improves the efficiency of reprogramming and accelerates iPSC production. iPSC colonies emerged five days after transduction of Sox2, Klf4 and c-Myc (SKM) and M3O into fibroblasts, with colonies rapidly enlarging in the absence of feeder cells. The pluripotency of iPSCs was confirmed by genome-wide gene expression analysis, teratoma formation, and chimera formation, including germline transmission. Transduction of M3O and SKM increased chromatin accessibility at the Oct4 promoter, facilitated recruitment of the Oct4-binding Paf1 complex, and remodeled many histone modifications at pluripotency genes to an embryonic stem cell (ESC)-like state more efficiently than transduction of OSKM. Thus, discussed herein is a novel approach to nuclear reprogramming in which a wide variety of TADs can be combined with related or unrelated transcription factors to reprogram the pattern of gene expression, with applications ranging from induction of pluripotency to direct transdifferentiation.

One embodiment provides iPSCs derived by nuclear reprogramming of a somatic cell with a fusion protein. The somatic cell can be a mammalian cell, for example a mouse cell or a human cell. One embodiment provides a fusion protein for induction of pluripotent stem cells. Another embodiment provides such a pluripotent stem cell, wherein the reprogramming comprises contacting the somatic cell with a fusion protein or DNA encoding the fusion protein. The disclosed methods and fusion proteins can be used to conveniently and reproducibly establish iPSCs having pluripotency and growth ability similar to that of ES cells (ESCs).

One embodiment provides a method for preparing an induced pluripotent stem cell by nuclear reprogramming of a somatic cell. which comprises introducing a nucleic acid sequence, by methods available to one of skill in the art, coding for a fusion protein of an unrelated/heterologous transactivation domain and a transcription factor into the somatic cell. One embodiment provides an induced pluripotent stem cell obtained by such a method. The fusion protein can be the fusion of an unrelated/heterologous transactivation domain and a transcription factor (e.g., the TAD is not normally associated with the transcription factor), such as the transactivation domain of MyoD (sequence information for MyoD is provided, for example, at NM_002478.4; NM_010866.2; NP_002469.2; NP_034996.2) or VP16 fused with Oct4 (full length or a bioactive fragment thereof; octamer-binding transcription factor 4 also known as POU5F1 (POU domain, class 5, transcription factor 1); sequence includes, for example, NM_002701; NM_013633.2; NP_002692; NP_038661.2; NM_001009178; NP_001009178; NM_131112; NP_571187). Additional trans-activating domains can include, for example, but are not limited to, those found in p53, VP16, MLL, E2A, HSF1, NF-IL6, NFAT1 and NF-B.

Additional factors to be introduced into the cell, and/or used to generate a fusion protein with a transactivation domain, can include, but is not limited to, a gene from the Sox family (e.g., SOX genes encode a family of transcription factors that bind to the minor groove in DNA, and belong to a super-family of genes characterized by a homologous sequence called the HMG (high mobility group) box and include, but are not limited to, SoxA, SRY (e.g., NM_003140.1; NM_011564; NP_003131.1; NP_035694), SoxB1, Sox1 (e.g., NM_005986), Sox2 (e.g., NM_003106; NM_011443; NP_003097; NP_035573). Sox3 (e.g., NM_005634; XM_988206; NP_005625; XP_993300), SoxB2, Sox14 (e.g., NM_004189; XM_284529; NP_004180; XP_284529), Sox21 (e.g., NM_007084; XM_979432; NP_009015; XP_984526), SoxC, Sox4 (e.g., NM_003107; NM_009238; NP_003098; NP_033264), Sox11 (e.g., XM_001128542; NM_009234; XP_001128542; NP_033260), Sox12 (e.g., NM_006943; XM_973626: NP_008874; XP_978720). SoxD, Sox5 (e.g., NM_006940; NM_011444; NP_008871; NP_035574), Sox6 (e.g., NM_017508; NM_001025560; NP_059978; NP_001020731), Sox13 (e.g., NM_005686; NM_011439; NP_005677; NP_035569), SoxE, Sox8 (e.g., NM_014587; NM_011447; NP_055402; NP_035577), Sox9 (e.g., NM_000346; NM_011448; NP_000337; NP_035578), Sox10 (e.g., NM_006941; XM_001001494; NP_008872; XP_001001494), SoxF, Sox7, Sox17, Sox18 (e.g., NM_018419; NM_009236; NP_060889; NP_033262), SoxG, Sox15 (e.g., NM_006942; NM_009235; NP_008873; NP_033261), SoxH, Sox30), the Klf (Krueppel-like factor) family (e.g., KLF1 (e.g., NM_006563), KLF2 (e.g., NM_016270; XM_982078; NP_057354; XP_987172), KLF3 (e.g., NM_016531; XM_994052; NP_057615; XP_999146), KLF4 (e.g., NM_004235; NM_010637; NP_004226; NP_034767), KLF5 (e.g., NM_001730; NM_009769; NP_001721; NP_033899), KLF6 (e.g., NM_001008490; NM_011803; NP_001008490; NP_035933), KLF7 (e.g., NM_003709; XM_992457; NP_003700; XP_997551), KLF8 (e.g., NM_007250; NM_173780; NP_009181; NP_776141), KLF9 (e.g., NM_001206; XM_988516; NP_001197; XP_993610), KLF10 (e.g., NM_001032282; NM_013692; NP_001027453; NP_038720), KLF11 (e.g., XM_001129527; NM_178357; XP_001129527: NP_848134), KLF12 (e.g., NM_016285; NM_010636; NP_057369; NP_034766), KLF13 (e.g., NM_015995; NM_021366; NP_057079; NP_067341). KLF14 (e.g., NM_138693; NM_001135093; NP_619638; NP_001128565), KLF15 (e.g., NM_014079; NM_023184; NP_054798; NP_075673), KLF16, KLF17 (e.g., NM_173484.3; NM_029416.2; NP_775755.3; NP_083692.2)), the Myc family (e.g., c-Myc (e.g., NM_002467.4; NM_010849; NP_002458.2; NP_034979)), nanog (e.g., NM_024865.2; NM_028016.2; NP_079141.2; NP_082292.1), Lin28 (e.g., NM_024674; NM_145833; NP_078950: NP_665832) or a combination thereof. Additionally, the cell can also be contacted with a cytokine, such as basic fibroblast growth factor (bFGF) and/or stem cell factor (SCF). In one embodiment, the somatic cell is further contacted with a DNA demethylation reagent.

One embodiment provides a somatic cell derived by inducing differentiation of an induced pluripotent stem cell as disclosed herein. One embodiment also provides a method for stem cell therapy comprising: (1) isolating and collecting a somatic cell from a subject; (2) inducing said somatic cell from the subject into an iPSC (3) inducing differentiation of said iPSCs, and (4) transplanting the differentiated cell from (3) into the subject (e.g., a mammal, such as a human).

FIGS. 1A, 1B, 1C, 1D, 1E, 1F, 1G and 1H. Establishment of mouse iPSCs with M3O-SKM. (A) Schematic drawing of MyoD-Oct4 chimeric constructs. Numbers indicate amino acid positions delimiting MyoD fragments. The basic helix-loop-helix (bHLH) domain of MyoD corresponds to amino acids 108-167, which was not used in these chimeric constructs. EO indicates a polypeptide consisting of one methionine and a chain of 20 glutamic acids fused to Oct4 (E for glutamic acid). Right column shows percentage of GFP-positive colonies derived from mouse embryonic fibroblasts (MEFs) transduced with each MyoD-Oct4 chimeric construct along with SKM and cultured on feeder cells (FIG. 1B, Protocol A). Data represent the meanSEM from three independent experiments. (B) Schematic drawings of two protocols for iPSC creation. Whereas transduced MEFs were transferred onto feeder cells on day 4 in Protocol A, MEFs were maintained feeder-free until the end of experiments in Protocol B. (C) Emergence of GFP-positive colonies obtained with M3O-SKM with Protocol B. Bar, 200 m. (D) Summary of the efficiency of making GFP-positive colonies with various combinations of the M3O, Sox2, Klf4, and c-Myc genes with Protocol B. Number of GFP-positive colonies peaked by day 14. (E) Drawings of various combinations of the M3 domain and Oct4. The efficiency of making GFP-positive colonies with Protocol B in the presence of SKM is shown on the right. (F) Drawings of TAD replacement constructs in which TADs of Oct4 were replaced with the M3 domain. Constructs were transduced with SKM. (G) Drawings of fusion constructs between the M3 domain and Sox2 or Klf4. Sox2 mutants were transduced with OKM or M3O-KM. The Klf4 mutant was transduced with OSM or M3O-SM. (H) Drawings of fusion constructs between Oct4 and TADs taken from other transactivators. Constructs were transduced with SKM.

FIGS. 2A, 2B and 2C. Characterization of mouse iPSCs prepared with M3O-SKM (M3O-iPSCs). (A) Comparison of GFP-positivity between colonies obtained with M3O-SKM and OSKM using Protocol B. Representative images of the GFP expression patterns used to categorize colonies are shown (top). Percentages of colonies with different GFP expression patterns were calculated from 300 colonies for M3O-SKM and OSKM (bottom). Bar, 200 m. (B) qRT-PCR analysis of expression levels of three pluripotency genes in MEFs and GFP-positive colonies obtained with M3O-SKM and OSKM. PCR primers specific to endogenous Oct4 and Sox2 were used for these two genes. Although GFP-positive colonies were harvested on different days based on the time when the GFP signal first emerged for M3O-SKM (day 5) and OSKM (day 10), the intervals between time points is equivalent (bottom of graphs). Expression level of each gene in ESCs (CGR8.8 cells) was defined as 1.0. Five colonies were examined for each condition. Results represent the mean+SEM of three independent experiments. (C) qRT-PCR analysis of expression levels of three fibroblast-enriched genes in MEFs and GFP-positive colonies obtained with M3O-SKM and OSKM.

FIGS. 3A, 3B, 3C, 3D, 3E and 3F. Verification of pluripotency of mouse M3O-iPSCs. (A) Expression level of transcripts in M3O-iPSCs and ESCs relative to MEFs. Log 2 ratios are plotted for transcripts in ESCs/MEFs and iPSCs/MEFs. Red lines indicate a 4-fold difference in transcript levels. Transcripts in M3O-iPSCs were assayed 60 days after transduction. (B) Hematoxylin and eosin staining of teratoma sections derived from M3O-iPSCs. Neural tube and epidermis (ectoderm), striated muscle and bone (mesoderm), and mucous gland and respiratory epithelium (endoderm) are shown. Bar, 50 m. (C) X gal staining for cells expressing the lacZ gene in a chimeric embryo prepared with M3O-iPSCs and a control embryo at 13.5 dpc. (D) Chimeric mice prepared with M3O-iPSCs. The agouti coat color indicates a high (right) and low (left) contribution of iPSCs to the skin. The host embryos used to generate mice were derived from the albino mouse strain ICR. (E) Germline contribution of M3O-iPSCs as shown by GFP expression in the gonad of a 13.5 dpc chimeric embryo. (F) Pups obtained from crossing a wild-type ICR female (bottom) with an M3O-iPSC chimeric male (left mouse in panel D).

FIGS. 4A, 4B, 4C, 4D, 4E and 4F. Characterization of human iPSCs established with M3O-SKM. (A) Immunofluorescence staining of NANOG and SSEA4 in human iPSC colonies on day 8 and 15 obtained with M3O-SKM without subculture after day 3 when transferred onto Matrigel. Bar, 100 m for (A) and (B). Note that day 15 colonies are substantially larger than day 8 colonies as indicated by the different magnifications. (B) Comparison of the efficiency of making NANOG-positive colonies between M3O-SKM and OSKM. The number of NANOG-positive colonies was divided by the number of seeded dermal fibroblasts at each time point. (C) Immunofluorescence staining of pluripotency markers in cloned human iPSCs obtained with M3O-SKM on day 28 after four passages. (D) Quantitative RT-PCR analysis of pluripotency genes expressed in cloned human iPSCs prepared with M3O-SKM. Ten colonies were harvested on day 30 and the mean+SEM was obtained. The expression level of each gene in human ESCs H9 was defined as 1.0. Endogenous genes were amplified for OCT4, SOX2. KLF4 and c-MYC. (E) Karyotype analysis of a human iPSC established with M3O-SKM. (F) Hematoxylin and eosin staining of teratoma sections derived from human iPSCs prepared with M3O-SKM. Bar, 100 m.

FIGS. 5A, 5B, 5C, 5D, 5E and 5F. Chromatin analyses of the Oct4 gene in MEFs transduced with M3O-SKM (M3O-MEFs) and those with OSKM (O-MEFs). (A) DNA methylation patterns at the proximal promoter of the Oct4 gene analyzed with bisulfite sequencing. Black circles indicate methylated CpG and open circles, unmethylated CpG. The proportion of unmethylated CpG sites was calculated by dividing the number of unmethylated CpG sites by the total number of CpG sites in each cell type. (B) Flow cytometry of O-MEFs and M3O-MEFs prepared with Protocol B and harvested on day 9. (C) ChIP analyses of the binding levels of Oct4, Sox2, and the Paf1 complex subunits at the distal enhancer (Region 1) and initiation site (Region 2) of the Oct4 gene in M3O-MEFs and 0-MEFs. Data represent the mean+SEM of three independent experiments. All y axes indicate relative enrichment (fold). Relative enrichment in ESCs was defined as 1.0. ESCs and MEFs were mixed at a 13:87 ratio in the sample labeled as ESCs+MEFs (blue). The difference of the values between the two samples indicated by an asterisk was statistically significant (p<0.01). (D) Analyses of the accessibility of the restriction enzyme NsiI to chromatin at the distal enhancer of the Oct4 gene by Southern blotting. Locations of the enzyme recognition site and probe are shown in relation to the distal enhancer of the Oct4 gene (top). The transcription initiation site was defined as position 1. Appearance of new DNA fragments following digestion with NsiI are shown (bottom). Percentage of digested chromatin was obtained by dividing the combined signal intensity of the bands at 752 and 652 bp by the combined signal intensity of the two bands and the band at 1404 bp. Cloned O-iPSCs and M3O-iPSCs were used for day 30 lanes. GFP-negative population was collected by a FACS and analyzed for the day 9 GFP () lane of M3O-MEFs (far right). (E) ChIP analyses of the levels of three histone modifications associated with active genes at the initiation site (Region 2) and a coding region (Region 3) of the Oct4 gene. (F) ChIP analyses of the levels of two histone modifications associated with inactive genes at a coding region of the Oct4 gene (Region 3). Relative enrichment in MEFs was defined as 1.0.

FIGS. 6A, 6B, 6C, 6D and 6E. Effects of M3O-SKM and OSKM on expression of pluripotency markers and cell proliferation. (A) Temporal profiles of expression patterns of alkaline phosphatase. Bar, 100 m. (B) Temporal profiles of expression patterns of SSEA1. Bar, 100 m. (C) Flow cytometry comparing the expression level of SSEA1 between MEFs transduced with OSKM and those transduced with M3O-SKM. (D) Cell proliferation patterns of MEFs transduced with M3O or Oct4. Means+SEM of three independent experiments are shown. (E) Cell proliferation patterns of MEFs transduced with M3O-SKM or OSKM.

FIGS. 7A, 7B, 7C, 7D, 7E and 7F. Chromatin analyses of day 9 at the Oct4 gene comparing transduction of MEFs with different gene combinations. (A) Flow cytometry of MEFs transduced with M3O-SK and OSK. (B) DNA methylation analysis by bisulfite sequencing. MEFs were transduced with one (1F), two (2F), or three (3F) transcription factor genes. (C) ChIP studies on transcription factor binding at the distal enhancer. (D) Chip analyses on histone modifications associated with active genes. (E) ChIP studies on histone modifications associated with suppressed genes. (F) Hypothetical summary of epigenetic remodeling induced by M3O-SKM (right) in comparison to the lack of remodeling with OSKM (left). Binding sites for Oct4 and Sox2 are located adjacent to each other at the distal enhancer of Oct41. Transduced Oct4 and Sox2 cannot bind to their respective binding sites (blue box and gray box, respectively) in the majority of O-MEFs due to condensed chromatin. In contrast, M3O and Sox2 can effectively bind to each binding site in M3O-MEFs through the effects of the unidentified binding proteins to the MyoD TAD domain. Recruitment of these proteins eventually contributes to DNA demethylation at the proximal promoter and a histone modification pattern typical of active genes at the coding region.

FIG. 8. Immunoblotting of MyoD-Oct4 fusion proteins. Expression of transduced MyoD-Oct4 fusion genes was evaluated with an antibody against Oct4 (top). Expression of histone H2A was examined as a loading control (bottom). Bands correspond to the predicted molecular mass of each protein. Identities of extra bands marked with asterisks are unknown.

FIGS. 9A, 9B and 9C. Chip analyses of the Sox2 gene. (A) Binding of Oct4 and Sox2 at the enhancer. (B) Binding of parafibromin and the levels of histone modifications associated with active genes on day 9. (C) Levels of histone modifications associated with suppressive genes on day 9.

FIGS. 10A and 10B. ChIP analyses on day 9 of the Oct4 gene comparing transduction of one (1F), two (2F), three (3F) and four (4F) transcription factor genes. (A) Transcription factor binding. (B) Histone modifications associated with gene activation.

FIGS. 11A and 11B. ChIP analyses on day 9 of the Sox2 gene comparing transduction of one (1F), two (2F), three (3F) and four (4F) transcription factor genes. (A) Transcription factor binding at the enhancer. (B) Histone modifications associated with gene activation and suppression.

iPSC technology is the process of converting an adult specialized cell, such as a skin cell, into a stem cell, a process known as dedifferentiation. iPSCs can be very useful in clinical as well as preclinical settings. For example, iPSCs can be created from human patients and differentiated into many tissues to provide new materials for autologous transplantation, which can avoid immune rejection of the transplanted tissues. For example, pancreatic beta cells differentiated from a patient's iPSCs can be transplanted into the original patient to treat diabetes. Also, iPSCs derived from a patient can be differentiated into the ailing tissue to be used in an in vitro disease model. For example, study of dopaninergic neurons differentiated from a Parkinson's disease patient can provide unprecedented clues for the pathogenesis of the disease. In vitro-differentiated cells derived from iPSCs can be used for drug screening. For instance, many drugs are metabolized in the liver, but there have been no ideal liver cells that can be cultured for a long term for in vitro screening of drug toxicity. Also, iPSCs provide a new opportunity to understand the mechanisms underlying the plasticity of cell differentiation. Thus, the potential of iPSCs for many fields of life science is tremendous.

However, the process of generating iPSCs is slow and inefficient. With the standard protocol, MEFs are transduced with OSKM on day 1 and the cells are transferred onto feeder cells composed of irradiated fibroblasts, which provide a poorly characterized, but optimal environment for the generation of iPSCs, on day 5. iPSC colonies emerge around day 10, which are then picked up and expanded over the next two to three weeks on feeder cells to establish purified iPSC lines. Eventually, only 0.1% of the transduced fibroblasts turn into iPSCs. This slow process and extremely low efficiency make production of iPSCs costly.

It is disclosed herein that a fusion protein combining, for example, the stem cell factor Oct4 (a homeodomain transcription factor associated with undifferentiated cells) with a portion of another protein factor, for example, a transactivation domain, such as that of MyoD, can accelerate the process of making iPSCs. It is also shown herein that heterologous transactivation domains, including the MyoD TAD, promote global chromatin remodeling of stem cell genes. Thus, the process disclosed herein improves the efficiency and quality of iPSCs.

As used herein, the terms below are defined by the following meanings:

Induced pluripotent stem cells, commonly abbreviated as iPSCs, are a type of pluripotent stem cell obtained from a non-pluripotent cell, typically an adult somatic cell (a cell of the body, rather than gametes or an embryo), by inducing a forced expression of certain genes. iPSCs are believed to be similar to natural pluripotent stem cells, such as ESCs in many respects, such as the expression of certain stem cell genes and proteins, chromatin methylation patterns, doubling time, embryoid body formation, teratoma formation, viable chimera formation, and potency and differentiability.

iPSCs are not adult stem cells, but rather reprogrammed cells (e.g., epithelial cells) given pluripotent capabilities. Using genetic reprogramming with protein transcription factors, pluripotent stem cells equivalent to embryonic stem cells have been derived from human adult skin tissue. Shinya Yamanaka and his colleagues at Kyoto University used the transcription factors Oct3/4, Sox2, c-Myc, and Klf4 in their experiments on cells from humans. Junying Yu, James Thomson, and their colleagues at the University of Wisconsin-Madison used a different set of factors, Oct4, Sox2, Nanog and Lin28, and carried out their experiments using cells from human foreskin to generate iPS cells.

The term isolated refers to a factor(s), cell or cells which are not associated with one or more factors, cells or one or more cellular components that are associated with the factor(s), cell or cells in vivo.

Cells include cells from, or the subject is, a vertebrate, such as a mammal, including a human. Mammals include, but are not limited to, humans, farm animals, sport animals and companion animals. Included in the term animal is dog, cat, fish, gerbil, guinea pig, hamster, horse, rabbit, swine, mouse, monkey (e.g., ape, gorilla, chimpanzee, orangutan), rat, sheep, goat, cow and bird.

An effective amount generally means an amount which provides the desired local or systemic effect and/or performance.

Pluripotency refers to a stem cell that has the potential to differentiate into one, two or three of the three germ layers: endoderm (e.g., interior stomach lining, gastrointestinal tract, the lungs), mesoderm (e.g., muscle, bone, blood, urogenital), or ectoderm (e.g., epidermal tissues and nervous system). Pluripotent stem cells can give rise to any fetal or adult cell type.

Transdifferentiation is when a non-stem cell transforms into a different type of cell, or when an already differentiated stem cell creates cells outside its already established differentiation path.

A transcription factor (sometimes called a sequence-specific DNA-binding factor) is a protein that binds to specific DNA sequences, thereby controlling the transfer (or transcription) of genetic information from DNA to mRNA. Transcription factors perform this function alone or with other proteins or factors in a complex, by promoting (as an activator), or blocking (as a repressor) the recruitment of RNA polymerase (the enzyme that performs the transcription of genetic information from DNA to RNA) to specific genes. Generally, a defining feature of transcription factors is that they contain one or more DNA-binding domains (DBDs), which attach to specific sequences of DNA adjacent to the genes that they regulate.

A transcription activation domain, transactivation domain or trans-activating domain is generally that portion of a transcription factor that is responsible for recruitment of the transcription machinery needed to transcribe RNA. Transactivation is an increased rate of gene expression triggered either by biological processes or by artificial means. Transactivation can be triggered either by endogenous cellular or viral proteinstransactivators. These protein factors act in trans (i.e., intermolecularly). An unrelated or heterologous transactivation domain refers to a transactivation domain that is not normally associated with the gene/protein (e.g., transcription factor) of interest (not wild-type).

By pure it is meant that the population of cells has the desired purity. For example, iPSC populations can comprise mixed populations of cells. Those skilled in the art can readily determine the percentage of iPSCs in a population using various well-known methods, such as fluorescence activated cell sorting (FACS). Preferable ranges of purity in populations comprising iPSCs are about 1 to about 5%, about 5 to about 10%, about 10 to about 15%, about 15 to about 20%, about 20 to about 25%, about 25 to about 30%, about 30 to about 35%, about 35 to about 40%, about 40 to about 45%, about 45 to about 50%, about 50 to about 55%, about 55 to about 60%, about 60 to about 65%, about 65 to about 70%, about 70 to about 75%, about 75 to about 80%, about 80 to about 85%, about 85 to about 90%, about 90% to about 95% or about 95 to about 100%. Purity of the cells can be determined for example according to the cell surface marker profile within a population.

The terms comprises. comprising, and the like can have the meaning ascribed to them in U.S. Patent Law and can mean includes, including and the like. As used herein, including or includes or the like means including, without limitation.

Rapid and Efficient Production of iPSCs

Through the processes disclosed herein, iPSC colonies emerge as early as about five days (day 5) after transduction of a transactivator domain (or a portion thereof) fused to a transcription factor (or a portion thereof), e.g., M3O (short transactivation domain of MyoD (about 50 to 60 amino acids) fused to the amino terminus of the full-length Oct4), Sox2, Klf4, and c-Myc without feeder cells. The preparation of the nucleic acid molecule coding for the fusion protein(s) as well as the construct(s) of Sox, Klf, c-Myc etc. (either singly or on a polycistronic RNA) can be carried out by methods available to an art worker as well as the transduction thereof into cells (see, for example, Sambrook, Molecular Cloning: A Laboratory Manual).

iPSCs established with the standard OSKM protocol frequently contain partially reprogrammed cells and even established iPSCs occasionally lose pluripotency during prolonged cultures. In contrast, the iPSCs disclosed herein retain pluripotency more tightly and heterogeneity among different colonies is much less apparent than that with the OSKM iPSCs. In addition, iPSC colonies can be obtained without c-Myc (use only M3O, Sox2 and Klf4) at the efficiency of 0.44% around day 7. iPSCs have been prepared without c-Myc (use OSK) before, but the efficiency was low (<0.01%) and it generally took 30 to 40 days for iPSCs to emerge2,3. Additionally, this transactivation domain-based strategy can be applied to amplify the effects of other transcription factors to facilitate their reprogramming capability of cell differentiation. In summary, the use of a TAD, such as the M3 domain, has made iPSC production faster, easier, feeder-free and more efficient than the standard OSKM or other protocols.

Thus, as discussed above, the fusion technology, such as the M3O, technology disclosed herein has significant advantages over wild-type Oct4 (or other transcription factors) in generating iPSCs. First, the fusion technology is faster. While iPSC colonies appear at about day 10 with the standard OSKM protocol (see, Cell Stem Cell 2008, 3, 595 for a general protocol for making iPSCs), iPSC colonies emerge on day 5 with the fusion technology (e.g., M3O-SKM). Second, efficiency of making iPSCs is more than 50-fold higher with the fusions technology (e.g., M3O-SKM) than that with OSKM. Third, purer iPSCs populations can be obtained with the fusions technology described herein (e.g., M3O-SKM) compared with OSKM. Fourth, the fusion technology described herein (e.g., M3O-SKM) does not require feeder cells unlike OSKM. This is noted especially for making iPSCs for transplantation purposes because one would generally need to use patient-derived fibroblasts as feeder cells to avoid immune rejection. Also, the use of feeder cells adds an extra step to make iPSCs. Feeder-free iPSCs have been reported, but they are derived from already undifferentiated cells, such as adipose stem cells. Fibroblasts generally require feeder cells to become iPSCs. Finally, iPSCs can be prepared using only M3O, Sox2 and Klf4 (without c-Myc).

Generally, genes which can be used to create induced pluripotent stem cells, either singly, in combination or as fusions with transactivation domains, include, but are not limited to, one or more of the following: Oct4 (Oct3/4, Pou5f1), Sox (e.g., Sox1, Sox2, Sox3, Sox18, or Sox15), Klf (e.g., Klf4, Klf1, Klf3, Klf2 or Klf5), Myc (e.g., c-myc, N-myc or L-myc), nanog, or LIN28. As examples of sequences for these genes and proteins, the following accession numbers are provided: Mouse MyoD: M84918, NM_010866; Mouse Oct4 (POU5F1): NM_013633; Mouse Sox2: NM_011443; Mouse Klf4: NM_010637; Mouse c-Myc: NM_001177352, NM_001177353, NM_001177354 Mouse Nanog: NM_028016; Mouse Lin28: NM_145833: Human MyoD: NM_002478; Human Oct4 (POU5F1): NM_002701, NM_203289, NM_001173531; Human Sox2: NM_003106; Human Klf4: NM_004235; Human c-Myc: NM_002467; Human Nanog: NM_024865; and/or Human Lin28: NM_024674, for portions or fragments thereof and/or any related sequence available to an art worker (these sequences are incorporated by referenced herein). For example, sequences for use in the invention have at least about 50% or about 60% or about 70%, about 71%, about 72%, about 73%, about 74%, about 75%, about 76%, about 77%, about 78%, or about 79%, or at least about 80%, about 81%, about 82%, about 83%, about 84%, about 85%, about 86%, about 87%, about 88%, or about 89%, or at least about 90%, about 91%, about 92%, about 93%, or about 94%, or at least about 95%, about 96%, about 97%, about 98%, or about 99% sequence identity compared to the sequences and/or accession numbers provided herein and/or any other such sequence available to an art worker, using one of alignment programs available in the art using standard parameters or hybridization techniques. In one embodiment, the differences in sequence are due to conservative amino acid changes. In another embodiment, the protein sequence or DNA sequence has at least 80% sequence identity with the sequences disclosed herein and is bioactive (e.g., retains activity).

Methods of alignment of sequences for comparison are available in the art. Thus, the determination of percent identity between any two sequences can be accomplished using a mathematical algorithm. Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, Calif.); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 8 (available from Genetics Computer Group (GCG), 575 Science Drive. Madison, Wis., USA). Alignments using these programs can be performed using the default parameters.

During and after preparation of iPSCs, the cells can be cultured in culture medium that is established in the art and commercially available from the American Type Culture Collection (ATCC), Invitrogen and other companies. Such media include, but are not limited to, Dulbecco's Modified Eagle's Medium (DMEM), DMEM F12 medium, Eagle's Minimum Essential Medium, F-12K medium, Iscove's Modified Dulbecco's Medium, Knockout DMEM, or RPMI-1640 medium. It is within the skill of one in the art to modify or modulate concentrations of media and/or media supplements as needed for the cells used. It will also be apparent that many media are available as low-glucose formulations, with or without sodium pyruvate.

Also contemplated is supplementation of cell culture medium with mammalian sera. Sera often contain cellular factors and components that are needed for viability and expansion. Examples of sera include fetal bovine serum (FBS), bovine serum (BS), calf serum (CS), fetal calf serum (FCS), newborn calf serum (NCS), goat serum (GS), horse serum (HS), human serum, chicken serum, porcine serum, sheep serum, rabbit serum, rat serum (RS), serum replacements (including, but not limited to, KnockOut Serum Replacement (KSR, Invitrogen)), and bovine embryonic fluid. It is understood that sera can be heat-inactivated at 55-65 C. if deemed needed to inactivate components of the complement cascade. Modulation of serum concentrations, or withdrawal of serum from the culture medium can also be used to promote survival of one or more desired cell types. In one embodiment, the cells are cultured in the presence of FBS/or serum specific for the species cell type. For example, cells can be isolated and/or expanded with total serum (e.g., FBS) or serum replacement concentrations of about 0.5% to about 5% or greater including about 5% to about 15% or greater, such as about 20%, about 25% or about 30%. Concentrations of serum can be determined empirically.

Additional supplements can also be used to supply the cells with trace elements for optimal growth and expansion. Such supplements include insulin, transferrin, sodium selenium, and combinations thereof. These components can be included in a salt solution such as, but not limited to, Hanks' Balanced Salt Solution (HBSS), Earle's Salt Solution, antioxidant supplements, MCDB-201 supplements, phosphate buffered saline (PBS), N-2-hydroxyethylpiperazine-N-ethanesulfonic acid (HEPES), nicotinamide, ascorbic acid and/or ascorbic acid-2-phosphate, as well as additional amino acids. Many cell culture media already contain amino acids; however some require supplementation prior to culturing cells. Such amino acids include, but are not limited to, L-alanine, L-arginine. L-aspartic acid. L-asparagine, L-cysteine, L-cysteine, L-glutamic acid, L-glutamine, L-glycine, L-histidine, L-inositol, L-isoleucine. L-leucine, L-lysine. L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, and L-valine.

Antibiotics are also typically used in cell culture to mitigate bacterial, mycoplasmal, and fungal contamination. Typically, antibiotics or anti-mycotic compounds used are mixtures of penicillin/streptomycin, but can also include, but are not limited to, amphotericin (Fungizone), ampicillin, gentamicin, bleomycin, hygromycin, kanamycin, mitomycin, mycophenolic acid, nalidixic acid, neomycin, nystatin, paromomycin, polymyxin, puromycin, rifampicin, spectinomycin, tetracycline, tylosin, and zeocin.

Hormones can also be advantageously used in cell culture and include, but are not limited to, D-aldosterone, diethylstilbestrol (DES), dexamethasone, -estradiol, hydrocortisone, insulin, prolactin, progesterone, somatostatin/human growth hormone (HGH), thyrotropin, thyroxine, and L-thyronine. -mercaptoethanol can also be supplemented in cell culture media.

Lipids and lipid carriers can also be used to supplement cell culture media, depending on the type of cell and the fate of the differentiated cell. Such lipids and carriers can include, but are not limited to cyclodextrin (, , ), cholesterol, linoleic acid conjugated to albumin, linoleic acid and oleic acid conjugated to albumin, unconjugated linoleic acid, linoleic-oleic-arachidonic acid conjugated to albumin, oleic acid unconjugated and conjugated to albumin, among others. Albumin can similarly be used in fatty-acid free formulation.

Cells in culture can be maintained either in suspension or attached to a solid support, such as extracellular matrix components and synthetic or biopolymers. Cells often require additional factors that encourage their attachment to a solid support (e.g., attachment factors) such as type I, type II, and type IV collagen, concanavalin A, chondroitin sulfate, fibronectin, superfibronectin and/or fibronectin-like polymers, gelatin, laminin, poly-D and poly-L-lysine, Matrigel, thrombospondin, and/or vitronectin.

Cells can be cultured at different densities, e.g., cells can be seeded or maintained in the culture dish at different densities. For example, for cells to be dedifferentiated or iPSCs, the cells can be seeded or maintained at low or high cell densities. For example, at densities, including, but not limited to, densities of less than about 2000 cells/well of a 12-well plate (for example, 12-well flat-bottom growth area: 3.8 cm2 well volume: 6.0 ml or well IDdepth (mm) 22.117.5, well capacity (ml) 6.5, growth area (cm2) 3.8), including less than about 1500 cells/well of a 12-well plate, less than about 1,000 cells/well of a 12-well plate, less than about 500 cells/well of a 12-well plate, or less than about 200 cells/well of a 12-well plate. The cells can also be seeded or maintained at higher densities, for example, great than about 2,000 cells/well of a 12-well plate, greater than about 2,500 cells/well of a 12-well plate, greater than about 3,000 cells/well of a 12-well plate, greater than about 3,500 cells/well of a 12-well plate, greater than about 4,000 cells/well of a 12-well plate, greater than about 4,500 cells/well of a 12-well plate, greater than about 5,000 cells/well of a 12-well plate, greater than about 5,500 cells/well of a 12-well plate, greater than about 6,000 cells/well of a 12-well plate, greater than about 6,500 cells/well of a 12-well plate, greater than about 7,000 cells/well of a 12-well plate, greater than about 7,500 cells/well of a 12-well plate or greater than about 8,000 cells/well of a 12-well plate.

The maintenance conditions of cells cultures can also contain cellular factors that allow cells, such as the iPSCs of the invention, to remain in an undifferentiated form. It may be advantageous under conditions where the cell must remain in an undifferentiated state of self-renewal for the medium to contain epidermal growth factor (EGF), platelet derived growth factor (PDGF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF) and combinations thereof. It is apparent to those skilled in the art that supplements that allow the cell to self-renew (e.g., to produce replicate daughter cells having differentiation potential that is identical to those from which they arose; a similar term used in this context is proliferation), but not differentiate should be removed from the culture medium prior to differentiation. It is also apparent that not all cells will require these factors.

The following examples are provided in order to demonstrate and further illustrate certain embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.

Full-length and deletion mutants of mouse Oct4 cDNA were fused with various TADs and inserted into the pMXs-IP vector4. Polycistronic cDNAs encoding Sox2, Klf4 and c-Myc were transferred from the 4F2A lentiviral vector5 to the pMXs-IP vector, pMXs-IP vectors encoding OSKM separately (Addgene) were also used in some experiments. These pMXs-IP vectors were transfected into Plat-E cells6 with Fugene 6 (Roche). Virus supernatant was harvested 48 and 72 hr later and filtered through a 0.45 Cpm syringe filter. MEFs were prepared from Oct4-GFP mice which harbour an IRES-green fluorescence protein (GFP) fusion cassette downstream of the stop codon of the Oct4 gene (Jackson Laboratory #008214)7. All animal experiments were conducted in accordance with the animal experiment guidelines of University of Minnesota. For chimera experiments, MEFs were prepared from mice that harbour the Oct4-GFP allele and ROSA26-lacZ allele. MEFs were seeded at 3105 cells/6 cm dish on day 2 in DMEM with 10% fetal bovine serum (FBS). Fresh virus supernatant was added to MEFs on day 1 and day 0 with 10 g/ml polybrene. Culture medium was then changed to iPSC medium (DMEM, 15% fetal bovine serum, 100 M MEM non-essential amino acids, 55 M 2-mercaptoethanol, 2 mM L-glutamine and 1000 u/ml leukemia inhibitory factor) on day 1. Transduced MEFs were subcultured onto irradiated SNL feeder cells at 2105 cells/6 cm dish on day 4 and maintained on the feeder cells in Protocol A. The maximum number of GFP-positive colonies obtained around day 18 was divided by 2105 to obtain the efficiency of making iPSCs. In Protocol B, transduced MEFs were maintained without feeder cells. GFP-positive colonies were picked up around day 10 to clone without feeder cells for pluripotency analyses. Retrovirus titer was measured using NIH3T3 cells as described 8. All recombinant DNA research was conducted following the NIH guidelines.

Preparation of Human iPSCs

Full-length human OCT4 cDNA fused with the M3 domain of human MYOD at the amino terminus was inserted into the pMXs-IP vector. pMXs-IP vectors encoding human M3O, OCT4, SOX2, KLF4 and c-MYC (Addgene) were transfected into Plat-A cells (Cell Biolabs) with Lipofectamin 2000 (Invitrogen). Virus supernatant was harvested 48 and 72 hrs later (day 1 and 0, respectively below), filtered through a 0.45 m syringe filter and transduced into dermal fibroblasts obtained from a 34-year-old Caucasian female (Cell Applications). On day 2, 2.7104 fibroblasts were plated in each well of a 12-well plate in DMEM with 10% fetal bovine serum. Fresh virus supernatant was added to the fibroblasts on day 1 and day 0 with 10 g/ml polybrene. On day 3 cells were harvested with trypsin and subcultured at 1.7104 cells per well in 12-well plates coated with BD Matrigel hESC-qualified Matrix (BD Biosciences) in human iPSC medium (KnockOut DMEMF-12 (Invitrogen), 20% Knockout Serum Replacement (Invitrogen), 100 M MEM non-essential amino acids, 1% insulin-transferrin-selenium (Invitrogen), 0.1 mM 2-mercaptoethanol, 2 mM L-glutamine and 4 ng/ml basic FGF). The medium was changed every other day.

One million cells were resuspended in ice-cold lysis buffer containing 0.1% NP40 and incubated on ice for 5 min as previously described9. Nuclei were isolated with centrifugation at 4,000g for 5 min and digested with 200 u/ml NsiI for 2 hr at 37 C. DNA was purified and double-digested with MspI and BamHI, followed by Southern blotting using the radioactive probe shown in FIG. 5D.

MEFs were transduced with MyoD-Oct4 fusion genes and analyzed with immunoblotting five days after transduction. All antibodies are listed in supplemental Table 1. SuperSignal West Dura (Thermo Scientific) was used to detect chemiluminescence signal.

iPSCs were fixed with 4% formaldehyde for 10 min and permeabilized with 0.5% Triton X-100 for 3 min. Cells were then incubated with primary antibody and secondary antibody for 1 hr each at 25 C. DNA was counterstained with Hoechst 33342. Used antibodies are listed in Table 1. Fluorescence signal was captured with a 10 A-Plan Phi Var1 objective (numerical aperture 0.25) and an AxioCam charge coupled device camera attached to an Axiovert 200M fluorescence microscope (all from Zeiss). Photoshop 7.0 (Adobe Systems) was used for image processing.

Alkaline phosphatase was detected with an Alkaline Phosphatase Detection Kit (Millipore SCR004).

The percentage of GFP-positive or SSEA1-positive cells at each time point was determined with a FACSCalibur flow cytometer and analyzed using CellQuest Pro software (both BD Biosciences).

Quantitative RT-PCR (qRT-PCR)

cDNA for mRNA was prepared from iPSC colonies using a Cells-to-cDNA II kit (Ambion). qRT-PCR was performed with GoTaq qPCR Master mix (Promega) on a Realplex 2S system (Eppendorf). PCR primer sequences are listed in Table 2. Expression level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used to normalize the expression levels of mRNAs. The feeder-free ESC line CGR8.8 was used as a positive control.

RNA was prepared from CGR8.8 cells, MEFs, and a mouse iPSC clone prepared with the fusion gene between the M3 domain of MyoD and Oct4 (M3O-iPSC) on day 60 with the PureLink RNA total RNA purification system (Invitrogen). RNA was amplified and labeled using the Agilent Quick AmpLabeling Kit (Agilent Technologies) following the manufacturer's protocol. cRNA was hybridized overnight to Agilent Whole Murine Genome Oligo Microarray using the Agilent Gene Expression Hybridization Kit. The fluorescence signals of the hybridized microarrays were detected using Agilent's DNA Microarray Scanner. The Agilent Feature Extraction Software was used to read out and process the image files. Data were processed and visualized with Spotfire DecisionSite for Functional Genomics software. DNA microarray data have been deposited in the NCBI GEO database under the accession number GSE22327.

Adherent cells were arrested with colcemid, harvested, treated with 75 mM KCl hypotonic solution, and fixed with methanol and acetic acid at 3:1. The cells were spread onto glass slides and stained with Wright-Giemsa stain. G-banded metaphases were evaluated using an Olympus BX61 microscope outfitted with 10 and 100 objectives. Metaphase cells were imaged and karyotyped using Applied Spectral Imaging (ASI) software.

Ten M3O-iPSCs of a cloned line were transferred into a microdrop of KSOMaa solution (Millipore) with a zona-free 8-cell stage mouse embryo of the ICR strain (albino) after brief exposure to acidic Tyrode's solution (Millipore). Aggregated morula stage embryos at 2.5 days post coitum (dpc) that contained GFP-positive iPSCs were transferred into the uteri of 2.5 dpc pseudopregnant recipient mice. Embryos at 13.5 dpc were analyzed for chimera formation with X gal stain or for germline transmission with a fluorescence microscope. To prepare teratomas, one million cloned mouse or human M3O-iPSCs were injected into the limb muscle of NOD/SCID mice. Teratomas were fixed with 10% formalin and embedded with paraffin after three weeks for mouse iPSCs and eight weeks for human iPSCs. Five-m thick sections were stained with haematoxylin and eosin for histological analysis.

ChIP was performed as described in the instruction of the EZ Magna ChIP G kit (Millipore). All antibodies are listed in Table 1. PCR primer sequences are listed in Table 2. PCR amplification levels were first normalized against the value obtained with control IgG. The normalized values with ESCs or MEFs were then defined as 1.0 depending on antibodies to obtain relative expression levels in other cells.

Genomic DNA from mouse iPSCs was treated with bisulfite with an EZ DNA Methylation-Gold kit (Zymo Research). The DNA sequence at the Oct4 proximal promoter region was amplified with PCR using the primers listed in Table 2 and cloned into the pCR2.1-TOPO vector (Invitrogen) for sequencing.

Generation of Mouse IPSCs with Heterologous Transactivation Domains

Full-length mouse Oct4 was fused with various fragments of mouse MyoD (FIG. 1A). The basic helix-loop-helix (bHLH) domain of MyoD, used for dimerization and DNA binding, was not included in these constructs to avoid activation of MyoD-target genes. Each chimeric gene was co-transduced with a polycistronic retroviral vector encoding mouse Sox2, Klf4, and c-Myc (SKM)5 into MEFs derived from Oct4-GFP mice, which contain the GFP gene knocked into the Oct4 locus7. In this model, formation of GFP-positive colonies indicates that individual MEFs develop into Oct4-expressing cells capable of clonal growth. Expression of chimeric proteins was confirmed through immunoblotting with antibodies against Oct4 (FIG. 8). As a control, MEFs were transduced with OSKM (O-MEFs) on day 1 and 0 and transferred these cells onto SNL feeder cells on day 4 following a standard protocol (FIG. 1B, Protocol A). GFP-positive colonies emerged around day 10, gradually increasing in number until reaching a peak by day 18. To calculate the percentage of MEFs that were reprogrammed into iPSCs, the number of GFP-positive colonies were divided by the total number of MEFs seeded in a culture dish. It was estimated that 0.080.09% of O-MEFs were converted into GFP-positive cells, which is similar to previous reports8,10 (FIG. 1A, right column). MEFs were then transduced with each chimeric gene along with SKM and followed the protocol described above (Protocol A). M3O with SKM (M3O-SKM) increased the percentage of GFP-positive colonies most drastically, with 5.100.85% of MEFs (M3O-MEFs) being transformed into GFP-positive cells by day 15. The M3 region encompasses the acidic transactivation domain (TAD) of MyoD (amino acids 3-56)11. However, the simple presence of acidity was insufficient to facilitate iPSC formation, as evidenced by a lack of increase in GFP-positive colonies in MEFs transduced with M6O, which also contains the main acidic amino acid cluster, or a chain of 20 glutamic acids attached to Oct4 (EO) (FIG. 1A). The high efficiency with which M3O created iPSCs as compared to Oct4 was not simply due to a difference in the retrovirus titer for the two virus suspensions. The titer for the M3O virus and Oct4 virus was 1.80.2107 and 2.10.4107 colony forming units/ml, respectively.

While conducting the above experiments, it was noticed that GFP-positive colonies emerged from M3O-MEFs on about day 5 without transfer onto feeder cells (FIG. 1B, Protocol B), and these colonies steadily increased in size and number (FIG. 1C). By around day 12, 3.60.5% of M3O-MEFs formed GFP-positive colonies in the absence of feeder cells, perhaps supported by the surrounding MEFs serving as autologous feeder cells (FIG. 1D). In contrast, GFP-positive colonies emerged from O-MEFs between day 16 and 18 at an extremely low efficiency (0.00350.0006%) with the same protocol. It was next tested if GFP-positive colonies could be obtained without Sox2, Klf4, or c-Myc in the presence of M3O with Protocol B (FIG. 1D). Although M3O still required Sox2 and Klf4, c-Myc was dispensable. Previous studies have reported that iPSCs can be established without c-Myc2,3; however, the uniqueness of M3O-SK lies in the speed and efficiency with which GFP-positive colonies form. While it requires three to four weeks and the presence of feeder cells for OSK to induce GFP-positive colonies at an efficiency of around 0.01%2,3, M3O-SK could generate GFP-positive colonies without feeder cells by day 7 after transduction at an efficiency of 0.44%, over 40-fold more efficient than OSK.

These striking differences between M3O and Oct4 prompted the evaluation of the specificity of the M3O configuration in relation to other host factors and TADs taken from other transcription factors using Protocol B. First, the location and number of the M3 domains in the fusion protein with Oct4 were changed (FIG. 1E). Second, the two TADs in Oct412 were replaced with the M3 domain in various combinations (FIG. 1F). Third, the M3 domain was fused to Sox2 or Klf4 and tested in combination with other members of OSKM and M3O (FIG. 1G). OM3 was as effective as M3O in iPSC creation. In a fourth experiment, TADs taken from other powerful transactivators were fused to Oct4 (FIG. 1H), including the TADs from Tax of human T-lymphotropic virus type 1 (HTLV-1)13, Tat of human immunodeficiency virus type 1 (HIV-1)14,15, Gata416,17 and Mef2c17.

The GFP-positive colonies that emerged on day 5 following transduction with M3O-SKM using Protocol B contained 31-143 cells in 12 colonies, with a median of 43 cells/colony. This number of cells would be produced after less than seven cell divisions assuming even division for each cell, which is strikingly small compared to the median of 70 cell divisions needed before GFP-positive cells appear with OSKM Is. The colonies that emerged with M3O-SKM were usually homogenously GFP-positive from the beginning. On day 7 over 97% of these colonies were homogeneously GFP-positive with Protocol B compared to around 5% of colonies derived with OSKM obtained on day 12 with Protocol A (FIG. 2A). Protocol A was used for OSKM. As a result, GFP-positive colonies were harvested at different time points corresponding to two days after the onset of GFP activation.

The quality of GFP-positive colonies obtained with M3O-SKM and OSKM were compared by quantitative RT-PCR (qRT-PCR) analysis of three pluripotency genes (endogenous Oct4, endogenous Sox2, and Nanog) and three fibroblast-enriched genes (Thy1, Col6a2, and Fgf7)19,21. Homogeneously GFP-positive colonies obtained with M3O-SKM using Protocol B and those with OSKM using Protocol A were selected to represent the colonies for each group. Although cells were harvested at different time points corresponding to the onset of GFP activation, the interval between time points is the same. For OSKM, expression of the three pluripotency genes gradually increased during the initial week after emergence of GFP-positive colonies, indicating a slow maturation process toward pluripotency (FIG. 2B). For M3O-SKM, in contrast, levels of these transcripts reached or exceeded those seen in ESCs at the time of the emergence of GFP-positive colonies and remained at similar levels until day 30. This differential efficiency of transcriptional reprogramming was also evident with suppression of the three fibroblast-enriched genes. For M3O-SKM, expression levels of these genes on day 5 when the GFP signal was apparent were comparable to those seen in ESCs, but it took around one week after the activation of GFP for OSKM to accomplish the same level of gene suppression (FIG. 2C). Together, these results indicate that M3O-SKM can reprogram MEFs to an iPSC state more efficiently than OSKM.

The pluripotency of iPSC clones prepared with M3O-SKM following Protocol B (M3O-iPSCs) was verified using three standard approaches. First, genome-wide transcript analysis demonstrated highly similar gene expression in M3O-iPSCs and ESCs. Out of 41,160 probes, 3,293 were greater than 4-fold differentially expressed (up- or down-regulated) in both ESCs and cloned iPSCs compared to MEFs (FIG. 3A). The commonly up-regulated genes included eight ECS-enriched genes, such as Oct4, Sox2 and Nanog. In addition, Thy1, Col6a2 and Fgf7 were down-regulated more than 16-fold in both ESCs and iPSCs. Second, intramuscular injection of M3O-iPSCs into an NOD/SCID mouse resulted in teratoma formation as shown by the presence of various tissues derived from the three germ layers (FIG. 3B). Third, aggregation of 8-cell stage embryos of the ICR strain with M3O-iPSCs containing the Oct4-GFP allele and ROSA26-lacZ allele formed chimeric mice (FIG. 3C. 3D). M3O-iPSCs contributed to germ cells in some chimeric mice (FIG. 3E). When one of the chimeric males (FIG. 3D left) was crossed with a wild-type female ICR mouse (FIG. 3F, white adult at bottom), all 11 pups showed agouti or black coat color (FIG. 3F).

Establishment of Human iPSCs with M3O-SKM

Next it was evaluated if M3O could also facilitate generation of human iPSCs in comparison to OSKM. Human M3O-SKM and OSKM were transduced into human dermal fibroblasts prepared from a 34-year-old female. Because these cells did not harbor a transgene that could be used as a convenient marker for reprogramming, expression of the pluripotency protein NANOG was monitored by immunofluorescence staining as an iPSC indicator. NANOG-positive human ESC-like colonies emerged around day 8 with M3O-SKM, with the number increasing by around day 15 when 0.300.033% of the original fibroblasts were converted to iPSC colonies (FIG. 4A, 4B). In contrast, when OSKM was transduced, NANOG-positive colonies did not emerge until around day 12 and eventually only 0.00520.0018% of the fibroblasts were turned into iPSC colonies. This indicates 58-fold increased efficiency with M3O-SKM in comparison to OSKM. Furthermore, while less than 10% of the colonies that appeared with OSKM were NANOG positive, more than 90% of the colonies produced with M3O-SKM were NANOG-positive, consistent with the results for mouse iPSCs. Cloned iPSCs prepared with M3O-SKM also expressed endogenous OCT4 and surface markers SSEA4, TRA-1-60 and TRA-1-81 on day 28 (FIG. 4C). Transduced M3O was suppressed by this day (not shown). In addition, iPSCs prepared with M3O-SKM expressed twelve pluripotency genes as demonstrated by quantitative RT-PCR (FIG. 4D). All twenty mitotic spreads prepared from a cloned M3O-SKM iPSCs demonstrated normal karyotypes (FIG. 4E). Finally, they formed teratomas when injected into an NOD/SCID mouse (FIG. 4F), proving pluripotency of the cells.

To understand how M3O-SKM facilitated nuclear reprogramming at the molecular level, several chromatin changes at the Oct4 gene were examined during the early phase of iPSC generation. All analyses were performed with Protocol B on all MEFs in a culture dish including GFP-positive and -negative cells without subculture for 9 days. First, changes in DNA methylation at the promoter of the Oct4 gene were studied. CpG dinucleotides at the proximal promoter of the Oct4 gene are heavily methylated in MEFs, unlike in ESCs and iPSCs22 (FIG. 5A), and this serves as a major inhibitory mechanism for Oct4 transcription. While the number of unmethylated CpG sites remained essentially the same on day 9 in O-MEFs, the number increased approximately twofold in M3O-MEFs on the same day (FIG. 5A, 25.5% vs 55.5%). The more advanced demethylation in M3O-MEFs than in O-MEFs is consistent with the higher percentage of GFP-positive cells in M3O-MEFs than in O-MEFs on day 9 (12.77% vs 0.52%) as shown by flow cytometry (FIG. 5B).

Next, the binding of Oct4 and Sox2 to the distal enhancer of the Oct4 gene1 using chromatin immunoprecipitation (ChIP) was studied. The binding of Oct4 and Sox2 to the distal enhancer remained low with O-MEFs (FIG. 5C). However, Oct4, which was identical to M3O in this case, was already highly bound to the Oct4 distal enhancer in M3O-MEFs as early as day 3 when no GFP-positive colonies had yet appeared (FIG. 5C, the red column in the Oct4 panel). The Oct4-binding level gradually increased subsequently, eventually reaching the level comparable to that seen in ESCs on day 9. The chromatin binding of Sox2 displayed a similar tendency. The binding levels of these two proteins in the mixture of ESCs and MEFs at a 13:87 ratio was studied. This study showed substantially lower binding of Oct4 and Sox2 in comparison to the day 9 levels in M3O-MEFs (FIG. 5C, ESCs+MEFs in blue). This observation indicates that Oct4 and Sox2 were bound to the Oct4 enhancer in the majority of M3O-MEFs including GFP-negative cells on day 9. The increased binding of these two proteins to chromatin in M3O-MEFs prompted us to investigate if chromatin accessibility at the distal enhancer was also increased in M3O-MEFs. Increased chromatin accessibility is generally indicated by higher sensitivity to DNAses23. Chromatin from M3O-MEFs and O-MEFs was digested with the restriction enzyme NsiI and analyzed DNA fragments using Southern blotting. Indeed, chromatin accessibility was consistently higher in M3O-MEFs compared to O-MEFs between day 5 and day 9 (FIG. 5D). Additionally, GFP-negative M3O-MEFs were selected with a FACS on day 9 followed by NsiI digestion analysis. This GFP-negative population also demonstrated increased sensitivity to NsiI (FIG. 5D, far right), indicating that the minor GFP-positive population did not significantly influence the overall result of chromatin accessibility.

Previous reports have shown that the Paf1 complex is recruited to the distal enhancer of the Oct4 gene through binding to the Oct4 protein24,25 and then generally moves to the coding region of the gene26. Three Paf1 complex subunitsparafibromin, Leo1 and Paf1displayed a gradual increase of binding to the distal enhancer and coding region of the Oct4 gene in M3O-MEFs, but not in O-MEFs, between days 3 and 9 following transduction (FIG. 5C). The Paf1 complex recruits the histone methyltransferase complex COMPASS, which catalyzes trimethylation of lysine 4 on histone H3 (H3K4me3)26. This histone modification, a marker for active genes, was also increased specifically in M3O-MEFs in the coding region of the Oc4 gene (FIG. 5E). Two other markers for active genes, acetylation of lysines 9 and 14 on histone H3 (H3K9ac and H3K14ac)27, were also increased in M3O-MEFs (FIG. 5E). In addition, two markers for suppressed genes, trimethylation of H3K9 (H3K9me3) and H3K27 (H3K27me3)27, were more decreased in M3O-MEFs than those in O-MEFs (FIG. 5F). Similar results were observed at the Sox2 locus (FIG. 9). Among these chromatin changes, the levels of H3K9me3 and H3K27me3 in M3O-MEFs most quickly reached the levels observed in ESCs (FIG. 5F), suggesting that the loss of these suppressive histone markers precedes other chromatin modifications. Taken together, these results demonstrate that chromatin at Oct4 and Sox2 loci was generally remodeled in majority of M3O-MEFs, including the GFP-negative population, toward an ESC pattern during the first ten days after transduction, while chromatin in the majority of O-MEFs was not significantly altered.

In addition to global chromatin remodeling, M3O-SKM also elicited wider expression of two pluripotency markers than OSKM: alkaline phosphatase and SSEA1. Alkaline phosphatase was almost ubiquitously expressed by day 9 in M3O-MEFs, unlike the weak and heterogeneous expression observed in O-MEFs (FIG. 6A). SSEA1 was also more widely expressed in M3O-MEFs than in O-MEFs by day 9 as shown by immunofluorescence microscopy and flow cytometory (FIG. 6B, 6C). While alkaline phosphatase and SSEA1 are not exclusively expressed in pluripotent cells, these findings support the interpretation that M3O-SKM remodeled the chromatin in much more wider population of the cells to a certain degree unlike OSKM. Rapid cell proliferation is known to facilitate iPSC generation as shown using p53-null MEFs18; however, neither M3O-SKM nor M3O alone facilitated MEF proliferation during the initial 9 days after transduction (FIG. 6D, 6E).

Chromatin Analyses of Pluripotency Genes without c-Myc M3O-SK induced GFP-positive colonies over 100-fold more efficiently than OSKM with Protocol B (0.44% with M3O-SK in FIG. 1D vs 0.0035% with OSKM in FIG. 1F). This observation suggests that the M3 domain could compensate for the lack of c-Myc when Oct4 activation was used as an indicator. Although several roles of c-Myc have been proposed, its precise function in iPSC formation remains elusive28. To further understand the roles of c-Myc in the activation of pluripotency genes, chromatin analyses at the Oct4 and Sox2 loci were repeated comparing MEFs transduced with three genes (M3O-SK or OSK) and four genes (M3O-SKM of OSKM) on day 9 when the effects of M3O-SKM were readily detectable. One gene (M3O or Oct4) and two genes (M3O+Sox2 or Oct4+Sox2) were transduced for comparison. At this time point, 3.16% of MEFs were GFP-positive with M3O-SK (FIG. 7A), and no GFP-positive cells were observed with other combinations of one, two, or three genes. However, M3O-SK did not significantly decrease the overall level of DNA methylation compared with other gene combinations (FIG. 7B).

As for transcription factor binding to the enhancer, M3O facilitated binding of Oct4, Sox2, and parafibromin in combination with Sox2 or Sox2 and Klf4 (FIG. 7C, red), with some of these binding levels comparable to levels achieved with M3O-SKM. However, Leo1 and Paf1 were not recruited to the enhancer without c-Myc (FIG. 7C). The binding of parafibromin, Leo1, and Paf1 to the initiation site of Oct4 was also weak without c-Myc (FIG. 10A). Consistent with this partial assembly of the Paf1 complex at the Oct4 gene, the level of H3K4me3 remained low without c-Myc (FIG. 7D, 10B). Another active gene marker, H3K9ac, also remained low without c-Myc (FIG. 7D, 10B). Whereas H3K9me3 was effectively decreased by M3O-S and M3O-SK, H3K27me3 was more resistant to demethylation by any of the gene combinations without c-Myc (FIG. 7E). At the Sox2 gene, compared to the Oct4 gene. M3O did not substantially increase the binding of Oct4 or Sox2 to the enhancer alone or in combination with Sox2 or Sox2 and Klf4 (FIG. 11A). The changes in the levels of H3K4me3, H3K9ac, H3K9me3 and H3K27me3 were all weak in the absence of c-Myc (FIG. 11B). Together, these chromatin studies indicate that while M3O could facilitate formation of GFP-positive colonies without c-Myc, the overall level of chromatin remodeling in GFP-negative MEFs was low in the absence of c-Myc.

The present study advances the field of iPSC biology by showing that one of the rate-limiting steps in iPSC formation with OSKM is poor chromatin accessibility at pluripotency genes and that a strong transactivating domain can overcome this problem. Because iPSC formation was dramatically improved with M3O-SKM, the factors required to increase chromatin accessibility most likely already exist within MEFs but are not effectively recruited to pluripotency genes when using OSKM. Our current working model is that the MyoD TAD overcomes the barrier of closed chromatin by effectively attracting chromatin modifying proteins and thereby facilitating the binding of Oct4 and other regulatory proteins as well as epigenetic modifications at pluripotency genes (FIG. 7F). Myc family proteins have been proposed to globally relax chromatin in part through activation of the histone acetyltransferase GCN5 and in part through direct binding to thousands of genomic loci28,29. The results also support c-Myc's potential roles in chromatin remodeling.

One of the central questions related to the molecular mechanisms of iPSC formation is how closed chromatin at the loci of Oct4, Sox2, and Nanog are opened by OSKM. Little is known about this mechanism. One potential mechanism is that chromatin disruption occurs during repeated DNA replication as suggested by a report that 92% of B lymphocytes derived from inducible OSKM transgenic mice become iPSCs after 18 weeks of culture18. Additionally, knockdown of p53 in B cells shortened both cell doubling time and the time required to form iPSCs by twofold. However, this does not seem to be the case for M3O-SKM since it did not facilitate cell proliferation. Additionally, emerging GFP-positive colonies contained far less cells than their counterparts obtained from B cells. It has been difficult to perform biochemical analysis of the early process of iPSC formation, such as epigenetic remodeling at pluripotency genes, because of the presence of feeder cells and non-responsive MEFs that comprise more than 90% of transduced cells. However, the MyoD TAD eliminated the requirement for feeder cells and achieved significant levels of epigenetic remodeling even in those MEFs that eventually fell short of activating GFP with Protocol B. Thus, the MyoD TAD is expected to facilitate the dissection of epigenetic processes during the early phase of iPSC formation.

By combining transcription factors with TADs, this approach to nuclear reprogramming is expected to have a range of applications from inducing pluripotency, as shown in this study, to inducing direct conversion from one differentiated cell type to another without transitioning through iPSCs17,33,34. The strategy of TAD-fusion to potentiate transactivators will further advance the study of nuclear reprogramming. The effect of each TAD may be on dependent on cell types, host transcription factors, and target genes. Other TADs have been used to amplify the activity of transcription factors. For instance, the TAD of VP16 was fused to the transcription factor Pdxl to facilitate conversion of hepatocytes to pancreatic cells36,37. However, the MyoD TAD has not been used in nuclear reprogramming. The TAD-fusion approach is applicable to combinations of many other transcription factors and TADs to amplify the activity of the host transcription factor and control cell fate decisions.

Following is a list of plasmid constructs used in the above work as well as two constructs based on the VP16 gene and data therefor.

The M3 domain of the mouse MyoD cDNA was fused to the amino terminus of the full-length mouse Oct4 cDNA using PCR and inserted into the EcoRI site of the pMXs-IP vector.

The cDNA encoding the M3 domain of mouse MyoD (amino acids 1-62) was amplified with two primer sets, MyoDOct4F4 (GAGAATTCGCCATGGAGCTTCTATCGCCGCCAC; SEQ ID NO:1) and MO63-109R1 (CAGGTGTCCAGCCATGTGCTCCTCCGGTTTCAG; SEQ ID NO:2). Full length Oct4 cDNA was amplified with two primer sets, MO63-109F1 (CTGAAACCGGAGGAGCACATGGCTGGACACCTG; SEQ ID NO:3) and MyoDOct4R5 (CGGAATTCTCTCAGTTGAATGCATGGGAGAG; SEQ ID NO:4). The two PCR products of each first PCR were used as a template for the secondary PCR with the primer set MyoDOct4F4 and MyoDOct4R5. M3O was directly subcloned into EcoRI site of pMXs-IP.

The M3 domain of the mouse MyoD cDNA was fused to the carboxy terminus of the mouse full length Oct4 cDNA.

The M3 domain was prepared with PCR using the primer pair M3F1 and M3R1 and inserted into the EcoRI and the XhoI sites of the pMXs-IP vector to create the pMXs-IP M3 vector. Oct4 was then PCR amplified with the primer pair Oct4F1 and Oct4R1, and inserted into the EcoRI site of pMXs-IP M3 vector.

Activity Test of Making iPSCs OM3 converts 3.2% of MEFs to iPSCs. 3) Mouse M3OM3

Mouse M3 was fused to both the amino and carboxy termini of mouse Oct4.

PCR for Mouse M3OM3

Mouse M3 domain was prepared from the mouse MyoD cDNA with PCR using the primer pair M3OF1 and M3OR1. Mouse full length Oct4 was prepared with PCR using the primer set M3OF2 and Oct4R1. To make M3O, the above two PCR products were used as templates for PCR with the primer pair M3OF1 and Oct4R1. Finally, to make M3OM3, M3O was inserted into the EcoRI site of the pMXs-IP M3 vector prepared in the OM3 construct above.

The M3 domain of the human MyoD cDNA was fused to the amino terminus of the full-length human Oct4 cDNA using PCR and inserted into the EcoRI site of the pMXs-IP vector.

The M3 domain of human MyoD was PCR amplified with the primer pair of hM3OF1 (see below for sequence) and hM3OR1. Human full length Oct4 was PCR amplified with the primer pair of hM3OF2 and hM3OR2. These two PCR products were used as templates for the third PCR with the primers hM3OF1 and hM3OR2.

The full length of the TAD (amino acids 411-490) of VP16 was fused to the amino terminus of the mouse full-length Oct4 cDNA. VP16 is a protein expressed by the herpes simplex virus type I and its transactivation domain is highly powerful.

The cDNA encoding the transactivation domain of VP16 (amino acids 411-490) was amplified by PCR and inserted into the BamHI and XhoI sites of the pMXs-IP vector to create the pMXs VP16-IP vector. Then the full-length mouse Oct4 cDNA was inserted into the EcoRI and XhoI sites of the pMXs VP16-IP vector.

Human herpesvirus 1 complete genome: X14112.1 Tegument protein VP16 from human herpes simplex virus type 1: NP_044650 Activity Test of Making iPSCs VP16LO-SKM converts around 0.5% of mouse embryonic fibroblasts to iPSCs, which is lower than M3O-SKM (5.3%) but still higher than OSKM (0.08%). In addition, VP16LO-SKM does not require feeder cells, unlike OSKM, to make iPSCs.

A part of the TAD (amino acids 446-490) of VP16 was fused to the amino terminus of the mouse full-length Oct4 cDNA.

The cDNA encoding a part of the transactivation domain of VP16 (amino acids 446-490) was amplified with two primer sets, V16F4 (CGAGAATTCGCCATGTTGGGGGACGGGGATC; SEQ ID NO: 28) and V16OR (CAGGTGTCCAGCCATCCCACCGTACTCGTC; SEQ ID NO:29). Full length Oct4 cDNA was amplified with two primer sets. VP16OF (GACGAGTACGGTGGGATGGCTGGACACCTG; SEQ ID NO:30) and Oct4R1 (GCGCTCGAGTCTCAGTTTGAATGCATGGGAGAG; SEQ ID NO:31). The two PCR products of each first PCR were used as a template for the secondary PCR with the primer set V16F4 and Oct4R1. VP16OS was directly subcloned into EcoRI and XhoI site of pMXs-IP.

Link:
INDUCED PLURIPOTENT STEM CELLS - Regents of the University of ...

Embryonic Stem Cell Research Still Hasn’t Cured a Single …

Dr. Francis Collins has not shown any pro-life leadership at the National Institutes of Health (NIH). In fact, in an interview, Dr. Collins response to a congressional letter outlining pro-life members concerns dripped with condescension, implying that the group of 41 congressmen understood neither the science nor the ethics of embryo and stem cell experiments. Dr. Collins owes us an apology. We know the science, use the scientifically accurate terms and know the ethical facts. Dr. Collins positions at NIH have not been pro-life.

His lack of pro-life leadership might have been expected when he served under the previous administration, which was the antithesis of pro-life. However, now Dr. Collins has agreed to work for President Trump, who campaigned on a pro-life agenda. Will Dr. Collins change his positions and adjust his agenda? When will we have a pro-life NIH Director who reflects the policy of our president?

As one example of the void in pro-life leadership, Dr. Collins designed and oversees the NIH registry of human embryonic stem cell lines, a listing of cells created by destroying young human embryos that are eligible for hundreds of millions in federal taxpayer dollars. Dr. Collins continuously approves cells for this registry, and did so most recently in March and again in June of this year.

The registry has created a cottage industry for those who want to destroy human embryos and then reap taxpayer dollars for their efforts. The establishment of the registry created an incentive for further destruction of young human embryos, under the guise of expanding scientific research and providing more experimental material. Dr. Collins called it important, life-saving research, despite the fact that embryonic stem cells have to this day not saved a single human life nor proven to have any near-term success in patients.

Eight years after its inception, the registry is nothing more than an embryonic charnel house. The stem cell lines sit as names and numbers on the registry, memorial markers to the lives of the human embryos destroyed in the name of science.

Moreover, scientific leaders admit that human embryonic stem cells now serve primarily as references to compare with nonembryonic stem cells in the laboratory. Induced pluripotent stem (iPS) cells, which show the same characteristics as embryonic stem cells, have largely replaced embryonic stem cells. The Nobel-prize-winning iPS cells can be made from virtually any person or tissue, healthy or diseased, more cheaply and efficiently than embryonic stem cells, without destroying the donor of the cells.

After consuming a decade and a half of federal funding, amounting to well over a billion taxpayer dollars, embryonic stem cell research has produced no help for patients. The stem cell registry at NIH and federal funding for it should be foreclosed, and the funds should be redirected to research that shows real hope for patients.

Click here to sign up for pro-life news alerts from LifeNews.com

In previous interviews, Dr. Collins has ignored the gold standard of stem cells for patients: adult stem cell research. Adult stem cells have now treated well over 1 million patients around the globe, including tens of thousands of children. Adult stem cells are the only stem cell option to show authenticated, life-saving success in patients, validated by hundreds of scientific publications.

Yet in a 2009 interview, Dr. Collins touted the one clinical trial approved by the FDA at the time a single trial that showed no benefit to any patient from embryonic stem cells, even to today and ignored over 2,000 adult stem cell clinical trials ongoing at the time (the number of adult stem cell trials now exceeds 3,000). Adult stem cell research is providing real innovation for patients now, and it could use the funding that now goes to dogmatic support for antiquated science. Will Dr. Collins voice his support for adult stem cell research and redirect funding toward patient-focused science.

The House of Representatives has shown tangible support for this idea with the introduction of H.R. 2918, the Patients First Act of 2017. The bill would direct HHS to prioritize adult stem cell research that has the best chance of producing near-term benefits in patients without the creation, destruction, or risk of injury to human embryos. Furthermore, the bill advocates for the ethical approach without authorizing any additional spending.

In addition to refusing to acknowledge the potential of adult stem cell research, Dr. Collins has also supported human cloning to create embryos for experiments. In this scenario, a cloned human embryo would not be allowed to survive and develop, but rather be torn apart for the use of its cells in laboratory tests. Cloning (technically termed somatic cell nuclear transfer) requires the transfer of a cell nucleus into an egg that has had its own nucleus removed. This is the way Dolly the cloned sheep and other cloned animals all began, as cloned embryos.

Yet Dr. Collins takes the unscientific view that a cloned embryo is not really an embryo, because, he says, it was not produced by a sperm and egg coming together. Even the NIH states that the cloning process produces an embryo.

The NIH can be a world leader in successful, ethical science and medicine. But this shift requires a pro-life leader at the helm.

See the article here:
Embryonic Stem Cell Research Still Hasn't Cured a Single ...

Stem Cell Transplants | MD Anderson Cancer Center

A stem cell transplant is a procedure that replaces defective or damaged cells in patients whose normal blood cells have been affected by cancer.Stem cell transplants commonly are used to treat leukemia and lymphoma, cancers that affect the blood and lymphatic system. They also can help patients recover from or better tolerate cancer treatment.

In addition, these stem cell transplants are used to treat hereditary blood disorders, such as sickle cell anemia, and autoimmune diseases, such as multiple sclerosis.

Stem cell transplants use hematopoieticstem cells. These immature cells begin life in the bone marrow and eventually develop into the various types of mature blood cells, including:

There are two types of stem cell transplantation:

Cells are harvested from the patient's own bone marrow before chemotherapy and are replaced after cancer treatment. These are used most often to treat diseases like lymphoma and myeloma. They have little to no risk of rejection or graft versus host disease (GVHD) and are therefore safer than allogeneictransplants.

Stem cells come from a donor whose tissue most closely matches the patient.These cells can also come from umbilical cord blood extracted from the placenta after birth and saved in special cord blood banks for future use. MDAnderson's Cord Blood Bank actively seeks donations of umbilical cords.

Allogeneic transplants are often used to treat diseases that involve bone marrow, such as leukemia. Unlike autologous transplants, they generate a new immune system response to fight cancer. Their downside is an increased risk of rejection or GVHD.

Stem cell transplant patients are matched with eligible donors by human leukocyte antigen (HLA) typing. HLA are proteins that exist on the surface of most cells in the body. HLA markers help the body distinguish normal cells from foreign cells, such as cancer cells.

HLA typing is done with a patient blood sample, which is then compared with samples from a family member or a donor registry. It can sometimes take several weeks or longer to find a suitable donor.

The closest possible match between the HLA markers of the donor and the patient reduces the risk of the body rejecting the new stem cells (graft versus host disease).

The best match is usually a first degree relative (children, siblings or parents). These can be full matches or half-match related transplants, also known as haploidentical transplants.However, about 75% of patients do not have a suitable donor in their family and require cells from matched unrelated donors (MUD), who are located through registries such as the National Marrow Donor Program.

Because the patients immune system is wiped out before a stem cell transplant, it takes about six months to a year for the immune system to recover and start producing healthy new blood cells. Transplant patients are at increased risk for infections during this time, and must take precautions. Other side effects include:

Read this article:
Stem Cell Transplants | MD Anderson Cancer Center

Adult Stem Cells in Greenville, SC

Stem cells are one of the most important advancements in modern medical science. Their potential applications for healing, aesthetic procedures and pain relief are nearly limitless. But many people are concerned about their creation: Is it true they all come from human embryos? The answer is no. Adult stem cells are created entirely from adult tissue; no embryos are used in the process. These stem cells can be drawn from either the patient or from a donor bank.

Request more information about adult stem cells today: Call (843) 492-4884 or contact Dr. Dalal Akoury online.

Adult stem cells are stem cells drawn from the body of a healthy adult rather than from embryonic tissue. This means they aren't controversial like embryonic stem cells, which may require the destruction of a human embryo.

Adult stem cells, like all stem cells, have special regenerative properties. This is because they take on the properties of the surrounding cells. Because of this, adult stem cells have many different uses, from minor aesthetic treatments to potentially life-saving procedures.

Adult stem cells come either from the patient himself or from a donor bank. It is much more common for the stem cells to be drawn from the patient. When the stem cells are drawn from the patient, they are also called autologous stem cells.

Adult stem cells can be used in a variety of medical treatments. The list below represents a small portion of the many possible adult stem cell treatments. As medical science and the understanding of stem cells advance, the number of treatments will likely increase as well.

Possible treatmentsinclude:

Adult stem cells are generally placed into two categories, which are differentiated by how they are derived from the body. The categories are adipose stem cells and bone marrow stem cells.

Adult stem cells are often combined with platelet-rich plasma (PRP), but not always. Platelet-rich plasma is taken from the patient's blood and is believed to enhance the regenerative qualities of stem cells because it has regenerative qualities as well.

Adult stem cellsare thought to have the healing and regeneration power of embryonic stem cells, but without the controversy or potential moral issues. Request more information about adult stem cells today: Call (843) 492-4884 or contact Dr. Dalal Akoury online.

Read the original here:
Adult Stem Cells in Greenville, SC

How Adult Stem Cells Can Help Stop Pain and Reverse Aging

Im so excited to shareone of my latest and greatest biohacking experiments: using stem cells to become younger and stronger. For years, using stem cells for chronic pain, recovery from injury, or even skin tone and texture was thought of as science fiction, a treatment reserved for the ultra-rich, or worse a controversy. Today, these therapies are widely available and have worked wonders for my family and me.

Here youre going to learn about what people are really doing with stem cells, whats real, whats not, and where to go if you want to do it. As you know, I am a guinea pig and professional biohacker, so I like to try things before I recommend them.

Ive had stem cells injected pretty much all over my body in multiple countries so now you dont have to! In fact, Im the second person ever to have stem cells injected into my brain for preventative reasons. (The first was the doctor who did my procedure!)

The human bodys ability to heal on its own is impressive. With a little help from stem cell therapy, it goes from impressive to almost unbelievable. And its not just about healing injuries reversing aging is all about healing and recovering from stress and strain like a young person. Healing is core to resilience. Extracting your own stem cells and then injecting them with intention can upgrade your biology in science fiction-esque ways.

Stem cells can return sight to blind people[1]and hearing to deaf rodents.[2] They repair connective tissue, helping with everything from spinal injury to a torn Achilles tendon.[3] They may be able to regrow lost teeth.[4][5] Theyve restored the brains of patients that suffered strokes, months after the stroke happened[6]. But there are risks people have actually lost their vision, and using stem cells that arent from your body can cause weird things to happen in rare instances. Like teeth growing somewhere in your body where they dont belong. Eeewww.

Even if you dont have any medical issues, stem cell therapy offers a lot. It curbs aging by keeping your skin collagen and elastin-rich. It makes your joints stronger and more pliable. It can even increase (ahem) length and girth.

For the first time, stem cell therapy is becoming legally available to the general public, although its in a gray zone. Ive had a full-body treatment done. Actually, several. And I injected them into my brain three times and plan to do it twice a year until Im at least 180. Stem cell therapy is one of the biggest things Ive found that really moves the needle when it comes to anti-aging. (Pun intended.)

Here are my thoughts, along with what you need to know about stem cell therapy.

Stem cells are the play dough of the human body. Theyre ready to be shaped into any kind of tissue the body needs. Depending on the type you use, stem cells can turn into muscles, bones, joints, and even brain cells. Or yes, boy parts. Or girl parts, if youre so equipped. (My wife Dr. Lana did that procedure, and the results are amazing!)

Stem cells in their own are helpful, but they work better when you pair them with growth factors to guide them in the body. Growth factors are like guard rails: they keep the stem cells on the road until they reach their destination.

Stem cell therapy involves pulling stem cells from one part of your body, mixing them with growth factor from your blood, bone marrow, or other sources, and injecting them into another part.

If going to a doctor isnt in your budget, you can stimulate stem cells and growth factors on your own with a few lifestyle hacks. In fact, most of the practices in The Bulletproof Diet and Head Strong improve stem cells, in part because mitochondria(the power plants of your cells and the main topic in my books) heavily influence your stem cells.

More on that in a moment. First, lets talk about how to use stem cells.

When I did my stem cell therapy, I used mesenchymal stem cells. Theyre in every joint in your body, working to keep your connective tissue strong.

Over time, normal wear and tear can break down your joints, especially if you put them under a lot of stress. Mesenchymal stem cells release proteins that curb inflammation, keeping your joints strong. They also signal for repair, bringing in nutrients that fix damage. Stem cells can also turn into the type of tissue your body needs, replacing tissue entirely.

As you age, stem cell production drops. Your body often cant keep up with repair, especially if you injure yourself. Im doing fine, but I wanted to boost my stem cells before any real problems came up. I worked with Dr. Harry Adelson (hear him on Bulletproof Radio here) to get treatments all over.

When you get your stem cells extracted, it requires either liposuction for fat stem cells, or bone marrow, or both. But those are painful procedures so some doctors will allow you to send your stem cells to a facility that amplifies the stem cells and stores them for later use. Do this if you can afford it. This is a legal gray zone (the FDA says that if they are amplified theyre a drug, yet many physicians will offer it outside the U.S.) The reason you want to do this is that if you are ever injured, say with a traumatic brain injuryor any major trauma your stem cells could save your life. The younger you are when you get your stem cells banked, the better off you are, because stem cells are more effective when youre younger.

I was fortunate to be able to get my stem cells legally banked, so I have them available for regular use!

If youre looking into stem cell therapy, youll likely find doctors in two camps. Doctors extract stem cells from either bone marrow or fat.

I worked with Dr. Harry Adelson at Docere Medical because hes a pioneer. He uses both kinds of stem cells bone marrow and fat because he finds patients get the best of both worlds: the consistency of bone marrow-derived cells and the more impressive healing of fat-derived cells. Ive also worked with Kristen Comella and Dr. Robyn Benson, both of whom Id recommend.

If you dont want to go all-in with stem cell therapy, here are a few other ways to activate your stem cells.

Want a more in-depth look at stem cells from some of the worlds experts? Check out these episodes of Bulletproof Radio:

Thanks for reading and have a great week!

Sign-up for the Bulletproof mailing list and receive the latest news and updates!

Here is the original post:
How Adult Stem Cells Can Help Stop Pain and Reverse Aging

Northern California Stem Cell Treatment Center in Redding, CA

100+ Treatments In The Last Year Alone In Redding

This practice is dedicated to cutting edge, highly professional procurement and delivery of autologous mesenchymal stem cells. This field is exciting for us, as well as for our affiliated physicians, and being able to offer such innovative stem cell therapy is a privilege, though it comes with great responsibility.

The Northern California Stem Cell Treatment Center is partnered with a large global organization called Cell Surgical Network. This affiliation, involving over 50 centers worldwide, shares our passion for this work and allows our practice and our patients the ability to add consequentially to the scientific knowledge base in clinical stem cell treatments.

We are pleased to be able to utilize our over 90 years of combined experience and expertise in treating patients to help forge progress in this exciting type of medicine, and we are dedicated to safely delivering stem cell therapy to our patients. We've been treating patients in Redding for over a year and seen more than 100 cases come through our office.Though the advancements thus far have been phenomenal,we are on the cusp of even greater life-changing medical innovations.

Here is the original post:
Northern California Stem Cell Treatment Center in Redding, CA

Platelet Rich Plasma Therapy for Osteoarthritis …

What is the role of PRP in Stem Cell Therapy?

PRP stands for Platelet Rich Plasma, which isa main component of a PRP stem cell injection. The term is used very loosely to include anything that has growth factors and cytokines derived from blood (Platelets). When cells talk to each other, they make proteins and peptides that are the messages that pass from one cell to another and determine how the cell will respond. These are called cytokines and include growth factors. PRP stem cell injections for the knee, hip and spine use these cytokines to control the actions of surrounding cells. Platelets store granules of these cytokines that can be harvested and used.

The process of obtaining cytokines begins with a sample of blood being collected and centrifuged. The red blood cells collect at the bottom, while the plasma containing platelets can be taken from the top. This plasma with platelets can be used as is or can be centrifuged a second time to concentrate the platelets at the bottom of the tube.

We then have Platelet Rich Plasma (PRP) at the bottom and Platelet Poor Plasma (PPP) at the top. Collecting the PRP from the bottom, it can be used as is or it can be activated by adding Calcium Gluconate. This causes a clot to form, which excretes the cytokines from the platelets. The clot will slowly shrink as the cytokines are excreted. The platelets are now destroyed, and because the clotting factors have been used up, the plasma is now serum. The end product is cytokines in serum, which is used for stem cell therapy. This is obviously not PRP, as there are no platelets and no plasma.

When the plasma containing platelets are injected into the body, the platelets will be activated by contact with any tissue except endothelial cells (the cells that line arteries and stop platelets clotting). When this happens, the cytokines will be released slowly over 5 or more days. This clot is known as Platelet Rich Plasma Gel (PRPG).

The normal role of platelets in the body is to adhere to any gap in blood vessels, where they form a clot to block the hole and release cytokines to heal the damage. It is this healing power that can be utilised by doctors to heal tendon, joint and other soft tissue injuries.

Macquarie Stem Cells wanted to see if this function of platelets could be used to test if people will be responders or non-responders to stem cell therapy. We have tested this on a large number of patients using various combinations and the test has had some usefulness.

Using Platelet Rich Plasma therapy for osteoarthritis has not improved the results when given at the same time as stem cells, but there may be some utility when given two weeks before stem cells, as well as in the healing time after stem cell therapy.

Using the cytokines contained in platelets is like having a burst of stem cell activity. The results can last for one week in some patients whilst in others the results can be much longer, lasting up to a year or more. There will be a group of patients who only need plasma/platelets and others who will need stromal cells (stem cells) to get a lasting and complete effect.

A recently conducted case series has had significant findings relating to PRP stem cell injections. This study focused on knee osteoarthritis, which previously could only be treated with pain medication, anti-inflammatory drugs, or invasive joint replacement surgery.

Four different patients suffering from knee osteoarthritis were investigated to establish the effectiveness of an exercise rehabilitation program combined with Platelet Rich Plasma injections containing autologous StroMed and PRP. Over a 12 month period, each patient received regular PRP stem cell injections, participated in physical function tests, and recorded their symptoms in a questionnaire. At the conclusion of the study, all patients experienced improved outcomes, indicating that injecting a combination of stromal cells and PRP can be beneficial for osteoarthritis.

If youre interested in learning more about the role of Platelet Rich Plasma therapy for osteoarthritis, including PRP injections for the knee, hip or spine, contact Macquarie Stem Cells to arrange a consultation.

View original post here:
Platelet Rich Plasma Therapy for Osteoarthritis ...

Top Stem Cell Therapy Clinic in Vail & Denver, Colorado …

Do you have an idea of the natural healing potential that is available in your body?

Read on to find out where your body stores these powerful stem cells.

Adult stem cells are found in the highest concentration in adipose (fat) tissue. In smaller concentrations, they are additionally found in your bone marrow. Beyond what is used for harvesting, stem cells are also found in blood, skin, muscles, and organs.

Adipose tissue provides the largest volume of adult stem cells (1,000 to 2,000 times the number of cells per volume found in bone marrow). Bone marrow provides some stem cells but more importantly provides a large volume of growth factors to aid in the repair process. In addition to adult stem cells, fat tissue also contains numerous other regenerative cells that are important to the healing process.

Stem cells derived from adipose fat tissue have been shown to be a much better source for the repair of cartilage degeneration and recent studies have demonstrated its superior ability to differentiate into cartilage.

There are some myths and misconceptions about stem cells and where the cells come from. Dr. Brandt has dedicated a blog post to the important topic.

Read this article:
Top Stem Cell Therapy Clinic in Vail & Denver, Colorado ...

Stem Cell Therapy – American Regenerative Clinic, Stem …

Stem Cell Therapy employs the bodys own healing potential by isolating stem cells from one location of the body (fat tissue or bone marrow) and relocating them to an area of disease, injury, or inflammation. The main function of stem cells is to maintain and repair tissue. Stem Cell Therapy enhances this natural function by getting stem cells more directly to an area of need within the body. As soon, as stem cells get in there, they will grow to type of cells the body needs to be repaired. Stem cells have the unique ability to form many different types of tissue including bone, cartilage, muscle, etc. They are naturally anti-inflammatory, and can therefore help in the bodys own healing process and potentially reverse the effects of many diseases.

Some of the conditions currently being successfully treated include arthritis, sport related injuries, COPD, CHF, CAD, DM, auto-immune disease such as Lupus Erythematosus and Crohns disease, neurological disorders such as multiple sclerosis and Parkinson disease, spinal cord injuries, autism, critical limb ischemia, and many others.

American Regenerative Clinic will perform outpatient procedures using a process in which we isolate a patients own stem cells from either their own adipose (fat) tissue, or bone marrow. After mini-liposuction or bone marrow harvest from pelvic bone under local anesthesia, the patient tissue will be specially processed. Then immediately Isolated Stem Cells will be delivered to the same patient. Depending on nature of the disease, the cells may be injected into the joint, IV, intrathecal (lumbar puncture), intramuscular, or as a combination of above. The entire process will take just a few hours.

In many old injuries and degenerative diseases, a phenomenon called cellular depletion occurs. Because Prolotherapy and PRP rely on the bodys available repair cells locally, these two methods may produce little results. Prolotherapy starts repair process by mobilizing growth factors in the area via lengthy process of multiple injections. PRP brings them right away, but lacks bricks for repair. More advanced Stem Cell Therapy delivers everything the body needs for promising treatment.

Please read the instructions below carefully.

Discontinue Anti-Inflammatory medication (Advil, Motrin, Ibuprofen, Aleve, and Aspirin) at least 3-4 days before your procedure. Discontinue any blood thinners or any herbs, supplements or vitamins 1-2 weeks before your procedure. Discontinue Systemic Steroids (Prednisone, Hydrocortisone, etc.) 1-2 weeks before your procedure. Steroid Injections (cortisone) should be discontinued at least 1 month before your procedure. Eat a light, healthy breakfast the day of your procedure. Drink plenty of water, especially the day of your procedure.

If you have any questions, you are welcome to call our office at 248-876-4242.

Please read the following steps carefully.

0-3 Days Post Stem Cell Therapy: It is highly recommended that the patient rest the day of the procedure. The next two days the patient should focus on keeping the affected joint(s) immobilized. We strongly encourage you to use connective tissue support vitamins and/or cream. It is imperative that you take this as directed by the doctor; this will enhance the healing process. Ice can be applied to the area of injection for 15-20 minutes, 3-4 times a day, for the first 48 hours. Mild to moderate post-procedure pain can happen. Significant post procedure pain will typically resolve during the first few days after the procedure. If you are experiencing post procedure pain, you can take Tylenol as needed. If necessary, pain medication will be prescribed during your visit. If antibiotics are prescribed, please take them as directed. They will only be prescribed if they are needed. DO NOT TAKE anti-inflammatory medications such as; Advil, Motrin, Ibuprofen, Aleve, and Aspirin, for at least 2 weeks after your procedure. DO NOT TAKE blood thinners or any herbs, supplements or vitamins 3-4 days after your procedure. DO NOT TAKE systemic steroids such as; Prednisone, Hydrocortisone, etc. for at least 2 weeks following your procedure. Do not take hot baths or go to saunas during the first few days following your procedure. Avoid showering for 24 hours following your procedure. Do not consume alcoholic beverages for the first 7 days following your procedure. Avoid smoking. Smoking delays healing and can increase the risk of complications. Drink at least 64 ounces of water daily to help your heal properly. Water does not mean tea, coffee, soda or juice. Wound Care: Keep the area clean, apply a dash antibiotic ointment and a Band-Aid to the post-harvest site. If you see signs of: excessive redness, swelling or experience excessive pain, please call us at 248.876.4242.

3-7 Days Post Stem Cell Therapy: At this point you should gradually start increasing your daily activities and increase your exercise. To maximize the effects of the procedure, proper exercise is necessary. If you are still experiencing pain, continue you can take Tylenol as needed. If prescribed antibiotics please continue to take them as directed. They will only be prescribed if they are needed. Continue to use the connective tissue support vitamins and/or cream to enhance healing. Continue to avoid alcohol for at least 7 days after your procedure. DO NOT TAKE systemic steroids such as; Prednisone, Hydrocortisone, etc. for at least 2 weeks following your procedure. DO NOT TAKE anti-inflammatory medications such as; Advil, Motrin, Ibuprofen, Aleve, and Aspirin, for at least 2 weeks after your procedure.

7 Days Post Stem Cell Therapy: A follow up appointment must be schedule for 1 week (7 days) after your procedure. During the follow up the doctor will assess your healing and determine the next best course of action. If sutures were placed, this will be the time when they will be removed.

1-4 Weeks Post Stem Cell Therapy: Continue to use the connective tissue support vitamins and/or cream to enhance healing. At this point after your procedure, we highly recommend starting physical therapy to aid you in the healing process and help you regain full range of motion to the affected joint(s). DO NOT TAKE systemic steroids such as; Prednisone, Hydrocortisone, etc. for at least 2 weeks following your procedure. DO NOT TAKE anti-inflammatory medications such as; Advil, Motrin, Ibuprofen, Aleve, and Aspirin, for at least 2 weeks after your procedure.

If you have any questions, at any time after your procedure, you are welcome to call our office at 248-876-4242.

Go here to read the rest:
Stem Cell Therapy - American Regenerative Clinic, Stem ...