Human being induced pluripotent stem cells (hiPSCs) display …

Human being induced pluripotent stem cells (hiPSCs) display great promise for obesity treatment as they represent an unlimited source of brown/brite adipose progenitors (BAPs). their differentiation at a higher level. Open in a separate window Number 1 Differentiation of hiPSC-BAPs in EGM adipogenic medium.hiPSC-BAPs were induced to undergo differentiation in a traditional adipogenic medium routinely useful for adult APs (Adult) or within the EGM adipogenic moderate (EGM). (a) Twenty-five times afterwards, multilocular adipocytes had been detectable beneath the microscope only once cells had been maintained within the EGM adipogenic moderate; bar range: 50m. (b) RNAs had been prepared and examined for adipocyte marker appearance. Beliefs are means??SEM. n?=?6. *means p? ?0.05 and **means p? ?0.01. The TGF pathway lately emerged as a crucial anti-adipogenic player with the activation of Smad 2/314,15,16. The powerful anti-adipogenic aftereffect of TGF1 was verified on adult-BAPs (Fig. S2B). Oddly enough, members from the TGF family members such as for example and had been expressed through the initial times of hiPSC-BAP differentiation (Fig. 2a). and appearance was down-regulated in differentiated hiPSC-BAPs set alongside the appearance amounts in undifferentiated cells, but continued to be at a rate sufficient to keep the Smad2/3 pathway energetic ((phosphoSmad, Fig. 2b). These data recommended that hiPSC-BAPs secreted bioactive TGF family that may lock hiPSC-BAP differentiation. In contract with this hypothesis, moderate conditioned by hiPSCs-BAPs shown a powerful anti-adipogenic influence on adult-BAP differentiation (Fig. S2). An ERK inhibitor (UO126 at 5?M) or even a p38MAPK inhibitor (SB203580 in 10?M) was struggling to change the anti-adipogenic aftereffect of Rabbit polyclonal to CREB1 hiPSCs-BAP conditioned moderate on adult-BAPs (not shown). On the other hand, the anti-adipogenic aftereffect of the conditioned-medium was inhibited with the addition of 5?M SB431542, an inhibitor from the TGF signalling pathway17. As proven in Fig. 2b, energetic Smad 2/3 pathway could possibly be inhibited PF-03394197 manufacture upon SB431542 addition through the 1st 4 days of hiPSC-BAP differentiation. Then, a dramatically increase in and manifestation was observed (Fig. 2c). Transient inhibition of the TGF pathway, during the 1st 3 days of differentiation only, was sufficient to promote differentiation (Fig. S3). Completely, these data underline the essential part of TGF pathway in switching off hiPSC-BAP differentiation. Open in a separate window Number 2 Anti-adipogenic activity secreted by hiPSC-BAPs was reversed by SB431542.(a) Expression of TGF family members in undifferentiated (day time 0) and differentiated hiPSC-BAPs. (b) Activated Smad2/3 in undifferentiated and differentiated hiPSC-BAPs in the absence or presence of 5?M of PF-03394197 manufacture SB431542. (c) hiPSC-BAPs were induced to undergo differentiation in EGM2 adipogenic medium in the absence or PF-03394197 manufacture presence of 5?M SB431542. Twenty-five days later, RNAs were prepared and analyzed for the indicated genes. PF-03394197 manufacture Ideals are means??SEM. n?=?4. *means p? ?0.05 and **means p? ?0.01. Recognition of extrinsic factors advertising hiPSCs-BAP differentiation The commercial EGM medium consists of IGF1, FGF2, VEGF, EGF, hydrocortisone and ascorbic acid with no info concerning their concentrations. We showed that FGF2, VEGF and IGF1 were dispensable for hiPSC-BAP differentiation. In contrast, hydrocortisone, ascorbic acid and EGF were required (Fig. S4A). Finally, traditional adipogenic factors supplemented with SB431542 (5?M) and defined concentrations of ascorbic acid (25.5?g/ml), hydrocortisone (4?g/ml) PF-03394197 manufacture and EGF (10?ng/ml), hereafter named defined hiPSC-adipogenic medium, dramatically enhanced adipocyte formation and manifestation of adipogenic markers in the protein level (Fig. 3a,b). The defined hiPSC-adipogenic medium supported differentiation at a level identical to that when cells were maintained in total EGM2 adipogenic medium (Fig. S4B). Except SB431542, none of these essential factors was able to inhibit Smad2/3 activation (Fig. S4C). Importantly, hiPSC-BAP adipocytes were then able to respond to insulin as phosphorylated forms of IRS1, AKT and Erk1/2 were upregulated upon acute insulin administration (Fig. 3c). hiPSC-BAP progenies were also able to respond to forskolin, a chemical mimicking -adrenergic activation, by increasing gene manifestation and lipolysis (Fig. 3d,e). Overall, these data showed that adipocytes generated from hiPSC-BAPs were responsive to an adrenergic stimulus and displayed an active insulin signaling pathway, the hallmark of functional brownish/brite adipocytes. Interestingly, mesenchymal cells originated from two additional hiPSC sources and.

View original post here:
Human being induced pluripotent stem cells (hiPSCs) display ...

Embryonic Stem Cell Research – rtlofneo.com

Embryonic Stem Cell Research

is taking a five day old living human embryo, cutting him or her open and extracting embryonic stem cells from the inside, thus killing a living human embryo.

Most embryonic stem cells are derived from embryos that develop from eggs that have been fertilizedinvitroin a clinicand then donated for research purposes. To obtain embryonic stem cells, the early embryo has to be destroyed. This means destroying a human life.A human embryo is a human being in the embryonic stage, just as an infant is a human being in the infant stage.No medical cures have resulted in working with embryonic stem cells.

Adult stem cells (also referred to as non-embryonic stem cells) are present in adults, children, infants, placentas, umbilical cords, and cadavers. Obtaining stem cells from these sources does not result in certain harm to a human being. In contrast to research on embryonic stem cells,adult stem cell research has already resulted in numerous instances of actual clinical benefit to patients.

Another potential obstacle encountered by researchers engaging in embryonic stem cell research is the possibility that embryonic stem cells would not be immunologically compatible with patients and would therefore be rejected, much like a non-compatible kidney would be rejected. A proposed solution to this problem is to create an embryonic clone of a patient and subsequently destroy the clone in order to harvest his or her stem cells. Cloning for this purpose has been termed therapeutic cloningdespite the fact that the subject of the researchthe cloneis not healed but killed. No one should be free to pursue gain (financial, health-related, or otherwise) through immoral or unethical means such as the taking of innocent life. We must not sacrifice one class of human beings (the embryonic) to benefit another (those suffering from serious illness).

Original post:
Embryonic Stem Cell Research - rtlofneo.com

About Us – U.S. Stem Cell Clinic

Dr. Comella is a world-renowned expert on regenerative medicine with a focus on adipose derived stem cells. She was named number 24 on Terrapins list of the Top 50 Global Stem Cell Influencers and number 1 on the Academy of Regenerative Practices list of Top 10 Stem Cell Innovators. Most recently, Dr. Comella made the list of Top 50 Functional and Integrative Medical Doctors/Scientists in the country by DrAxe.com, one of the most visited natural health websites in the world.

Dr. Comella has pioneered stem cell therapies from various sources including cord blood, bone marrow, muscle, and adipose. She led the team that gained the first ever FDA approval for a clinical trial using a combined cell and gene therapy product in the heart. In addition to advanced cell culturing experience, Dr. Comella has managed the development, manufacturing, and quality systems of a variety of cellular products. She has developed a wide range of regenerative techniques and products that have now been successfully implemented into the clinic setting. Her professional experience includes positions in several companies including US Stem Cell, VetBiologics, Tulane University and Osiris Therapeutics. Dr. Comella progressed from research engineer at Osiris Therapeutics developing stem cell therapies for osteoarthritis to building and managing the stem cell laboratory at Tulane Universitys Center for Gene Therapy. She was the co-founder and Chief Executive Officer of Stemlogix, a regenerative medicine company focusing on veterinary medicine.

She is currently serving as the Chief Scientific Officer and board member of US Stem Cell, a publicly traded company focusing on the discovery, development, and commercialization of autologous cell therapies for the treatment of degenerative diseases. She has been responsible for the development and implementation of cell therapies in the clinic for a variety of different indications for more than 7000 patients. Hundreds of practitioners world-wide have provided stem cell treatments to their patients using her protocols. Dr. Comella has a PhD in Stem Cell Biology and holds both an MS and BS in Chemical Engineering.

See more here:
About Us - U.S. Stem Cell Clinic

Brandon Stem Cell Clinic

Umbilical cord cells are comprised of proteins, growth factors, and stem cells. Blood is collected from the umbilical cord and then purified to rid it from any factors that could cause your body to reject the treatment. One of our health care providers will inject the material from the treated cord blood into the damaged joint or joints. This allows the active compounds found in the cord cells to go to work instantly to begin to reduce inflammation and promote healthy cellular division and regeneration. Some of the active compounds at work include: VEGF (Vascular Endothelial Growth Factor), IL-LRA (Interleukin-1, a receptor antagonist, stem cell factors (SCF), FGF-2 (Fibroblast Growth Factor-2) and Transforming Growth Factor-beta (TGF-beta). Each individual compound has a slightly different function, but combined, give your joints the needed material needed to kick-start healthy cellular renewal and regeneration of your tissue. The injection changes the chemistry inside the joint, creating a healthier environment that encourages positive, healing changes to take place. You will experience a better blood supply to the regenerative area, a reduction in damaging chronic inflammation, and stimulation of healthy tissue growth all because of this simple, non-surgical injection at our Brandon Stem Cell Clinic. Our goal in this process is to provide an alternative to invasive surgical procedures or drug intervention to manage or reduce pain. Surgical procedures occasionally result in infection, scar tissue, and even amputation in extreme cases. Prescription drug abuse is also reaching epidemic levels in Brandon and the rest of the country. At Brandon Stem Cell, we are looking to use umbilical stem cells to promote healing in the body in a holistic, minimally invasive approach.

Continued here:
Brandon Stem Cell Clinic

Stem Cell of Atlanta Regenerative Stem Cell Therapy …

Dr. Brandy Brown, DNP, APRN, FNP-C

A professional FNP-C, with a love of nursing and a passion for helping people, Dr. Brandy Brown, DNP, APRN, FNP-C, is an effective APRN, business owner, consultant, and educator with 15+ years industry experience. She is also the President/CEO and Co-founder of non-profit, BLINGG. Owner of Extraordinary Nurses, LLC and Extraordinary Family Healthcare.

Brandy Brown, graduated at every degree level as she started out as a CNA at age 20. She currently possesses a AA and ASN Dr. Brown, was not satisfied until she reached her ultimate lifetime goal of FNP. She pursued her BSN, then onto Frontier Nursing University for her MSN as a Family Nurse Practitioner. In 2016, completed her Doctoral Program for her DNP (Doctorate of Nursing Practice), bringing her career level to the top in her field. She is intelligent, driven and demonstrates genuine compassion and advocacy, to deliver best-in-class patient care and patient services. Nursing often involves hectic and fast-paced environments where judgment, discretion and on-the-spot leadership are required. Dr. Brandy Brown is developing into a leader in nursing and in her community. She is a motivator to everyone she meets to grow and become an impact in their career, life, profession, and community.

Brandy is knowledgeable and has comprehensive experience in many areas of nursing including: Labor & Delivery, Pain Management, Nutrition, Anesthetics, OB/GYN, Wellness, Womens Health, Pain management with alternative treatment and Family Practice. Dr. Brown, is linking natural and medical options for her patients to manage or resolve diseases.

See original here:
Stem Cell of Atlanta Regenerative Stem Cell Therapy ...

South Texas Spinal Clinic: Orthopedic Surgeons: South Texas

The goal of the doctors, nurses, and staff at the South Texas Spinal Clinic is to provide the very best orthopedic care to the communities of San Antonio and South Texas. Through excellent communication and consistent interaction between the staff and patient, the care at each of the 12 locations of South Texas Spinal Clinic is both professional and compassionate.

The healthcare professionals at South Texas Spinal Clinic are thoroughly trained and educated in orthopedic medicine, spinal orthopedic medicine, physical medicine, and rehabilitation, allowing them to bring a combination of considerable experience and expertise to every patient.

The team at South Texas Spinal Clinic has extensive experience in treating almost every musculoskeletal and orthopedic issue. They specialize in both medical and surgical management of back and neck disorders or injuries, herniated discs resulting in arm or leg pain, scoliosis, traumatic bone fractures, total joint replacement, rotator cuff repair, sports medicine injuries, and repair of damaged cartilage and ligaments (to name just a few).

The surgeons use the latest state-of-the-art techniques to perform minimally invasive surgery, microendoscopic discectomy, interbody fusions, partial and total joint replacement, and arthroscopic sports medicine surgery of the knee and shoulder.

Outside of surgery, South Texas Spinal Clinic offers expert treatments for a range of musculoskeletal injuries, including ultrasound-guided epidural spinal injections, facet joint injections, electromyography, plasma-rich platelet therapy, and stem cell injections.

One of the keys to successfully treating musculoskeletal issues is physical therapy, which the clinics provide. This service is designed to improve mobility, strength, confidence and, perhaps most important, protect against future problems.

For the best in individualized and compassionate orthopedic care, partner with South Texas Spinal Clinics. To learn more, call or use the online scheduling tool to get started.

Read the rest here:
South Texas Spinal Clinic: Orthopedic Surgeons: South Texas

Stem Cell Therapy – Los Angeles, San Diego and San …

Select a Problem Area

If you have pain, we're here to help. Regenexx Procedures are patented stem cell and blood platelet procedures that are used to treat a wide range of joint and spine conditions.

Click a problem area to discover what Regenexx can do for you.

The Regenexx family of non-surgical stem-cell & blood platelet procedures are next generation regenerative injection treatments for those who are suffering from shoulder pain due to arthritis, rotator cuff and shoulder labrum tears, overuse injuries, and other degenerative conditions. Regenexx is also a viable alternative for those considering shoulder replacement surgery.

View Details About Shoulder Treatments

Commonly Treated Conditions:

Shoulder Procedure Video

Regenexx Procedures are advanced stem cell and blood platelet procedures for foot and ankle conditions. Before you consider ankle surgery, fusion or replacement, consider the worlds leading stem cell and prp injection treatments.

View Details About Foot & Ankle Treatments

Commonly Treated Conditions:

Ankle Procedure Video

The Regenexx family of non-surgical stem-cell & blood platelet procedures are next generation regenerative injection treatments for those who are suffering from pain or reduced range of motion due to basal joint / cmc arthritis, hand arthritis, or other injuries & conditions in the hand.

View Details About Hand & Wrist Treatments

Commonly Treated Conditions:

The Regenexx family of non-surgical stem cell and blood platelet procedures offer next-generation injection treatments for those who are suffering from knee pain or may be facing knee surgery or knee replacement due to common injuries, arthritis, overuse and other conditions.

View Details About Knee Treatments

Commonly Treated Conditions:

ACL Procedure Video In-Depth with Dr. John Schultz ACL Procedure Video

The Regenexx family of non-surgical stem-cell & blood platelet procedures are next generation regenerative injection treatments for those who are suffering from pain, inflammation or reduced range of motion due tocommon elbow injuries, arthritis and overuse conditions.

View Details About Elbow Treatments

Commonly Treated Conditions:

The Regenexx family of hip surgery alternatives are breakthrough, non-surgical stem-cell treatments for people suffering from hip pain due to common injuries, hip arthritis & other degenerative problems related to the hip joint.

View Details About Hip Treatments

Commonly Treated Conditions:

Hip Labrum Procedure Video Hip Avascular Necrosis Procedure Video

Regenexx has many non-surgical platelet and stem cell based procedures developed to help patients avoid spine surgery and high dose epidural steroid side effects. These procedures utilize the patients own natural growth factors or stem cells to treat bulging or herniated discs, degenerative conditions in the spine, and other back and neck conditions that cause pain.

View Details About Spine Treatments

Commonly Treated Conditions:

Intradiscal Procedure Video

Regenexx has many non-surgical platelet and stem cell based procedures developed to help patients avoid spine surgery and high dose epidural steroid side effects. These procedures utilize the patients own natural growth factors or stem cells to treat bulging or herniated discs, degenerative conditions in the spine, and other back and neck conditions that cause pain.

View Details About Spine Treatments

Commonly Treated Conditions:

Cervical Spine Video

Read more from the original source:
Stem Cell Therapy - Los Angeles, San Diego and San ...

Conditions and Diseases Treated | Adult Stem Cell Therapy

As pioneers in the field, TruStem Cell Therapy provides evidence-based care customized to suit patient needs in a safe, effective manner. The discovery of stem cells opened a whole new understanding of how healing works in the human body. TruStem Cell Therapy uses that science to provide access to therapy for painful and debilitating conditions.

Adult stem cells are natural healers that have almost limitless capabilities. Emerging evidence shows that adult stem cells are able to create completely unrelated cells making them valuable assets in the fight to treat many diseases.

TruStem Cell Therapy provides access to the stem cell therapy and the bodys own healing resources as a therapy for life-changing illnesses. Stem cells have the ability to develop into different cell types and aid in repairing the damage done by illness. This means they work with your body to heal tissue, help manage pain and relieve symptoms.

Our board certified surgeons have access to the latest research and state-of-the-art equipment, allowing them to harvest stem cells effectively and efficiently utilizing the least-invasive methods available. The goal is to provide access to patient-centric care with therapy using stem cells, giving the power back to patients. At TruStem Cell Therapy, we specialize in conditions treated with stem cells, such as:

See the article here:
Conditions and Diseases Treated | Adult Stem Cell Therapy

The Ethics Of Embryonic Stem Cell Research Viewpoint Essay

Posted at 12.05.2018

Since its breakthrough in 1963, (SC His, 2004) Stem Cell Research has helped the look and developing of cures which had looked like impossible mere generations earlier. Since then, huge progress has been made in finding better and more efficient means of utilizing these stem skin cells, and the huge benefits they offer. However, as with all revolutionary innovations, stem cell research goes on to handle opposition on different fronts, with many thinking it to be something inherently unethical. Such disagreement on the use of individuals embryonic stem cell (hESC) research predicated on religious and honest grounds must turn into a thing of days gone by, since the medicinal cures for diseases and disabilities which range from burns and spinal-cord accidents, to Parkinson's disease and even cancer tumor, make hESC research a miracle therapy that will make current disease something of days gone by.

Stem cells are essentially primitive cells having the ability to become all or almost all of the different types of cells in the body. Stem cells have usually been defined as not fully driven to be any particular type of cell or cells. They could be either "pluripotent" (as is the situation with hESC) where they can become any sort of tissues or "multipotent" (which is what "adult" stem cells are) and have the ability to transform only into certain types of muscle. Stem cells are unique from other cell types because they're simply unspecialized skin cells capable of renewing themselves, sometimes even after long cycles of inactivity, and this 's the reason which makes them so important (Irving).

Scientists been employed by with two kinds of stem skin cells from family pets and humans: embryonic or "pluripotent" stem skin cells and non-embryonic or "adult" stem cells. It really is of significant importance that the leading scientists in the study of mature stem cells present compelling arguments on why we must pursue research on both pluripotent and adult stem cells. Although some stem cells are present in men and women, there might not be a person adult stem cell for every kind of cell in the torso. The main thing to keep in mind is the fact pluripotent and mature stem skin cells also differ in their quality. Pluripotent stem cells have almost miraculous capacity to self-renew and also form numerous cell types, however in contrast the full potential of mature stem cells is uncertain, and a sizable amount of information suggests that they may be more limited. Because of these constraints, it is of extreme importance that research is pursued on both pluripotent and adult stem cells together (Lim).

The features of hESC

There are several different reasons why specific research of real human pluripotent stem skin cells might trigger better treatment, or ideally even cures, of several diseases.

Firstly, pluripotent stem skin cells could help us to understand the complex happenings that occur during normal human development. This research can identify the factors involved in the cellular decision-making process that results in cell field of expertise. For instance why do some skin cells become heart skin cells, while other skin cells become liver cells? A better understanding of the normal functions of skin cells would greatly boost the database of scientific knowledge whose aim would be to find the mistakes in these procedures and finally find ways to repair them (Marshall).

Secondly, and most importantly, real human pluripotent stem cells be capable of generate skin cells and tissue that could be used for "cell transplantation remedies, " These therapies would be targeted at finding ways to cure the diseases and disorders resulting from the dysfunctioning of specific types of cells and muscle. Although donated organs can, and are, sometimes used to replace diseased or destroyed tissue, the pure number of people suffering from the number of the disorders is much larger than the amount of organs or cells available for transplantation. By rousing pluripotent stem skin cells to build up into specialized skin cells and tissue, we have anticipation of finding ways to replace cells and tissue and therefore be able to treat a multitude of diseases, conditions and disabilities. (Van Der Kooy).

Ethical Considerations

Ethics is generally thought as "the rules of conduct accepted in respect to a particular class of individuals actions or a specific group, culture". (Dictionary. com) Ethics, however, cannot be considered as being truly a professional body of knowledge. Ethics is quite simply a conversation about questions. In that dialogue, everyone has a place. Most of us have our own moral intuitions. Relating to embryonic stem cell research, the question that we face is the long standing one of if the end justifies the means? Opponents of hESC research will probably claim that it is wrong to use embryos as a mere methods to our ends somewhat than as ends in themselves. This discussion boasts that since in destroying the embryo we are employing this "life" or "individual" as a means towards various other individual being's end, then it is incorrect to damage this embryo. The simple and understandable response by advocates of hESC research is that the embryo will be destroyed in any case, and the fair move to make is to utilize it to help another individual instead of throwing it away. Why should we avoid the curing of men and women on the basis of religious morality, it is merely not acceptable for the present day times in which we reside in.

A Slippery Slope

The slippery slope objection simply claims that after we start down the road of the creation of life only to eliminate it for other's purposes or benefits, then we won't be able to set restrictions to the risks imposed on our "to life. " It's advocated that since the proponents of hESC research justify early embryo damage and completely overlook the embryo's natural moral status, the end result will be a diminishing of respect for all individuals generally. What follows, because of this objector, is that such justification of the damage of early on embryos will lead to a rationale which could justify harmful tests on other individuals subjects. Although some slippery slope quarrels are valid due to the logical dynamics of the move from one situation to another, the current argument is significantly a far more psychological one when compared to a logical one. It is basically an argument that in taking current activities our thoughts will deteriorate and we will not be able to clearly assess our future decisions which may be wrong. That is an argument which has outlasted its sensible use. Since even the greatest nations on earth have come to understand that hESC research is vital to the continuation of the movement of human being knowledge. The one puzzling factor is the amount of folks who still believe scientific research such as this should be quit based on morality. It is a paradox that must definitely be fixed if we are to progress into an improved tomorrow for population (Lanza, Cibelli).

Future Endeavors

Research on stem skin cells continues to move forward knowledge about the countless unknowns related to the creation of individuals life, and also other organisms. Stem cell research is a remarkable field of research, but much like many expanding domains of scientific study, it increases questions as quickly as it creates new answers. An effective understanding must be produced, signifying the fact that the damage of a given amount of embryos will not alter the continuing future of the whole human race as considerably as some seem to be to predict. The grave evil that we affiliate with the damage of human life-and more broadly with using people as methods to an end- seems to reflects the actual fact that such destruction is either dreadful for the individuals whose lives are damaged or used, unlike their will. Embryos, however, are very different, since their damage does not have any meaning on their behalf or anyone else for example, unless they can be averted from being treated due to ethical restrictions. We must treat embryos in the manner which benefits mankind to its fullest magnitude. This will not entail using them however we see fit, whatever the consequences; but there is absolutely no reasonable reason to forgo the large benefits, and the very helpful discoveries that doctors and scientists expect will follow from intense research on hESCs. There is absolutely no reason why the near future should not commence around.

Examples of completed orders

More than 7 000 students trust us to do their work

90% of customers place more than 5 orders with us

See original here:
The Ethics Of Embryonic Stem Cell Research Viewpoint Essay

Induced Pluripotent Stem Cell Overview – genengnews.com

February 15, 2010 (Vol. 30, No. 4)

Vi Chu Ph.D. R&D manager EMD Millipore

Review of Opportunities and Challenges in this Rapidly Expanding Field of Study

The ability to reprogram somatic cells to generate induced pluripotent stem (iPS) cells has generated tremendous interest and discussion since iPS cells were first produced from mouse cells in 2006 and human cells in 2007.

The reversion of differentiated cells to a state resembling embryonic stem cells offers a wealth of opportunities for disease researchers. Interest in iPS cells is expanding rapidly beyond the domain of stem cell experts to researchers modeling complex diseases in vitro and pursuing novel therapeutics.

With iPS cell technology, you can now take a skin biopsy from a patient with a genetic disease such as familial Alzheimer or Lou Gehrig disease and turn their somatic cells into stem cells, explains Chad Cowan, Ph.D., of the Harvard Stem Cell Institute. You can then take those stem cells and turn them into cell types that might be affected in the disease.

Along with the opportunities offered by iPS cells, practical challenges still abound. Culturing stem cells relies on both science and art and defining just what exactly constitutes a stem or iPS cell is stimulating a good deal of discussion.

Having standards for iPS cells could help define the differences between these murine embryonic stem cells and their induced counterparts.

Disease Modeling

Dr. Cowans lab is using iPS cells to support studies of obesity and metabolic disorders. While the lab can easily obtain fat cells from patients, these cells cant be cultured over the long term. We can keep the fat cells alive for a short period of time but that only allows us to do a one-time endpoint assay. It doesnt allow us to tease out the complexities of what might be going wrong in a patient with a metabolic disorder. The ability to make patient-specific fat cells from iPS cells completely changes the game.

With iPS cells, the lab can conduct dozens of assays to identify differences in fat cells from a person with a metabolic disorder such as type 2 diabetes versus a person with normal body weight or someone without diabetes. The ability to take a single genotype and potentially make any of the tissues that might be involved in a metabolic disorder such as hypothalamus, pancreatic beta cells, and hepatocytes, could lead to powerful disease models.

In his lab at the University of California, Santa Barbara, Dennis Clegg, Ph.D., is using iPS cells as one tool to study the loss of vision in age-related macular degeneration (AMD). In AMD, the degeneration of retinal pigment epithelial (RPE) cells appears to cause the death of neighboring rods and cones in the macular region of the central retina.

Dr. Cleggs lab is evaluating the use of iPS-derived RPE cells to treat AMD and using iPS cell lines to create ocular cells, which can be used to study how the eye develops. The real utility of iPS cells is that you can study human cells and processes in ways you couldnt do before, notes Dr. Clegg.

Culture Challenge

iPS cells, in particular those that are human-derived, can be challenging to culture especially for those researchers who havent previously worked with stem cells. The challenges they present are similar to those encountered when culturing human embryonic stem cells, including:

For researchers who havent previously cultured stem cells, I suggest first working with mouse-derived iPS cells. These cells tend to be more robust than human cells and conditions for successful culture are well defined. Many researchers first test their hypotheses using mouse iPS cells and then transition to a human model system.

The technology to create iPS cells is evolving rapidly. The first studies reporting the creation of iPS cells used retroviral vectors to integrate a set of DNA transcription factors directly into the somatic cell genome. Upon activation, these genes convert the cells from their adult, differentiated status to an embryonic-like state. This process required multiple retroviral vectors in order to insert four different viruseseach vector delivering one reprogramming gene into the somatic cells DNA.

Since these first studies were published, researchers have been seeking ways to reprogram somatic cells without using retroviral vectors and avoiding use of transcription factors such as c-Myc that are known oncogenes. Viral delivery of transcription factors can also disrupt normal gene expression when the vectors integrate into the genome. The high number of genomic integrations15 to 20that typically occur when multiple viruses are used for reprogramming poses a safety risk if the cells are to be used for therapeutic purposes.

Recently, Boston University scientists developed a highly efficient method for creating iPS cells from mouse fibroblasts using a single viral vector instead of the multiple viruses typically required for reprogramming. Four commonly used vectors are incorporated into a single lentiviral vector containing all four genes.

If iPS cells are to be used for therapeutic purposes, permanent integration of transcription factors into the genome becomes a problem. Alternative approaches to reprogramming include use of adenoviral delivery as the adenovirus does not integrate into the genome and transient transfection with transcription factors. Ultimately, it may be possible to use proteins or small molecules to direct the reprogramming process.

Standards, Anyone?

The rapid development and continued evolution of iPS technology has sparked discussions about the need for establishing standards to guide the field.

As researchers seek new methods to create iPS cells without genetic modification and the use of these cells to develop disease models continues to expand rapidly, questions arise as to whether these cells have the same properties and potential as embryonic stem cells. How can a researcher know for certain that he or she has generated iPS cells? Is there a minimum set of criteria for assessing whether a somatic cell is fully pluripotent or only partially reprogrammed?

Adding to this complexity, researchers also seek to understand the variation between iPS cell lines derived from a common somatic source.

Dr. Cleggs lab is looking at the similarities and differences between iPS cell lines derived from human fetal RPE cells. The question we were trying to address, describes Dr. Clegg, is if we take those cells down to iPS cells and just let them spontaneously differentiate, will they have some sort of epigenetic memory and tend to re-differentiate back into RPE or something else?

The first line we looked at snapped back in large quantities to RPE cells, reports Dr. Clegg. But each subsequent line we looked at was different. Thats an important lesson for people to understandeach iPS line thats generated is slightly different, just like each embryonic stem cell line is slightly different. They have different propensities for differentiation. They may have different epigenetics. They may have different expression patterns.

Were still learning to define what is the best iPS cell, notes Dr. Cowan. The best function identically to an embryonic stem cell. It remains pluripotent, expands, and self-renews and it can differentiate into the types of tissues youre interested in.

An article by Maherali and Hochedlinger (Cell Stem Cell Protocol Review, December 4, 2008) suggests a minimal set of criteria that should be fulfilled in order to ascertain that a genuine iPS cell has been generated. The criteria include:

With human iPS cells, pluripotency can be assessed based on teratoma formation, which is a specific type of tumor containing cells from all three germ layers.

Researchers are also probing the similarity of iPS cell and embryonic cells through microarray studies, high-throughput sequencing, assessment of DNA methylation status at pluripotent cell specific genes, and by examining a range of protein biomarkers.

As our understanding of the similarities and differences between iPS cells and embryonic stem cells grows, new tools to identify and compare these cell types are needed. For example, live-cell imaging can be used to distinguish between human iPS cells and partially reprogrammed cells.

While standards provide a good basis of comparison, Dr. Cowan suggests that standards can be restrictive. The standards are naturally evolving. We certainly need to maintain a minimum standard and recognize the standard will change over time. Within a year or two, there will probably be a new set of guidelines available. But there may be times when you may not want to make something that is an embryonic cell.

In fact, it may be more to your advantage to somehow uniquely trap a cell so that it is lineage-committed to something that can replicate in culture indefinitely but really only thinks of itself as lung, for example, and so would only ever differentiate back to lung cell types.

While a great deal remains to be learned about iPS cells, they represent a powerful new research tool. In addition to their potential impact on the field of regenerative medicine, use of iPS cells to dissect complicated diseases at the cellular level will provide valuable new insights supporting drug discovery. As we learn more about the nature of iPS cells, standards will certainly evolve and new tools will become available to facilitate efficient creation and routine culture.

Vi Chu, Ph.D. (vi_chu@millipore.com), is R&D manager, stem cell/cell biology at Millipore.

Here is the original post:
Induced Pluripotent Stem Cell Overview - genengnews.com