Center For Cell & Gene Therapy – Cell Therapy

1102 Bates Street, Suite 1670

Houston, Texas 77030

The GMP Facilities at the Center for Cell and Gene Therapy at Baylor College of Medicine are among the largest and most modern in the United States. Manufacturing of therapeutic biologics has existed at Baylor for more than twenty years, and is now centralized in 19,000 square feet on the 16th floor of the Feigin Center at Texas Childrens Hospital.

This facility opened in 2010 and contains 22 ISO 7 clean room suites supported by dedicated space for cell and product cold storage, flow cytometric analysis, quality control testing, data management and storage and quality assurance activities. The staff has extensive experience in GMP manufacturing of a wide variety of products and intermediates for cellular therapies and of viral and non-viral vectors, and master and working cell banks.

Manufacturing and testing supports more than 30 investigator-sponsored INDs conducted at the Texas Medical Center and institutions around the United States. Products have also been prepared under contract for researchers in Europe, Asia and Australia. The range of products that have been manufactured is shown under the Vector and Cell Therapy Facilitypages.

The facility is also accredited by the Foundation for the Accreditation of Cellular Therapy (FACT)and is CLIA registered for high complexity testing.

Center for Cell & Gene Therapy - cGMP Facilities

See the article here:
Center For Cell & Gene Therapy - Cell Therapy

VAX-DC/MM Cell Therapy Shows Promise in Relapsed or Refractory Myeloma, Lymphoma Patients – Myeloma Research News

NantKwests Vax-DC/MM cell therapy has induced a partial or complete response in 42 percent ofrelapsed or refractory multiple myeloma (MM) and lymphoma patients in a Phase 1 clinical trial (NCT02248402). The findings showed no evidence of severe adverse events.

Results of this work were published under the title A phase I clinical study of autologous dendritic cell therapy in patients with relapsed or refractory multiple myeloma in the journal Oncotarget.

Natural killer (NK) cells, the bodys first line of defense, have the innate ability to rapidly seek and destroy abnormal cells, like cancer cells, without requiring prior exposure or activation by support molecules. They also are able to activate more specific immune cells, likeB-cells and T-cells, against a particular target.

NantKwests cell therapy, VAX-DC/MM, uses transplants of dendritic cells (another immune cell type) to improve the action of NK cells. The dendritic cells, extracted from the blood of myeloma patients, were incubated with inactive myeloma cells, which rendered them specific to target such cells.

In this study, we evaluated the safety and efficacy of VAX-DC/MM in patients with relapsed or refractory MM, the researchers wrote.

The trial enrolled 12 patients who previously had been treated with both thalidomide- and bortezomib-based therapies. Participants received a median of five prior treatment regimens, and had been diagnosed for a median of 56.6 months.

All patients underwent VAX-DC/MM therapy once everyfour weeks. Three patients were treated with five cells, and three patients were treated with 10 million cells. After the higher dose was established as the tolerable dose, an additional six patients received the 10 million cell dose.

Results showed that VAX-DC therapy had a clinical benefit rate of 66.7 percent: One patient (11.1%) had a minor response to treatment, five (55.6%) had stable disease, and three (33.3%) saw their tumor progress. Importantly, one patient with relapsed Hodgkin lymphoma and one with myeloma had a complete response, and have remained disease-free after 10 and two years, respectively.

Our study was designed to assess safety and preliminary evidence of efficacy in patients with relapsed, refractory hematological malignancies whose disease recurred after autologous hematopoietic cell transplantation (AHCT), Armand Keating, MD, said in a press release. Keating is director of the Cell Therapy program at the Princess Margaret Cancer Centre and University Health Network.In this heavily pretreated patient population that has a particularly poor prognosis, we demonstrated safety with minimal toxicity and showed preliminary evidence of efficacy, taking advantage of the unique properties of natural killer (NK) cells as an immuno-therapeutic agent, she said.

VAX-DC therapy was well-tolerated, and the most frequent adverse events were local reactions at the injection site and infusion-related reactions.

In this clinical study completed in 2015 of 12 patients with lymphoma and multiple myeloma who had relapsed after AHCT for refractory/relapsed disease, we report encouraging results said Keating, leading her to conclude that aNK cell therapy warrants further clinical investigation.

Consistent with previous studies, Dr. Keatings clinical trial results, reporting a 42% overall response rate, provide additional clinical validation of the unique potential to deliver long-term remissions with limited toxicity using the companys novel NK cell therapy, said Patrick Soon-Shiong, NantKwests chairman and CEO.

Read the original here:
VAX-DC/MM Cell Therapy Shows Promise in Relapsed or Refractory Myeloma, Lymphoma Patients - Myeloma Research News

Is stem cell injection the cure-all miracle? – Health24

08 August 2017 Stem cells are not only used in cancer treatment, but may be effective for a variety of other conditions.

Stem cell therapy has been claimed to cure cancer, improve chronic conditions such as headaches, and even make your skin look younger. How can that not be a good thing?

Youve probably heard about stem cell research before, but what exactly are stem cells, and how can stem cells injected into the body treat various diseases and conditions?

There has been enormous progress in this field over the last few decades, so let's take a look at how stem cell injections work.

What exactly are stem cells?

Stem cells are the bodys building blocks the reserve cells that the body is made up of. These cells are able to produce multiple different cells, each performing a specific function. Stem cells can be divided into two main categories:

What is stem cell therapy?

Stem cell therapy can be categorised as regenerative medicine. Stem cells used in medical treatments are currently harvested from three sources: umbilical cord blood, bone marrow and blood. These are treatments that restore damaged tissue and regenerate new cells in the case of illness or injury.

While there are other forms of stem cell therapy, these are still in the early stages and regarded as research.

How is stem cell therapy performed?

Adult stem cells are derived from a blood sample and injected back into the patient's blood. The surrounding cells are then activated, stimulating rejuvenation in the area.

Why the controversy?

In 2004 South Africa became the first African nation to open a stem cell bank. This involved embryonic stem cells for cloning research and not the "adult" stem cells used in treatment.

Embryonic stem cells are often viewed as problematic, as they are derived from very young foetuses. It is thus viewed as a form of "abortion" to use embryonic stem cells for treatment. But in most cases of stem cell therapy adult stem cells are used, which causes few ethical problems. Stem cells derived from the umbilical cord are not the same as from the embryo.

What does science say?

Prof Jacqui Greenberg from the University of Cape Town stated that although stem cells can potentially treat various diseases, they should be treated with extreme care.

She has no doubt that in time (in medical science particularly, progress is slow and measured in blocks of 10 years), stem cells will be the solution for many things. "But right now we have to strike a balance of not creating too much hype and raising hope too soon. Stem cells are the future, but the future is not now," Greenberg states.

The reason for this is that stem cells derived from an adult are too volatile at times. Researchers are not clear on how many of these stem cells will actually "survive" and "activate" to treat the condition at hand. Therefore it can't be predicted how many cells will survive and become functional.

There is as yet little proof that stem cells can actually fight disease when injected back into the host.Despite the success of IPS cell technology up to date, there are stillchallenges with regard to the purity of stem cells before their use in therapy.

Availability and cost in South Africa

Stem cell therapy is available at various treatment centres in South Africa. One of the most prominent is the South African Stem Cell Institute in the Free State. Here, various treatments, such as regenerative skin treatments and prolotherapy (regeneration of the joints), are offered.

Therapy starts with an initial consultation. During the second consultation vitals are checked, followed by either the fat harvest procedure under tumescent anaesthesia or bone marrow aspiration under local anaesthesia.

The stem cells are then cryopreserved and injected into the patient as needed. Prices of the treatment vary from R500 (for a once-off treatment in a small area, such as the hand) to R22 500 (a comprehensive process), depending on the condition being treated and length of treatment needed. This excludes the initial consultation fee and after-care.

There are also stem cell banks in South Africa, such as Cryo-Save, where stem cells can be stored at an annual fee (excluding initial consultation, testing and harvesting) and used for treatment.

Do your own research

If you do want to go the stem cell route, make sure that the medical programme being offered is legitimate and that the projected outcome is based on real evidence.

There are a number of private institutions banking on the promise of curing any number of diseases with stem cells from a patient's own blood. The truth, however, is that there is no conclusive proof that the majority of these diseases can be cured with the person's own stem cells annihilating the claim that stem cell therapy is the solution to all diseases.

The rest is here:
Is stem cell injection the cure-all miracle? - Health24

How Food Preservatives May Disrupt Human Hormones – Laboratory Equipment

Can chemicals that are added to breakfast cereals and other everyday products make you obese? Growing evidence from animal experiments suggests the answer may be "yes." But confirming these findings in humans has faced formidable obstacles - until now.

A new study published today in Nature Communications details how Cedars-Sinai investigators developed a novel platform and protocol for testing the effects of chemicals known as endocrine disruptors on humans.

The three chemicals tested in this study are abundant in modern life. Butylhydroxytoluene (BHT) is an antioxidant commonly added to breakfast cereals and other foods to protect nutrients and keep fats from turning rancid; perfluorooctanoic acid (PFOA) is a polymer found in some cookware, carpeting and other products; and tributyltin (TBT) is a compound in paints that can make its way into water and accumulate in seafood.

The investigators used hormone-producing tissues grown from human stem cells to demonstrate how chronic exposure to these chemicals can interfere with signals sent from the digestive system to the brain that let people know when they are "full" during meals. When this signaling system breaks down, people often may continue eating, causing them to gain weight.

"We discovered that each of these chemicals damaged hormones that communicate between the gut and the brain," said Dhruv Sareen, PhD, assistant professor of Biomedical Sciences and director of the Induced Pluripotent Stem Cell Core Facility at the Cedars-Sinai Board of Governors Regenerative Medicine Institute. "When we tested the three together, the combined stress was more robust."

Of the three chemicals tested, BHT produced some of the strongest detrimental effects, Sareen said.

While other scientists have shown these compounds can disrupt hormone systems in laboratory animals, the new study is the first to use human pluripotent stem cells and tissues to document how the compounds may disrupt hormones that are critical to gut-to-brain signaling and preventing obesity in people, Sareen said.

"This is a landmark study that substantially improves our understanding of how endocrine disruptors may damage human hormonal systems and contribute to the obesity epidemic in the U.S.," said Clive Svendsen, PhD, director of the institute and the Kerry and Simone Vickar Family Foundation Distinguished Chair in Regenerative Medicine. More than one-third of U.S. adults are considered to be obese, according to federal statistics.

The new testing system developed for the study has the potential to provide a much-needed, safe and cost-effective method that can be used to evaluate the health effects of thousands of existing and new chemicals in the environment, the investigators say.

For their experiments, Sareen and his team first obtained blood samples from adults, and then, by introducing reprogramming genes, converted the cells into induced pluripotent stem cells. Then, using these stem cells, the investigators grew human epithelium tissue, which lines the gut, and neuronal tissues of the brain's hypothalamus region, which regulates appetite and metabolism.

The investigators then exposed the tissues to BHT, PFOA and TBT, one by one and also in combination, and observed what happened inside the cells. They found that the chemicals disrupted networks that prepare signaling hormones to maintain their structure and be transported out of the cells, thus making them ineffective. The chemicals also damaged mitochondria - cellular structures that convert food and oxygen into energy and drive the body's metabolism.

Because the chemical damage occurred in early-stage "young" cells, the findings suggest that a defective hormone system potentially could impact a pregnant mother as well as her fetus in the womb, Sareen said. While other scientists have found, in animal studies, that effects of endocrine disruptors can be passed down to future generations, this process has not been proved to occur in humans, he explained.

More than 80,000 chemicals are registered for use in the U.S. in everyday items such as foods, personal care products, household cleaners and lawn-care products, according to the National Toxicology Program of the U.S. Department of Health and Human Services. While the program states on its website that relatively few chemicals are thought to pose a significant risk to human health, it also states: "We do not know the effects of many of these chemicals on our health."

Cost and ethical issues, including the health risk of exposing human subjects to possibly harmful substances, are among the barriers to testing the safety of many chemicals. As a result, numerous widely used compounds remain unevaluated in humans for their health effects, especially to the hormone system.

"By testing these chemicals on actual human tissues in the lab, we potentially could make these evaluations easier to conduct and more cost-effective," Sareen said.

Read more from the original source:
How Food Preservatives May Disrupt Human Hormones - Laboratory Equipment

Novel stem cell-derived model created of inflammatory neurological disorder – Medical Xpress

August 10, 2017 Organoids are clusters of cultured cells self-organized into miniature replicas of organs. In this image, neural progenitor cells (NPCs) are green. As the brain organoids increase in size, multi-layer structures composed of NPCs develop with intermediate progenitors (not shown) and cortical layer neurons (red). Cell nuclei are depicted in blue. Credit: Cleber A. Trujillo, UC San Diego

An international team of scientists, led by University of California San Diego School of Medicine researchers, has created a human stem cell-based model of a rare, but devastating, inherited neurological autoimmune condition called Aicardi-Goutieres Syndrome (AGS). In doing so, the team was able to identify unusual and surprising underlying genetic mechanisms that drive AGS and test strategies to inhibit the condition using existing drugs.

Two repurposed FDA-approved drugs showed measurable effect, rescuing cells from the effects of AGS. The findings point to the promise of future clinical trials and to the utility of creating novel stem cell-based models of human diseases when no other models are available.

The findings are published in the August 10 online issue of Cell Stem Cell.

"Our approach can now be used to investigate other neurological conditions, like autism and schizophrenia and overlapping autoimmune disorders that dysfunction in similar ways," said Alysson Muotri, PhD, professor in the UC San Diego School of Medicine departments of Pediatrics and Cellular and Molecular Medicine, director of the UC San Diego Stem Cell Program and a member of the Sanford Consortium for Regenerative Medicine.

First described in 1984, AGS typically involves early-onset inflammation affecting the brain, immune system and skin. Its severity depends upon which genes are involvedthere are six typesbut usually results in pronounced physiological and psychological consequences, from microcephaly (an abnormally small head) and spasticity to skin and vision problems and joint stiffness, all appearing in the first year of life. The syndrome is progressive, resulting in death or a persistent vegetative state in early childhood. Currently, there is no cure; the only treatments are symptomatic or palliative.

The clinical features of AGS mimic those of viral infections acquired in utero, before birth, with increased levels of inflammatory markers and other signatures of inflammatory response. However, Muotri said there is no link between AGS and exogenous pathogens. Previous research has shown that AGS patients have mutations in genes critical to nucleic acid metabolism in the regulation of cellular immune response, among them a deficiency in an enzyme called TREX1, which helps prevent abnormal DNA from accumulating in cells.

Deeper probing into the pathogenesis of AGS has been difficult because animal models do not accurately mimic the human version of the disease. So Muotri, with colleagues, used embryonic stem cells and induced pluripotent stem cells (iPSCs) derived from AGS patients to create six cellular models of the condition. In the past, Muotri's lab has developed similar "disease-in-a-dish" neuronal models of autism, anorexia nervosa and Williams Syndrome, among other rare genetic neurological conditions.

From the iPSCs, they also created cerebral organoids or "mini-brains"larger clusters of neurons that organize themselves into a cortical structure, similar to a developing human cerebral cortex.

The researchers found that with TREX1 not functioning normally, all of the cell models displayed excess extra-chromosomal DNA and that a major source of the excess DNA came from LINE1 (L1) retroelements. L1s are repetitive sequences of DNA with the ability to autonomously copy-and-paste themselves within the human genome. In the past, they have been called "jumping genes" and, because their function within cells is largely unknown, "junk DNA."

However the term "junk DNA" is increasingly becoming a misnomer. In work published in 2005, for example, Muotri and colleagues reported that L1s have a high impact on brain cells compared to other tissues, suggesting an important, if so far mysterious, role in brain development.

Since then, he said, researchers around the world have investigated the role of L1s in creating a genetic mosaicism in the brain. "These are ancient, genomic parasites that replicate inside our cells. The majority of the current work is focusing on the impact of this genome mosaicism, but we decided to also look outside of the nucleus. And what we found was a big surprise."

In some of the AGS cell models created by the researchers, toxins from excess DNA built up. Others showed an abnormal immune response, secreting toxins that induced cell death in other cells. The combined effect in organoids was a massive reduction in neuron growth when the opposite should occur. "These models seemed to mirror the development and progression of AGS in a developing fetus," said Muotri. "It was cell death and reduction when neural development should be rising."

The cell death was trigged by the anti-viral response from the L1 molecules outside the nucleus. "We uncovered a novel and fundamental mechanism, where chronic response to L1 elements can negatively impact human neurodevelopment," said Charles Thomas, a former graduate student in the Muotri lab and first author of the study. "This mechanism seems human-specific. We don't see this in the mouse."

The researchers observed that AGS pathogenesis was similar to a retroviral infection and wondered whether existing HIV antiretroviral drugs might be effective in interfering in L1 replication. Two drugs were tested in the cell models: Stavudine and Lamivudine. Both drugs resulted in reduced L1 and cell toxicity. Cell model growth returned in all cell types and in the complex, differentiated colonies of nerve cells that comprise organoids.

The data supported the idea that HIV drugs could benefit AGS patients, Muotri said. A clinical trial led by study co-author Yanick Crow, MRCP, PhD, at Sorbonne Paris Cite University and the University of Manchester, has already started in Europe.

Muotri said the findings were illuminating and encouraging, providing a platform and impetus for further study of the pathology of neuroinflammation and drug discovery. "It's important to note that while this work focused on AGS, nerve cells in schizophrenia show an overabundance of L1 elementsand there is an overlap with other autoimmune disorders.

"This is a great example of how a fundamental basic research could be rapidly translated into clinics. Are there analogous mechanisms at work in these different diseases? Is this modeling strategy relevant for better understanding and treating them? These are questions we will now pursue."

Explore further: Researchers create model of anorexia nervosa using stem cells

More information: Charles A. Thomas et al, Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation, Cell Stem Cell (2017). DOI: 10.1016/j.stem.2017.07.009

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Visit link:
Novel stem cell-derived model created of inflammatory neurological disorder - Medical Xpress

Test results after stem cell transplant for multiple myeloma can … – Medical Xpress

August 10, 2017 Dr. Gurmukh Singh, vice chair of clinical affairs for the Department of Pathology and Walter L. Shepeard Chair in Clinical Pathology at the Medical College of Georgia at Augusta University. Credit: Phil Jones

It's a cancer of the plasma cells, which normally make an array of antibodies that protect us from infection.

With multiple myeloma, the cells start primarily producing instead a singular product, called a monoclonal antibody, or M spike, that leaves patients vulnerable for serious infections, like pneumonia, and can even eat away at their bones.

Sophisticated laboratory tests used to both diagnose the disease then follow treatment response, can send confusing messages to patients and their physicians, particularly after stem cell therapy to try to restore a healthy antibody mix, says Dr. Gurmukh Singh. Singh, vice chair of clinical affairs for the Department of Pathology and Walter L. Shepeard Chair in Clinical Pathology at the Medical College of Georgia at Augusta University, is corresponding author of the study highlighting reasons for potential confusion in the Journal of Clinical Medicine Research.

The tests, serum protein electrophoresis and serum immunofixation electrophoresis, or SPEP/SIFE, and serum free light chain assay, or SFLCA, separate proteins into groups according to their electrical charge.

The M spike stands out as a distinctive, dense band of color among the layers of protein groups, while typical antibody levels create bands of lighter smears.

But after stem cell therapy, which first destroys cancerous plasma cells then restores healthy ones, follow up profiles often yield a lineup of antibodiescalled an oligoclonal patternthat can look eerily similar to the M spike.

The confusion comes because there again may be a prominent and likely short-lived band of proteins that emerges as the antibody mix begins, ideally, to normalize.

"We want to emphasize that oligoclonal bands should mostly be recognized as a response to treatment and not be mistaken as a recurrence of the original tumor," Singh says.

The key clarifier appears to be the location of the malignant, monoclonal spike when the diagnosis is made compared to the location of new spikes that may show up after stem cell therapy in these oligoclonal bands, says Singh.

"If the original peak was at location A, now the peak is location B, that allows us to determine that it is not the same abnormal, malignant antibody," Singh says, pointing toward different before and after treatment profiles on a patient.

Normally antibodies spread out in a usual sequence in these studies. "If it's in a different location, it's not the same protein," reiterates Singh. "If the location is different, this is just a normal response of recovery of the bone marrow that could be mistaken for recurrence of the disease," Singh says of the oligoclonal bands that can also temporarily show up in response to an infection.

He notes while the prominent bands are typically short-lived following treatment, the recognition that they are non-malignant may occur only in retrospect.

For the study, Singh and his team looked at lab and clinical data on 251 patients with multiple myeloma treated from January 2010 to December 2016; 159 of those patients received autologous stem cell transplants. Each patient had at least three tests, and at least two of the tests were following their transplant.

They found the incidence of oligoclonal patterns was significantly higher in patients who had a stem cell transplant than the patients who had chemotherapy alone: 57.9 percent compared to 8.8 percent. Only five of the 159 patients who received a transplant had an oligoclonal pattern before treatment but 92 had one afterward. More than half of the the oligoconal patterns developed within the first year following a transplant. The earliest pattern was detected at two months - as soon as the first post-transplant tests were doneand a few occurred as long as five years later.

Autologous stem cell therapy is not considered curative for most patients with multiple myeloma. There is no clear cause of the disease but the risk does increase at age 40, Singh says.

Explore further: Excessive tests don't benefit patient, do increase cost in age-related immune disorder

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read more:
Test results after stem cell transplant for multiple myeloma can ... - Medical Xpress

Are Stem Cell Companies Abusing ClinicalTrials.gov? – PLoS Blogs (blog)

Im often asked about the safety of treatments that purport to inject stem cells into painful body parts. The reputation of stem cells seems to exceed the reach, with companies touting treatments that arent FDA approved or even being tested.

Back in March, an alarming article in the New England Journal of Medicinedescribed three women blinded by stem cell treatments two of the patients reported seeing a reference on the company website to registration at the National Institutes of Healths well-respected ClinicalTrials.gov, and assuming it applied to their treatment. It didnt.

In what is perhaps a modern version of hawking snake oil, companies can indeed register certain clinical trials without breaking any rules but desperate patients might not know that.

There is no doubt that some patients have misinterpreted a studys listing on ClinicalTrials.gov as a stamp of legitimacy, federal review, and compliance. In this way, treatments with no safety or efficacy data, no prior clinical study, and no ongoing clinical trials under FDA review, appear to have federal approval. Such a misunderstanding can lead to disastrous outcomes for patients, said Thomas Albini, MD, of the Bascom Palmer Eye Institute of the University of Miami, who treated the blinded women.

When I wrote about the disaster here at DNA Scienceand atMedscape Medical News, my Medscape editor asked me to take a closer look at criteria for listing investigations at ClinicalTrials.gov. It proved an interesting exercise, but I declined to write an article, fearing lawsuits if I named companies.

ClinicalTrials.gov is where research groups, in academia and pharma/biotech, describe protocols to evaluate the safety and efficacy of new drugs, biologics, and devices, which FDA regulates, typically in randomized, controlled trials. But for an observational study that just follows what happens after a treatment, no such thumbs-up is required; no investigational new drug (IND) designation or investigational device exemption (IDE) need be filed. And that creates a loophole that companies are happily jumping through and luring patients in pain, who may know little about clinical trial design, and perhaps trust too much the companies and the doctors offering these services.

Its easy to see how people are fooled. One company claims that By providing access to registered clinical studies through the NIH, we are providing patients with the ability to choose a stem cell treatment center with the highest standard of care. If the treatment is experimental, how can there even be a standard of care?

MOST STUDIES LEGIT

I love ClinicalTrials.gov its packed with information about all manner of conditions, with contacts and references. I started my investigation by searching for studies that sounded bogus.

I began with a treatment that epitomizes pseudoscience: magnets. But I was fooled. Other than legit uses in medical devices, my magnet search called up as an acronym of sorts for theMothers and Girls Dancing Together Trial, a well-designed study on preventing childhood obesity, with a decent sample size and controls.

I also thought the randomised crossover trial of the acute effects of a deep-fried Mars bar or porridge on the cerebral vasculature was fake, but it turned out to be a medical students project, well done, and published in the Scottish Medical Journal.

But trial NCT02833532, sponsored by a Korean pharmaceutical company, was likely a joke, with the stated purpose of temporary penile enhancement and one of the investigators first name being Dong. Participants must answer the question How do you rate your penile size? Very small/small/normal/big/very big to enroll. Those accepted get to try something made of hyaluronic acid, which is found, coincidentally, in cocks combs.

Searching ClinicalTrials.gov for stem cells returns more than 4,000 entries, so I gave up. Fortunately, Leigh Turner, PhD, associate professor at the Center for Bioethics at the University of Minnesota, wasnt afraid of lawyers and took a more measured, scholarly approach. He recently published the intriguing findings in Regenerative Medicine, where you can find nice tables naming the stem cell companies that use and possibly abuse ClinicalTrials.gov.

AN ACADEMIC INVESTIGATION

Dr. Turner searched ClinicalTrials.gov for stem cells along with patient-sponsored, patient-funded, and self-funded because expecting patients to pay is a red flag. Only a very few real clinical trials charge patients, and those that do must have FDA approval to do so.

He found 7 such pay-as-you-go clinical trials, each enrolling more than 100 people, at the government website, and another 11 in a database of companies that provide direct-to-consumer stem-cell-based treatments. The DTC label indicates that the treatments arent part of a real experimental protocol. One of themhad signed up more than 3,000 gullible people.

The companies that charge patients yet proclaim a ClinicalTrials.gov listing are having their proverbial cake and eating it too borrowing the governmental veneer of a sanctioned clinical trial, while collecting fees. And many health care consumers arent even aware theyre being bamboozled.

Another red flag in a stem cell pitch is an everything-but-the-kitchen-sink list of targets. Stem Cell Network, for example, claims to be able to treat, using stem cells grown from a patients fat, some 28 conditions, including the vague knee problems, and also muscular dystrophy, ankle problems, neuropathy, asthma, and alopecia areata. Also be wary of stem cells derived from one body part like butt fat being injected into another body part such as eyeballs.

Wed like people to protect themselves by going to a reliable website, like ClinicalTrials.gov, to distinguish legitimate from bogus claims of stem cell clinics. But the findings of this paper challenge that advice because this valuable resource, which is designed to promote transparency and to help people find clinical trials, lists unlicensed and unproven stem cell interventions that companies turn into personal marketing platforms. So if you have ALS, MS, Parkinsons disease, a ClinicalTrials.gov listing looks like any other study on the NIH website. Many people think a listing is credible, Dr. Turner told me.

There is an urgent need for careful screening of clinical studies before they are registered with ClinicalTrials.gov, Dr. Turners paper concludes. But in the current climate of a nuclear threat, a health care system in disarray, and possible cuts to the CDC, FDA, and NIH, ramping up scrutiny at ClinicalTrials.gov is unlikely to have priority, if the President even has a clue what it is.

Its not possible to slash, burn, defund, and deregulate at every turn and think that federal agencies are going to improve how they function. But no administration is forever, no budget is forever, deregulatory moments dont last forever, and perhaps problems that are ignored or neglected now will be addressed in the future, with collateral damage along the way while nothing is done, warns Dr. Turner, who lives in Canada. I wonder if he has a spare room.

Those seeking stem cell treatments should check out the International Society for Stem Cell Research (ISSCR) Patient Handbook on Stem Cell Therapiesand stemcells.nih.gov. Alas, much of the media is still somewhat unfamiliar with the biology of stem cells, that they are not cells that can turn into any cell typebut that they self-renew and jettison a new stem cell at every division. Thats what makes them stem cells, not the ability to spawn specialized cells.

So I tell people who ask me if they should have stem cells shot into their aching knees or backs to do so only if they wouldnt object to an abnormal growth cancer forming there.

When it comes to stem cell therapies, its caveat emptor buyer beware!

Read more here:
Are Stem Cell Companies Abusing ClinicalTrials.gov? - PLoS Blogs (blog)

New Mayo Clinic facility aims to increase lungs available for transplant – First Coast News

In the coming months, construction will begin on a new facility at Mayo Clinic's Jacksonville campus.

Juliette Dryer, WTLV 7:05 PM. EDT August 09, 2017

Larry Rawdon received two lung transplants from Mayo Clinic in Jacksonville (PHOTO: First Coast News)

JACKSONVILLE, Fla. - In the coming months, construction will begin on a new facility at Mayo Clinics Jacksonville campus.

Mayo Clinic announced a partnership with Maryland-based United Therapeutics Corporation to build and operate a lung restoration center in 2015.

Theres only one other center right now in the country thats actually doing what we do, Windell Smith, Mayo Clinic operations administrator, said. And thats in Silver Springs, Maryland.

The lung restoration center will house a process called ex vivo lung perfusion, or EVLP. Dr. David Erasmus, medical director of the lung transplant program at Mayo Clinic, said the lungs are taken from a donor to a restoration center and hooked up to an artificial circulatory system.

And then they can be evaluated to see if they may be viable or made viable for transplant, Dr. Erasmus said.

Erasmus said the benefits of EVLP are two-fold. Right now, borderline lungs are usually discarded because doctors dont want to take the risk on a lung that may not be viable. While lungs are undergoing EVLP, doctors can monitor how they would respond inside the body and make a more informed decision whether to proceed with transplant or discard the lungs.

We can measure the pressure in the lungs, we can measure the pressure in the circulation of the lungs, we can measure blood gas tests on those lungs and we can take X-rays, Erasmus said. We can also do some of the procedures that we would do in a living person. We can do bronchoscopies where we look down into the airways of those lungs.

The lungs can also be treated to improve their condition for transplant.

One can introduce antibiotics or steroids or other types of therapies such as potentially stem cell therapy, Erasmus said. All sorts of interventions might be tried on these lungs.

Since Mayo Clinics program has not yet started, Erasmus said its difficult to predict the impact it will have on the number of lung transplants. However, he said a similar program yielded a 25 percent increase.

We would get more patients transplanted, we may be able to get them transplanted quicker, Erasmus said. The more people we transplant, the more likely we are to transplant patients that are a little lower down on the list.

Jacksonville resident Larry Rawdon received two lung transplants at Mayo. The first, a single lung transplant in 2005; the second, a double lung transplant in 2008 when his body rejected the first lung.

I still remember being able to take the first full deep breath Id been able to take in the previous three years, Rawdon said of his first transplant.

Rawdon, who started showing symptoms of idiopathic pulmonary fibrosis in 2002, was on the verge of death when he received his second transplant.

You know unless somethings done, youre not going to survive whats happening to you, he said.

Rawdon, a former Broadway cellist, took up the harmonica to strengthen his lungs and diaphragm post-surgery. He now teaches classes to other people in Mayo Clinics lung transplant program.

I used to enjoy more things, but now I enjoy things more, he said.

Rawdon is planning a Christmas trip to New York City to see his two daughters and recently celebrated his 48th wedding anniversary with his wife, Katie.

Mayo Clinic staff tell First Coast News a date has not yet been set for construction to begin, but its expected to start in the fall. Construction is expected to take two years.

2017 WTLV-TV

Read the rest here:
New Mayo Clinic facility aims to increase lungs available for transplant - First Coast News

Boldly Go! My Journey in Stem Cell Therapy – Health Link …

Carolyn Hastings

Patient Update

Carolyn Hastings sent us this fascinating followup piece written 9 months after the stem cell procedure she had performed on her knee by Dr. Paul Handleman here at Health Link Medical Center.

By Carolyn Hastings

I am living proof! I admit to being a little bit of a risk-taker, but it has always served me well. I had Radial Keratotomy performed when I knew no one who had. It has been so long ago that unless youre my age you probably havent even heard of it. RK was the precursor to Laser Eye Surgery. I talked a friend into having it done the same day, so I wouldnt be alone. What can I say, a few minutes in surgery and I was 20/20! So, here I am again, living proof!

Its funny how fearful we can be of the unknown, yet all around us limits are being stretched. I live with my phone in one hand and my iPad in the other. I read on Facebook about drones and rifles that shoot around corners. My real camera sits on the shelf gathering dust. Dont get me wrong, I dont jump out of perfectly good airplanes or ski off mountains that I cant get to without a helicopter but that may be because Im a little old for that kind of stuff!

My age brought me to why Im writing this story. A few months ago I had Stem Cell Therapy to rebuild the cartilage in my knee, but let me back up a little. Five years ago I had a Total Knee Replacement done on my right knee. I was scheduled to have my left knee replaced within a few months as well. I know that everyone has a little different outcome to Total Knee Replacements but mine was tough, tough enough that I immediately cancelled my second surgery and started looking for an alternative. Thats probably where this story should have begun. I looked and I looked, but to no avail. The Orthopedic world was working on it but to me it felt like more of the same. I talked to everyone that would talk to me. Almost everyone I spoke with was desperately trying to affirm their decision for having the surgery, but if you caught them in an honest moment, many had issues. As I look back, I truly dont remember any of the doctors explaining the literal brutality of the surgery. If they did, it would probably dramatically diminish the number of surgeries they perform. They dont talk much about the fact that it is virtually impossible to kneel on a metal knee. I never realized how much I would miss that simple act.

About four years into my quest for an alternative, a friend of mine mentioned someone she knew who had gone the stem cell route. Afterwards, I couldnt even remember who told me but Google Search became my best friend! My research kept me awake until the wee hours of the morning many nights. I was learning about the amazing world of stem cells.

There were articles from around the world and right in my own backyard. There were high profile people who had seen amazing results. Governor Rick Perry had a stem cell procedure done on his back while campaigning for President. Professional athletes were back on the field in record time after procedures on knees, backs and shoulders. Stem cell therapy is one of the best kept secrets in the medical arena.

You may wonder why you havent heard more about it. Number one is that at this point stem cell procedures are considered investigational and experimental by most insurance companies. Right now you may be thinkingwhoa! Dont stop reading, not just this article but if you or someone you love needs this, read everything you can get your hands on.

Because the procedure uses our own stem cells the FDA does not regulate them and most insurance companies dont cover the procedure. Keep reading! In most cases this is not a deal breaker. Later in this article I am going to go through the old Ben Franklin decision making formula of Pros and Cons with you.

Let me tell you how my procedure worked. I located a clinic in San Rafael that appeared to be what I was looking for. I researched Health Link Medical Centers/Regenexx and found out everything I possibly could about them. We are so fortunate in the Bay Area to have a facility nearby. This group has been doing this type of procedure for several years and have more experience than any other clinic I researched. I called and made an appointment with Dr. Paul Handleman, D.O. Yes, he is an Orthopedic Doctor who specializes in Regenerative Interventional Orthopedics. They asked if I had a MRI and if so, to bring it with me. My personal physician had ordered one for me so I was on my way. Dr. Handleman put my MRI up on a large screen and while we looked at it together, he told me about the procedure and answered my questions. He then did an ultrasound on my knee pointing out issues that couldnt be seen on my MRI. After I left, I had a few more questions that he willingly answered over the phone. I had made up my mind. Since I was a candidate, it was the answer to my search.

Let me share a few of the things I learned about Stem Cell Therapy. Number one, from what Ive read it is a bit of a political hot potato. In my opinion, the medical lobbyists have done a great job keeping it at bay. The average Total Knee Replacement will have a cost of $75,000-$100,000. This includes everything from hospital stays to operating rooms, to the various medical professionals involved to after-care and rehabilitation. Then you have drugs, crutches, walkers (oh my!) Let me just say, it is BIG Business. My Stem Cell Therapy was a total of four visits to the doctor. The first visit was my consultation. The actual procedure is a three visit process over a period of approximately a week.

The first of the three visits was very quick. The doctor answered my last minute questions and then did something I thought rather unusual. He anesthetized my knee and put several shots of what amounted to sugar water in the places I needed to grow back the cartilage and repair ligaments. The purpose of this is to literally make these areas angry so when the stem cells are injected they know where to go.

The second of the visits was two days later. I was nervous. I had heard stories from people who had donated stem cells and Im not sure if mine was different or the people that had shared had embellished but it was enough to create the nervousness. They first drew blood. They used the platelets from the blood for what is called Plasma Rich Platelets or PRP. The PRPs by themselves were some of the stem cells used for procedures. The Doctor then numbed my lower back to extract the Stem Cells from my Iliac Crest. This has proven to be the absolute best Stem Cells in our bodies.

This process actually turned out to be pretty funny. I credit a little white pill given to be by the doctor and a system that is pretty clean (other than my borderline sugar addiction) for the humor in that day. It seems that I was feeling no pain when the doctor did the extraction. My son, who was sitting in the waiting room, could hear me singing my heart out all during the procedure. He told me later when I asked, that probably everyone in the eight story building could have heard me singing and laughing.

After a nice lunch with my son, I returned to the actual stem cell injections into my knee. While we were having lunch the medical team was concentrating those cells in a lab. Regenexx SD is the process. I left that day on crutches with a couple of pain pills, just in case. There was some pain involved with the procedure but I had been getting Cortisone shots every three months directly into my knee. I was hoping to never have to get another one! I was instructed to not do a lot of walking for a couple of days. I had scheduled my procedure over a long weekend. Dr. Handleman had given me his cell phone number and told me to not hesitate to call.

I went back for my third and last appointment a few days later. The doctor drew some more blood and gave me booster shots in my knee of the stem cells. I was done. I went back to work. My knee has gradually (its growing) gotten better and better. They had told me that the growth is at least a year -long process. It has now been 9 months.

It is a little strange how you qualify the recovery. I havent had a cortisone shot in a year. When I had them before I would be great for 2-3 weeks and by the time I could get another one, I would hardly be walking. I used to schedule my injections around events or travel where I knew I would need to walk a lot. Now it just gets easier and easier. I love going to church but the congregation stands while they sing. This is sometimes 30 minutes. I just couldnt do that before. Now, I stand for the whole time and dont even think about it. I also belong to a group who collects donations for our troops every month. I can now stand for the whole 2 hour shift. Everywhere I turn there is living proof that my body is healing itself.

Lets go back to Ben Franklin. On the Pro Side I hadnon-surgical, little or no recovery time, less pain, no prolonged time away from work or commitments resulting in less loss of income, very little help needed, no aftereffects, can have it done more than once to get a better result over time, and traditional surgery is still an option if it doesnt work.

The Con Side is shorter. Will it work? Private Pay. Fear of the unknown. Process takes a year. Even after I decided, I thought long and hard about the private pay aspect. I began actually running the numbers. I called my insurance company to see what my total co-pays would be for the traditional surgery. Thats when I found out what the Total Knee Replacement cost was. With Obamacare now in place the numbers seemed to get higher and higher and no one seemed to be able to give me a clear picture. The Health Link Medical Center group gave me clear numbers. It would cost me approximately $6,200. The co-pays on the traditional procedure werent that far off and with the Stem Cell procedure I was back to work much faster not interrupting my income flow.

If you are going to opt for the Stem Cell Procedure, I would highly recommend getting on a high grade nutritional supplement as soon as possible. I have been taking great supplements for several years and rarely get sick. Little did I know that my supplements would warrant me the nickname at the clinic of Stem Cell Queen? It seems that the extra nutrition plus good hydration before the procedure provided over a billion stem cells in the extraction!

Even though I did my research and due diligence, I have intentionally not gone into the more scientific aspect of Stem Cell procedures. I am not a scientist, nor a doctor, just a very grateful patient. Between the Health Link and Regenexx websites and others (UC Davis has an amazing program) you can learn as much or as little as you like. Now, BOLDLY GO!

Read the original here:
Boldly Go! My Journey in Stem Cell Therapy - Health Link ...

Wild new microchip tech could grow brain cells on your skin – CNET

Researchers demonstrate a process known as tissue nanotransfection (TNT). When it comes to healing, this TNT is the bomb.

It's usually bad news to have something growing on your skin, but new technology uses that all important layer as a sort of garden to "grow" whatever types of cells your body might need to treat an injury or disease, be it in a limb or even the brain.

Researchers atthe Ohio State University Wexner Medical Centerhave developed a nanochip that uses a small electrical current to deliver new DNA or RNA into living skin cells, "reprogramming" them and giving them a new function.

"It takes just a fraction of a second. You simply touch the chip to the wounded area, then remove it,"Chandan Sen, director of the Center for Regenerative Medicine and Cell-Based Therapies at Ohio State, said in a statement. "At that point, the cell reprogramming begins."

In a study published in the journal Nature Nanotechnology, Sen's team used a technology called Tissue Nanotransfection (TNT) to create new blood vessels in pigs and mice with badly injured limbs that lacked blood flow.

They zapped the animals' skin with the device, and within about a week, active blood vessels appeared, essentially saving the creatures' legs. The tech was also used to create nerve cells from skin that were then harvested and injected into mice with brain injuries to help them recover.

"By using our novel nanochip technology, injured or compromised organs can be replaced," Sen said. "We have shown that skin is a fertile land where we can grow the elements of any organ that is declining."

While it sounds futuristic, reprogramming skin cells is not a new idea. The ability to change skin into pluripotent stem cells, sometimes called "master" cells, earned a few scientists a Nobel Prize half a decade ago. But the new nanochip approach improves upon that discovery by skipping the conversion from skin to stem cell and instead converting a skin cell into whatever type of cell is desired in a single step.

"Our technology keeps the cells in the body under immune surveillance, so immune suppression is not necessary," Sen says.

By now I think we've all learned that beauty is only skin deep, but it might take a while to learn that the same could go for cures, at least if the system works just as well on people.

Next up, the scientists hope to find out by continuing to test their technology in human trials. The aim is that it could eventually be used to treat all sorts of organ and tissue failure, including diseases like Parkinson's and Alzheimers.

Crowd Control: A crowdsourced science fiction novel written by CNET readers.

Solving for XX:The tech industry seeks to overcome outdated ideas about "women in tech."

Go here to read the rest:
Wild new microchip tech could grow brain cells on your skin - CNET