Medical Experts Call for Tighter Controls on Stem Cell Tourism – Voice of America

LONDON

Stem cell tourism involving patients who travel to developing countries for treatment with unproven and potentially risky therapies should be more tightly regulated, international health experts said Wednesday.

With hundreds of medical centers around the world claiming to be able to repair damaged tissue in conditions such as multiple sclerosis and Parkinson's disease, tackling unscrupulous advertising of such procedures is crucial, the experts said.

These therapies are advertised directly to patients with the promise of a cure, but there is often little or no evidence to show they will help, or that they will not cause harm, the 15 experts wrote in the journal Science Translational Medicine.

Some types of stem cell transplant mainly using blood and skin stem cells have been approved by regulators after full clinical trials found they could treat certain types of cancer and grow skin grafts for burns patients.

But many other potential therapies are only in the earliest stages of development and have not been approved by international regulators.

"Stem cell therapies hold a lot of promise, but we need rigorous clinical trials and regulatory processes to determine whether a proposed treatment is safe, effective and better than existing treatments," said one of the 15, Sarah Chan of Britain's University of Edinburgh.

The experts called for global action, led by the World Health Organization, to introduce controls on advertising and agree on international standards for the manufacture and testing of cell- and tissue-based therapies.

"The globalization of health markets and the specific tensions surrounding stem cell research and its applications have made this a difficult challenge," they wrote. "However, the stakes are too high not to take a united stance."

Read the original:
Medical Experts Call for Tighter Controls on Stem Cell Tourism - Voice of America

Smelling your food makes you fat – UC Berkeley

iStock photo

Our sense of smell is key to the enjoyment of food, so it may be no surprise that in experiments at the University of California, Berkeley, obese mice who lost their sense of smell also lost weight.

Whats weird, however, is that these slimmed-down but smell-deficient mice ate the same amount of fatty food as mice that retained their sense of smell and ballooned to twice their normal weight.

In addition, mice with a boosted sense of smell super-smellers got even fatter on a high-fat diet than did mice with normal smell.

The findings suggest that the odor of what we eat may play an important role in how the body deals with calories. If you cant smell your food, you may burn it rather than store it.

These results point to a key connection between the olfactory or smell system and regions of the brain that regulate metabolism, in particular the hypothalamus, though the neural circuits are still unknown.

This paper is one of the first studies that really shows if we manipulate olfactory inputs we can actually alter how the brain perceives energy balance, and how the brain regulates energy balance, said Cline Riera, a former UC Berkeley postdoctoral fellow now at Cedars-Sinai Medical Center in Los Angeles.

Humans who lose their sense of smell because of age, injury or diseases such as Parkinsons often become anorexic, but the cause has been unclear because loss of pleasure in eating also leads to depression, which itself can cause loss of appetite.

The new study, published this week in the journal Cell Metabolism, implies that the loss of smell itself plays a role, and suggests possible interventions for those who have lost their smell as well as those having trouble losing weight.

Sensory systems play a role in metabolism. Weight gain isnt purely a measure of the calories taken in; its also related to how those calories are perceived, said senior author Andrew Dillin, the Thomas and Stacey Siebel Distinguished Chair in Stem Cell Research, professor of molecular and cell biology and Howard Hughes Medical Institute Investigator. If we can validate this in humans, perhaps we can actually make a drug that doesnt interfere with smell but still blocks that metabolic circuitry. That would be amazing.

Riera noted that mice as well as humans are more sensitive to smells when they are hungry than after theyve eaten, so perhaps the lack of smell tricks the body into thinking it has already eaten. While searching for food, the body stores calories in case its unsuccessful. Once food is secured, the body feels free to burn it.

After UC Berkeley researchers temporarily eliminated the sense of smell in the mouse on the bottom, it remained a normal weight while eating a high-fat diet. The mouse on the top, which retained its sense of smell, ballooned in weighton the same high-fat diet.

The smell-deficient mice rapidly burned calories by up-regulating their sympathetic nervous system, which is known to increase fat burning. The mice turned their beige fat cells the subcutaneous fat storage cells that accumulate around our thighs and midriffs into brown fat cells, which burn fatty acids to produce heat. Some turned almost all of their beige fat into brown fat, becoming lean, mean burning machines.

In these mice, white fat cells the storage cells that cluster around our internal organs and are associated with poor health outcomes also shrank in size.

The obese mice, which had also developed glucose intolerance a condition that leads to diabetes not only lost weight on a high-fat diet, but regained normal glucose tolerance.

On the negative side, the loss of smell was accompanied by a large increase in levels of the hormone noradrenaline, which is a stress response tied to the sympathetic nervous system. In humans, such a sustained rise in this hormone could lead to a heart attack.

Though it would be a drastic step to eliminate smell in humans wanting to lose weight, Dillin noted, it might be a viable alternative for the morbidly obese contemplating stomach stapling or bariatric surgery, even with the increased noradrenaline.

For that small group of people, you could wipe out their smell for maybe six months and then let the olfactory neurons grow back, after theyve got their metabolic program rewired, Dillin said.

Dillin and Riera developed two different techniques to temporarily block the sense of smell in adult mice. In one, they genetically engineered mice to express a diphtheria receptor in their olfactory neurons, which reach from the noses odor receptors to the olfactory center in the brain. When diphtheria toxin was sprayed into their nose, the neurons died, rendering the mice smell-deficient until the stem cells regenerated them.

Separately, they also engineered a benign virus to carry the receptor into olfactory cells only via inhalation. Diphtheria toxin again knocked out their sense of smell for about three weeks.

In both cases, the smell-deficient mice ate as much of the high-fat food as did the mice that could still smell. But while the smell-deficient mice gained at most 10 percent more weight, going from 25-30 grams to 33 grams, the normal mice gained about 100 percent of their normal weight, ballooning up to 60 grams. For the former, insulin sensitivity and response to glucose both of which are disrupted in metabolic disorders like obesity remained normal.

Mice that were already obese lost weight after their smell was knocked out, slimming down to the size of normal mice while still eating a high-fat diet. These mice lost only fat weight, with no effect on muscle, organ or bone mass.

The UC Berkeley researchers then teamed up with colleagues in Germany who have a strain of mice that are supersmellers, with more acute olfactory nerves, and discovered that they gained more weight on a standard diet than did normal mice.

People with eating disorders sometimes have a hard time controlling how much food they are eating and they have a lot of cravings, Riera said. We think olfactory neurons are very important for controlling pleasure of food and if we have a way to modulate this pathway, we might be able to block cravings in these people and help them with managing their food intake.

Co-authors of the paper are Jens Brning, director of the Max Planck Institute for Metabolism Research in Cologne, Germany, and his colleagues Eva Tsaousidou, Linda Engstrm Ruud, Jens Alber, Hella Brnneke and Brigitte Hampel; Jonathan Halloran, Courtney Anderson and Andreas Stahl of UC Berkeley; Patricia Follett and Carlos Daniel de Magalhaes Filho of the Salk Institute for Biological Studies in La Jolla, California; and Oliver Hahn of the Max Planck Institute for Biology of Ageing in Cologne.

The work was supported by the Howard Hughes Medical Institute, the Glenn Center for Research on Aging and the American Diabetes Association.

RELATED INFORMATION

Read the original:
Smelling your food makes you fat - UC Berkeley

These Scientists Have a Plan To Cheat Death. Will It Work? – NBCNews.com

Resurrecting the dead may be out of the question, but new research points to better ways to care for patients with critical brain injuries.Jun.29.2017 / 4:32 PM ET Conceptual close up image of a synapse. Science Picture Co / Getty Images Conceptual close up image of a synapse. Science Picture Co / Getty Images

Nothing is as certain as death. Yet humans have come up with ways to push it further and further. The heart stops beating? Do CPR. The lungs fail? Use a mechanical ventilator. These techniques have saved the lives of millions. There is a point of no return, however: when the brain dies.

One company, Philadelphia-based Bioquark Inc., thinks it may be possible to push back on even that last step. Bioquark plans to launch a study to use stem cells and a slew of other therapies to bring a glimmer of life back to the dead brains of newly deceased patients.

The idea led to hundreds of chilling headlines and has met serious backlash from scientists and ethicists alike. While Bioquarks proposed study may trigger ethical and practical concerns, experts do say advances in stem cell research and medical technologies mean someday brain injury could be reversible. Maybe (and thats a big maybe) brain death wont be the end of life.

I agree stem cell technology in the neurosciences has tremendous potential, but we have to study it in a way that makes sense, said Dr. Diana Greene-Chandos, assistant professor of neurosurgery and neurology at Ohio State University Wexner Medical Center. What doesnt make sense, she says, is to apply stem cell research in complex human brainsvery damaged onesbefore animal studies have gotten far enough.

Thats why Bioquarks proposed study, slated to take place in South America sometime this year, has caused such uproar in the science community. The team plans to administer therapies to 20 brain-dead subjects with the hope of stirring up electrical activity in the brain. The idea is to deliver stem cells to the brain and coax them to grow into new brain cells, or neurons, with the help of a nurturing peptide cocktail, electrical nerve stimulation, and laser therapy.

Related: Godlike 'Homo Deus' Could Replace Humans as Tech Evolves

We are employing this [combined] approach, using tools that by themselves have been employed extensively, but never in such an integrated process, said Bioquark CEO Ira Pastor.

One critique is that such a study could give false hope to families who may have a poor understanding of the severity and irreversibility of brain death, and confuse it with coma or vegetative state. There are a lot of gray areas in medicine. And we should all keep an open mind. But we need to make sure we are not misguiding our patients, said Dr. Neha Dangayach, attending physician in the neurosurgical intensive care Unit at New Yorks Mount Sinai Hospital.

Pastors response to the criticism? The public is catching up to the idea of brain death. Hes also clarified that full resurrection is not the companys intended goalat least not yet. We are not claiming the ability to erase death. We are working on a very small window, a gray zone between reversible coma and death, he said.

Ethics aside, critics say there are practical problems with the plan. There is insufficient evidence behind Bioquarks approach, they argue, and the way the study is planned does not sound realistic.

When the brain dies, inflammation and swelling run amok, the connections between neurons disintegrate, arteries collapse, and blood flow shuts down. Once someone is brain-dead, you can keep them on the ventilator but its very hard to keep the organs from shutting down and the heart beating for more than a few days, said neurologist Richard Senelick. Nature is going to run its course.

So, many scientists say Bioquarks study may be a quixotic queston par with cryogenic brain preservation and head transplants. They may sound good in theory but are so impractical that they have little chance of success. Nevertheless, experts agree the quest does raise serious questions that deserve answers. Just what would it take to save a brain? Perhaps resurrecting dead brains is not in the realm of possibilitybut what is?

There is an immense reward in pursuing brain regeneration. If it pans out, it could potentially save the lives of those who are injured in an accident or, more commonly, suffer extreme brain damage following a cardiac arrest or stroke. Every year in the United States, about 350,000 people experience an out-of-hospital cardiac arrest, according to the American Heart Association. Only about 10 percent survive with good neurologic function. Another 130,000 people die of stroke annually.

To appreciate the challenge of saving the brain, first look at what it takes to kill it. It was long thought that death occurs when the heart stops. Now we know that death actually happens in the brainand not in one single moment, but several steps. A patient lying in a coma in an intensive care unit may appear peaceful, but findings from biochemical studies paint a much different scene in his brain: fireworks at the cellular level.

When neurons encounter a traumatic event, like lack of blood flow after cardiac arrest, they go into a frenzy. Some cells die during the initial blackout. Others struggle to survive in the complex cascade of secondary injury mechanisms, triggered by the stress of being deprived of oxygen. Neurotransmitters spill out of neurons in high concentrations. Free radicals pile up, burning holes in brain cell membranes. The pierced cells respond to the attack by producing more inflammation, damaging other cells.

Eventually, the stress response triggers apoptosis, or the process of programmed cell death. In other words, the cells suicide switch gets turned on. The cells die one by one until the brain ceases to function.

Thats brain death: the complete and irreversible loss of function of the brain. Doctors determine brain death by checking whether the patient's pupils react to light, whether he responds to pain, and if his body tries to breathe or has retained any other vital function of the brainstem, the part most resilient to injury.

We have strict tests, because its a very serious questionthe question of distinguishing life from death, Dangayach said.

For brain damage at a much smaller scale, however, the situation could be manageable. Cutting-edge therapies are focused on this possibility.

Related: Three Myths About the Brain (That Deserve To Die)

Stem cells have brought an exciting potential opportunity to the grim area of treating brain injury. Currently, theres no FDA-approved stem cell-based therapy for brain problems, and experts suggest staying away from any clinic that offers such therapies. But that doesnt stop researchers from being excited about the possibilities. Unlike in other parts of the body, cells lost in the brain are gone forever. Could stem cells replace them?

That's a reasonable thing to ask, neurologist Dr. Ariane Lewis of New York University said. Lewis is a strong critic of Bioquarks approach, saying that the study borders on quackery, but she thinks stem cell research is promising for stroke recovery. We have little evidence right now, and this is not a commonly employed therapy, but its a research question.

Two regions in the adult brain contain stem cells that can give rise to new neurons, suggesting the brain has a built-in capacity to repair itself. Some of these cells can migrate long distances and reach the injury site.

In some injuries, the brain produces biological factors that stimulate stem cells. Researchers are working to identify those factorswith the aim of someday translating the findings into new drugs to boost a patient's own stem cells.

If we can identify factors that stimulate these cells we could directly repair [the brain], said Dr. Steven Kernie, chief of pediatric critical care medicine at New York Presbyterian Hospital, who is working on this research.

Other teams have been working on turning different types of brain cells into neurons. A team at Penn State University developed a cocktail of molecules that can convert glial cells, a type of brain cell, into functioning neurons in mice. The cocktail of molecules could be packaged into drug pills, the researchers said, perhaps one day taken by patients to regenerate neurons.

Another option: transplant new neurons into the brain. In a 2016 study, scientists successfully transplanted young neurons into damaged brains of mice. A real-life injury in the human brain is a much messier situation than a clear-cut lesion made in the lab. But eventually, such advances may translate into techniques to repair stroke damage.

Related: These Brain Boosting Devices Could Give Us Intelligence Superpowers

For diseases like Parkinsons, in which a particular population of neurons is lostas opposed to widespread indiscriminate damagethere have been several clinical trials with many more slated. Scientists in Australia are using brain cells of pigs as a substitute for lost neurons. Later this year, a Chinese clinical trial will implant young neurons derived from human embryonic stem cells into brains of Parkinsons patients. And five more groups are planning similar trials over the next two years, Nature reported.

Approaches taken in Parkinsons trials may be the most biologically plausible, Kernie said. If these trials are successful, they may pave the way for more widespread application of stem cells for treating brain diseases. Its not proven yet that it will work, but its something that's on the horizon.

FOLLOW NBC MACH ON TWITTER, FACEBOOK, AND INSTAGRAM.

Read the rest here:
These Scientists Have a Plan To Cheat Death. Will It Work? - NBCNews.com

‘Stem-cell tourism’ needs tighter controls, say medical experts – Reuters

LONDON Stem-cell tourism involving patients who travel to developing countries for treatment with unproven and potentially risky therapies should be more tightly regulated, international health experts said on Wednesday.

With hundreds of medical centers around the world claiming to be able to repair damaged tissue in conditions such as multiple sclerosis and Parkinson's disease, tackling unscrupulous advertising of such procedures is crucial.

These therapies are advertised directly to patients with the promise of a cure, but there is often little or no evidence to show they will help, or that they will not cause harm, the 15 experts wrote in the journal Science Translational Medicine.

Some types of stem cell transplant mainly using blood and skin stem cells have been approved by regulators after full clinical trials found they could treat certain types of cancer and grow skin grafts for burns patients.

But many other potential therapies are only in the earliest stages of development and have not been approved by international regulators.

"Stem cell therapies hold a lot of promise, but we need rigorous clinical trials and regulatory processes to determine whether a proposed treatment is safe, effective and better than existing treatments," said one of the 15, Sarah Chan of Britain's University of Edinburgh.

The experts called for global action, led by the World Health Organization, to introduce controls on advertising and agree international standards for the manufacture and testing of cell and tissue-based therapies.

"The globalization of health markets and the specific tensions surrounding stem cell research and its applications

have made this a difficult challenge," they wrote. "However, the stakes are too high not to take a united stance."

(Reporting by Kate Kelland, editing by John Stonestreet)

(Reuters Health) - After weight-loss surgery, people who get cosmetic procedures to remove excess tissue may have a better quality of life than those who don't get this additional work done, a recent study suggests.

(Reuters Health) - Laws requiring cigarettes to be made with a fire-retarding design may have reduced deaths from cigarette-related fires in the U.S. but the evidence is weak and inconsistent, researchers say.

Visit link:
'Stem-cell tourism' needs tighter controls, say medical experts - Reuters

Disturbing New Visualization Shows Cancer Cells Coursing Through a Mouse – Gizmodo

GIF

Biologists in Japan have a developed an innovative scanning technique that makes tissues and vital organs transparent, allowing them to track cancer as it spreads throughout the bodies and brains of mice.

The new technique, described in the latest issue of Cell Reports, was developed by researchers from the University of Tokyo and the RIKEN Quantitative Biology Center, and its allowing scientists to visualize cancer at single-cell resolution. Preexisting scanning techniques have been used to detect and track cancer in living animals before, but not with this level of clarity and microscopic detail.

Using the new technique, the scientists watched cancer cells multiply and spread (i.e. metastasize) inside various mouse organs, including the lungs, intestines, liver, and brain. Importantly, the researchers were also able to watch anti-cancer medicines combat these pernicious cellular invaders.

This was all made possible by a chemical mixture known as CUBIC, or Clear Unobstructed Brain/Body Imaging Cocktail (what an awesome acronym!). Developed by the RIKEN and University of Tokyo researchers, this mixture makes tissues and vital organs translucent. When used in conjunction with other scanning techniques, such as light-sheet fluorescence microscopy (LSFM) and confocal laser-scanning microscopy (CLSM), it allowed the researchers to detect even the slightest traces of cancer colonies in mice.

The technique was applied to 12 mouse models with nine different cancer cell lines. The researchers used CUBIC to calculate the shapes, volumes, and distributions of various cancerous colonies, and observe cancer cells as they multiplied and spread through the body to form tumors in different areas.

For example, the researchers saw a healthy pair of lungs get colonized by cancer cells in just two weeks. They watched out-of-control pancreatic cells ravage a liver, and then the mouses entire abdomen. They were even able to pick out individual cancer cells and blood vessels distributed throughout the brain (see the video below).

As a result, the researchers developed a clearer view of how cancer spreads. In order for cancer to reach a new site within the body, it appears that a cancer cell travels through the bloodstream, entering and then exiting through blood vessel walls. The scientists also investigated the effects of anti-cancer drugs in cancer metastasis, providing a unique glimpse of how medicine works inside a live organism.

Further work in this area could yield insights into other cancer and metastatic pathways, and any other health conditions involving single-cell events, such as autoimmune disorders and regenerative medicine.

As for this technique ever being used on live humans, dont hold your breath. The CUBIC compound isnt very human-friendly, requiring a series of genetic modifications. But as a way to peer inside the body of a living creature, its already proving its worth.

[Cell Reports]

See the original post:
Disturbing New Visualization Shows Cancer Cells Coursing Through a Mouse - Gizmodo

Turning point: Single-cell mapper – Nature.com

Mike Liskay

Biotechnologist Andrew Adey developed a high-throughput method for mapping the genomes of single cells. The advance, reported in January, allows for the identification of diverse cell populations in tumours, and so paves a path towards precision medicine. To develop it, Adey, now at Oregon Health & Science University in Portland, relied on HeLa cells, a prolific cancer-cell line biopsied in the 1950s from Henrietta Lacks, who had cervical cancer, and used widely in biomedical research without her consent.

How has single-cell biology advanced?

In the mid-2000s, next-generation sequencing was just starting, so today's version of single-cell biology was non-existent. Today, researchers can look at genome-wide properties or other aspects of single cells.

How did you use HeLa cells?

I knew nothing about the history of HeLa, just that it was a cancer-cell control line that grew really well. We wanted to understand how different copies of chromosomes influence cells. Once we developed technology to do this in normal cells, we set out to see how those copies act in cancer cells, and so applied it to HeLa. We learned more about HeLa notably, that multiple copies of a genome can act differently and worked out the genomic changes that enable an aggressive cancer to reproduce so readily.

What was your role in the privacy debate over publishing HeLa sequence information?

As we were readying a paper in 2013 (A. Adey et al. Nature 500, 207211; 2013), we didn't know how we were going to publish genetic information that could have consequences for Lacks's descendants. Ultimately, the US National Institutes of Health reached an agreement with the Lacks family that accompanied our paper, and that granted researchers access to the cells while maintaining the Lacks's privacy. HeLa is a unique case one not only at the forefront of medical advances but also about the ethical informed consent that is crucial to medical practice.

Can you explain the technique put forth in your January paper?

Initially, our platform could fully sequence only the portion of the genome that regulates gene expression in single cells (S. A. Vitak et al. Nature Meth. 14, 302308; 2017). We wanted to progress to whole-genome sequencing from single cells. But when you target regulatory elements, you typically have access to only 14% of the genome. We had to work out how to free up the DNA to convert the entire genome into sequenceable molecules.

What were the main obstacles?

At one point, it seemed like we were playing 'whack-a-mole'. Every time we altered one fixed property of the protocol, something else that had been working fine would stop. It was challenging, because the genome is packed nicely into nuclei. We needed to destroy the proteins that packaged the DNA inside the nucleus, without destroying everything else. Most of the time, everything would just explode and we'd lose the ability to look at single cells.

What's next?

We've already improved our method from what we published in January. It's even more reproducible, and we can get more data from single cells. Half of my lab does technology development; the other half applies those methods to answer questions of interest. This method was the first step to examining other aspects at the single-cell level. We're now using these technologies to explore cell identity. For example, how does a cell respond when treated by a cancer drug?

How will your method affect cancer treatment?

With a single-cell focus, we can start to profile an individual's tumour and identify molecularly distinct subpopulations in a tumour. If we can then profile large cohorts and tumours at the single-cell level, we can learn how certain subpopulations will respond to specific drugs to better home in on effective treatments.

This interview has been edited for length and clarity.

Read more:
Turning point: Single-cell mapper - Nature.com

DNA testing – on the road to regenerative medicine – VatorNews

We recently had Dr. Craig Venter speak at our Splash Health 2017 event. Dr. Venter is the first person to sequence a human genome, simply put: the instructions and information about human development, physiology, and evolution. In his interview, he points out that 15 years ago, sequencing a human genome would have cost $100 million and take over nine months.

Oh how far weve come. Today, there are a number of companies helping us to analyze our genes, or basically our DNA, which make up genes, to understand our physiology. Advances in sequencing the human genome have been the foundation for this knowledge, and is ultimately paving the path toward personalized medicine - therapies that are personalized to a persons genetic code, and its cousin regenerative medicine - therapies that replace or enable damaged cells, organs to regenerate.

One company, Orig3n, is doing both. Boston-based Orig3n started out in 2014 collecting blood samples to conduct regenerative medicine studies, but later added in the ability to conduct DNA testing to learn more about a persons intelligence, or predisposition to learning languages, to knowing what vitamins theyre deficient in.

Its an interesting an unique funnel the company has created for itself on its way to solve big problems with regenerative medicine, which seems more in its infancy than DNA testing.

To that end, Orig3ns DNA testing business has taken off.

In order to be tested, you take a cotton swab and swab the inside of your cheek to collect DNA samples from the cells inside your mouth. Alternatively, one could spit in a tube, which is how 23andMe collects samples of DNA.

From there, Orig3n breaks down the cells to open up the DNA, which is inside the nucleus of the cell. The DNA is then purified and put into a genetic test panel. Your DNA is then analyzed against other DNA that have been collected and studied.

The analysis of the DNA is pretty standard. What differentiates its products, according to Robin Smith, Founder and CEO, is how the analysis is packaged and how quickly the results are turned around. The whole genome sequencing world has been around for 15 years and is fairly commoditized, said Smith. The same thing is happening with DNA detection. The biggest differentiator for Orig3n is that it delivers the data in ways that are understandable, said Smith.

For instance, on Orig3n, tests focus on an analysis of your skin to perfect your skincare routine, or about your strength and intelligence. Tests range from $20 to $100.

On Everlywell, you can take a DNA test to measure your sensitivity to foods. Or for around $239, it appears you can test to see if you have HIV, Herpes Type 2 and other sexual diseases.

On 23andMe, you can pay $199 to learn what proportion of your genes come from 31 populations worldwide, or what your genetic weight predisposes you to weigh vs an average and what are some healthy habits of people with your genetic makeup [though personally these habits seem to be good for anyone regardless of genetic makeup].

But for Orig3n, the DNA tests are just a good business while also a funnel to the bigger problem theyre trying to solve, and for which they recently raised $20 million for: Regenerative medicine.

Before offering the DNA tests, Orig3n was taking and continues to take blood samples, reprogramming cells to go back to a state three days prior. And from there, they can grow certain tissues. The purpose of Orig3n is to create cell therapies for various diseases and disorders.

In the next fives year, there will be real live therapies to repairing the degeneration of your eyes or performing some cardiac repair, Smith predicted. It feels like 1993 when I used a phone line to dial into the Internet, then seven years later we had the boom. We think regenerative medicine - getting your body to induce itself to rejuvenate parts that are broken - is where the Internet was in 1993.

Go here to see the original:
DNA testing - on the road to regenerative medicine - VatorNews

Global Cell Therapy Report 2017 – Technologies, Markets and Companies 2016-2026 with Profiles of Key Companies … – PR Newswire (press release)

This report describes and evaluates cell therapy technologies and methods, which have already started to play an important role in the practice of medicine. Hematopoietic stem cell transplantation is replacing the old fashioned bone marrow transplants. Role of cells in drug discovery is also described. Cell therapy is bound to become a part of medical practice.

Stem cells are discussed in detail in one chapter. Some light is thrown on the current controversy of embryonic sources of stem cells and comparison with adult sources. Other sources of stem cells such as the placenta, cord blood and fat removed by liposuction are also discussed. Stem cells can also be genetically modified prior to transplantation.

Cell therapy technologies overlap with those of gene therapy, cancer vaccines, drug delivery, tissue engineering and regenerative medicine. Pharmaceutical applications of stem cells including those in drug discovery are also described. Various types of cells used, methods of preparation and culture, encapsulation and genetic engineering of cells are discussed. Sources of cells, both human and animal (xenotransplantation) are discussed. Methods of delivery of cell therapy range from injections to surgical implantation using special devices.

Cell therapy has applications in a large number of disorders. The most important are diseases of the nervous system and cancer which are the topics for separate chapters. Other applications include cardiac disorders (myocardial infarction and heart failure), diabetes mellitus, diseases of bones and joints, genetic disorders, and wounds of the skin and soft tissues.

Regulatory and ethical issues involving cell therapy are important and are discussed. Current political debate on the use of stem cells from embryonic sources (hESCs) is also presented. Safety is an essential consideration of any new therapy and regulations for cell therapy are those for biological preparations.

The cell-based markets was analyzed for 2016, and projected to 2026. The markets are analyzed according to therapeutic categories, technologies and geographical areas. The largest expansion will be in diseases of the central nervous system, cancer and cardiovascular disorders. Skin and soft tissue repair as well as diabetes mellitus will be other major markets.

The number of companies involved in cell therapy has increased remarkably during the past few years. More than 500 companies have been identified to be involved in cell therapy and 306 of these are profiled in part II of the report along with tabulation of 291 alliances. Of these companies, 170 are involved in stem cells. Profiles of 72 academic institutions in the US involved in cell therapy are also included in part II along with their commercial collaborations. The text is supplemented with 64 Tables and 22 Figures. The bibliography contains 1,200 selected references, which are cited in the text.

Key Topics Covered:

Part I: Technologies, Ethics & Regulations

Executive Summary

1. Introduction to Cell Therapy

2. Cell Therapy Technologies

3. Stem Cells

4. Clinical Applications of Cell Therapy

5. Cell Therapy for Cardiovascular Disorders

6. Cell Therapy for Cancer

7. Cell Therapy for Neurological Disorders

8. Ethical, Legal and Political Aspects of Cell therapy

9. Safety and Regulatory Aspects of Cell Therapy

Part II: Markets, Companies & Academic Institutions

10. Markets and Future Prospects for Cell Therapy

11. Companies Involved in Cell Therapy

12. Academic Institutions

13. References

For more information about this report visit https://www.researchandmarkets.com/research/hpj9sh/cell_therapy

Source: Jain PharmaBiotech

Media Contact:

Laura Wood, Senior Manager press@researchandmarkets.com

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/global-cell-therapy-report-2017---technologies-markets-and-companies-2016-2026-with-profiles-of-key-companiesinstitutions-300483356.html

SOURCE Research and Markets

http://www.researchandmarkets.com

Go here to see the original:
Global Cell Therapy Report 2017 - Technologies, Markets and Companies 2016-2026 with Profiles of Key Companies ... - PR Newswire (press release)

Embryonic stem cells to be available for medical use in Japan by next March – The Japan Times

KYOTO Embryonic stem cells for regenerative medicine will become available to medical institutions by the March 2018 end of fiscal 2017, Hirofumi Suemori, associate professor at Kyoto Universitys Institute for Frontier Life and Medical Sciences, has said.

Suemori also said Tuesday that ES cells for medical treatment, which have been approved by both the health and science ministries, would be created from October at the earliest.

To make ES cells, Kyoto University will work with Adachi Hospital in the city of Kyoto, which offers infertility treatment, to use fertilized eggs that would otherwise be disposed of.

The university hopes to obtain unwanted fertilized eggs from patients undergoing infertility treatment. The fertilized eggs are expected to be provided from around next February, the university said.

ES cells have the potential to become a variety of cell types much as induced pluripotent stem (iPS) cells do. Using ES cells, clinical trials are being conducted abroad on retinopathy, spinal cord injuries, Parkinsons disease, diabetes and cardiac disorders.

Many patients have qualms about discarding fertilized eggs, said Adachi Hospital Director Hiroshi Hatayama, who joined Suemori for a news conference. We can present an option to them, Hatayama said.

View post:
Embryonic stem cells to be available for medical use in Japan by next March - The Japan Times

Stem Cell Injections: Emerging Option for Joint Pain Relief Health … – Health Essentials from Cleveland Clinic (blog)

Are you suffering from chronicjoint pain? If so, you may want to ask your doctor whetherstem cellinjections are right for you. If you want to avoid the surgical route of repairing a damaged knee or treating an arthritic shoulder, a stem cell injection may give you the relief you need.

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

Stem cells are specialtypes of cells with the ability to self-renew or multiply. They have the potential to replicate any cell in your body. In other words, they canbecome a cartilage cell, a muscle cell or a nerve cell, says orthopedic surgeonAnthony Miniaci, MD.

They have a tremendous capacity to differentiate and form different tissues, so thats the thought behind regenerating cartilage, regenerating nerve cells and healing any injured tissues, he says.

The source of stem cells isfound in your own bone marrow orfat or you can also receive stem cells from donor sources, particularlyamniotic sourcessuch as the placenta or the amniotic fluid and lining surrounding a fetus. These cells are not part of the embryo, Dr. Miniaci says.

The number of stem cells that you have and theirquality and activity diminish as you get older, he says. Amniotic stem cells, on the other hand, are from young tissue, so theoretically these are younger, more active cells.

Thetreatment team harvests stem cells from your bone marrow or fat or uses donor cells . Later on, your treatment team injects the cells preciselyinto your joint, ligament or tendon.

Theoretically, the cells will then divide and duplicate themselves and develop into different types of cells depending on the location into which they have been injected. For example, if you have damagedknee cartilage, stem cells placed near the damaged cartilage can develop into new cartilage tissue.

However, for patients with asevere loss of cartilageor no cartilage at all, a stem cell injection is unlikely to createa new joint, Dr. Miniaci says.

Severe loss of cartilage typically leads to bone erosion or bone deformity, so a stem cell injection is highly unlikely to work in terms of reversing those changes, he says.

It can, however, improve your symptoms of pain and swelling.

The earlier you can treat someones joint pain, the better chance this has of working, making it less painful for thepatient, less inflamed, and improve their function, he says.

The main risk from a stem cell injection is in harvesting the stem cells. When taking the cells from your bone marrow, the treatment team inserts a large needle into your pelvis and removes some blood and the cells.

Any time you make incisions or insert sharp instrument into somebodys pelvis, they can have problems such as acquiring an infection, Dr. Miniaci says.

If youre taking the stem cells from fat, you you can remove some out from under the skin, he says. Again, you have a risk for an infection because were making little nicks into the skin to get to the fat.

While the use of stem cell injections to treatjoint painholds much promise, Dr. Miniaci cautions that this treatment option is still very new. Researchers needto study its effectiveness further.

We dont have a lot of data or proof indicating that stem cell injections actually repair the joint, he says.

He explains that if you have cartilage orbone damage, stem cells candifferentiate and produce bone and cartilage and tissues. So, theoretically, they could heal damaged tissue within a muscle, tendon, bone or cartilage.

Thats the theory behind it, but this type of treatment and research is just in its infancy, he says.

We really dont know whats effective, whats not effective, how many cells are necessary, how many actual injections you need and how often, he says. Nobody knows how well it works yet. But we will eventually.

Anecdotally, Dr. Miniaci finds that some patients can have significant improvement in their symptoms with stem cellinjections. But he has not seen any proof yet that they are regrowing or regenerating a joint.

Many people think that theyre going to come in with their arthritic joint and leave with a newer version of their knee joint. That doesnt happen, he says.

What does occur is a biological reaction which makes the environment in their joints a little healthier, which probably makes it less inflamed, and as result, gives them less pain.

Here is the original post:
Stem Cell Injections: Emerging Option for Joint Pain Relief Health ... - Health Essentials from Cleveland Clinic (blog)