Defining the Future of the Stem Cell Industry – Interviews with Stem Cell Industry Executives – Research and Markets – Business Wire (press release)

DUBLIN--(BUSINESS WIRE)--Research and Markets has announced the addition of the "Defining the Future of the Stem Cell Industry - Interviews with Stem Cell Industry Executives" report to their offering.

Stem cell research has been in process for over five decades. Stem cells have a unique ability to divide and replicate repeatedly, as well as an unspecialized nature that allows them to differentiate into a wide variety of specialized cell types. In a developing embryo, stem cells can differentiate into all of the embryonic tissues. In adult organisms, stem and progenitor cells act as a repair system for the body, replenishing specialized cells.

Stem cells are primitive cells found in all multi-cellular organisms that are characterized by self-renewal and the capacity to differentiate into mature cell types.

Several broad categories of stem cells exist, including:

- Embryonic stem cells, derived from blastocysts

- Perinatal stem cells, obtained during the period immediately before and after birth

- Adult stem cells, found in adult tissues

- Induced pluripotent stem cells (iPS cells), produced by genetically reprogramming adults cells

- Cancer stem cells, which give rise to clonal populations of cells that form tumors or disperse in the body

The possibilities arising from these characteristics have resulted in great commercial interest, with potential applications ranging from the use of stem cells as research tools, to utilization in cell therapies and integration into 3D printed tissues and organs. Additionally, the ability to use stem cells to improve drug target validation and toxicology screening is of intense interest to the pharmaceutical industry.

Rapid Technological Innovation

As a result of this technological innovation, the stem cell industry is undergoing rapid change. As of July 2017, a search for stem cells yields the following results:

- 5,932 Clinical Trials - Search conducted via ClinicalTrials.gov, a global registry of clinical trials that contains approximately 3/4th of trials worldwide, using the terms stem cell or stem cells

- 45,283 Patents - Search performed using the United State Patent and Trademark Office website, USPTO.gov, using the terms stem cell or stem cells

- 296,399 Scientific Papers - Search performed on PubMed.gov, a global database of scientific publications maintained by the NIH, using the terms stem cell or stem cells

- Google Trends identifies that stem cell terms are widely searched in countries worldwide, led by Singapore, China, UK, USA, and Australia - Google Trends is a service of Google Inc. that identifies how frequently a particular search term is entered relative to total search volume worldwide

Undoubtedly, there is enormous interest surrounding the stem cell industry. However, this rapid technological changes leaves all industry participants wondering, what will be the future directions for the stem cell industry over the next 5, 10, or 15 years?

For more information about this report visit https://www.researchandmarkets.com/research/jcz5bf/defining_the

See the rest here:
Defining the Future of the Stem Cell Industry - Interviews with Stem Cell Industry Executives - Research and Markets - Business Wire (press release)

Greater understanding of plant hormone results in stem cells that grow shoots – Phys.Org

July 3, 2017 Arabidopsis thaliana. Credit: Wikipedia.

Researchers at Dartmouth College have identified how a well-known plant hormone targets genes to regulate plant growth and development. The finding could allow scientists to establish organ-growing stem cells for grains like rice and corn, and may ultimately lead to solutions to stubborn agricultural problems.

The study, appearing in the Proceedings of the National Academy of Sciences, describes how cytokinin activates the transcription factor ARR10 to control gene expression in the Arabidopsis plant - a member of the mustard family commonly used as a model in plant biology.

Cytokinin is a hormone that regulates numerous processes in plants, including cell division, growth of shoots and roots, grain yield and greening.

"The question has always been how cytokinin regulates so many different processes within a plant," said Eric Schaller, a professor of biological sciences at Dartmouth College. "Now we know the genes that are the primary targets of cytokinin, and we can provide the toolbox for manipulating the plant hormone response."

According to the paper, results from the analysis "shed light on the physiological role of the type-B ARRs in regulating the cytokinin response, the mechanism of type-B ARR activation, and the basis by which cytokinin regulates diverse aspects of growth and development as well as responses to biotic and abiotic factors."

As part of the study, conducted in collaboration with the University of North Carolina Charlotte and the University of North Carolina at Chapel Hill, researchers were able to use the new understanding of how cytokinin works to grow shoots in tissue culture under conditions in which these plant organs normally do not form.

To make the plant tissues grow shoots in vitro, the research team increased the cytokinin sensitivity in the Arabidopsis plant. This resulted in activation of the WUSCHEL target gene, which is a key regulator of shoot development. The result confirms understanding of how to establish stem cells that lead to different types of organ growth.

"What we have done is activate the plant to make a stem cell center for a shoot to form," said Schaller. "By finding the direct targets of what is impacted by cytokinin, we can fine-tune our focus in the future."

According to Schaller, this research sets the stage for further work that could help improve yield of important agricultural products like rice and corn.

Explore further: KISS ME DEADLY proteins may help improve crop yields

More information: Yan O. Zubo el al., "Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis," PNAS (2017). http://www.pnas.org/cgi/doi/10.1073/pnas.1620749114

Dartmouth College researchers have identified a new regulator for plant hormone signalingthe KISS ME DEADLY family of proteins (KMDs) that may help to improve production of fruits, vegetables and grains.

Researchers at the University of Helsinki have discovered that cytokinin patterning, an important process in plant development, cannot happen via diffusion alone. While investigating a regulatory network in plant roots, they ...

Freiburg plant biologist Prof. Dr. Thomas Laux and his research group have published an article in the journal Developmental Cell presenting initial findings on how shoot stem cells in plants form during embryogenesis, the ...

Invisible to the naked eye, plant-parasitic nematodes are a huge threat to agriculture, causing billions in crop losses every year. Plant scientists at the University of Missouri and the University of Bonn in Germany have ...

The two most important growth hormones of plants, so far considered antagonists, also work synergistically. The activities of auxin and cytokinin, key molecules for plant growth and the formation of organs, such as leaves ...

Researchers from the Department of Plant and Environmental Sciences at University of Copenhagen have for the first time demonstrated that the production of a plant hormone by a beneficial microbe is protecting a plant from ...

A wealth of previously undescribed plant enzymes have been discovered by scientists at the John Innes Centre. The team who uncovered the compounds hope that harnessing the power of these enzymes will unlock a rich new vein ...

For the first time, researchers have succeeded in establishing the relationships between 200-million-year-old plants based on chemical fingerprints. Using infrared spectroscopy and statistical analysis of organic molecules ...

As senses go, there's nothing so immediate and concrete as our sense of touch. So it may come as a surprise that, on the molecular level, our sense of touch is still poorly understood.

The mass extinction that obliterated three-fourths of life on Earth, including non-avian dinosaurs, set the stage for the swift rise of frogs, a new study shows.

The town of Escalante in southern Utah is no small potatoes when it comes to scientific discovery; a new archaeological finding within its borders may rewrite the story of tuber domestication.

The conventional way of placing protein samples under an electron microscope during cryo-EM experiments may fall flat when it comes to getting the best picture of a protein's structure. In some cases, tilting a sheet of frozen ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See more here:
Greater understanding of plant hormone results in stem cells that grow shoots - Phys.Org

Danvers health group offers alternative solution to surgery – Wicked Local North of Boston

Stem cell therapy: the next wave in regenerative medicine?

All it involved was a quick injection no different, really, than a flu shot.

A few weeks later, Bill Ambrose realized hed become significantly less reliant on taking Aleve for knee pain, and he was re-learning how to walk without shuffling his feet.

Surgery, it turned out, might not be necessary after all.

Last November, Ambrose scheduled knee surgery to alleviate discomfort in his knees caused by what orthopedic doctors called true bone-on-bone at the joint. But for one reason or another, he kept missing pre-surgery and the surgery never happened.

The next month, Ambrose met with Dr. Bill Nolan, of Cherry Street Health Group, to discuss advertising space in the Danvers Herald.

For the purpose of full disclosure, Ambrose is an employee of Gatehouse Media Company, and he works in the advertising department for Wicked Local, the local branch of GHM newspapers.

After Nolans ads ran inthe Jan. 5issue of the Herald, Ambrose said he reached out to Nolan again. This time, for himself.

Nolans practice offered a solution to his knee pain an alternative to knee surgery he had never considered before: stem cell therapy.

Essentially, the solutionCherry StreetHealth Group offered was an injection of amniotic fluid into Ambrose's knee joint. The stem cells and other growth factorsin the fluid would allow for the regeneration of the cartilage at the joint.

I became interested so I decided to go ahead with it, Ambrose said.

He brought in scans to show Nolan, who said, contrary to what orthopedic doctors had told him, he didnt have true bone on bone. There was still a small space between the bones.

I decided to have one leg done and my knee started getting much better, he said.

Satisfied with the results of the first injection, Ambrose decided to get his left knee done in April.

I still experience some pain in [the left knee], but I get up in the morning and theres very little pain at all, he said in an interview a few weeks following the appointment.

The stem cell option

In the U.S., there are three ways that stem cells are used, Nolan said. Theyre either taken from bone marrow, fat cells, or the amniotic membrane of a healthy c-section from a consenting woman.

When stem cellsare injected into the body,they're expected to increase space at the joint, rebuild cartilage, and ultimately, provide more stability in the joint. As many as 570 businesses across the country advertise some kind of stem cell therapy, according to a 2016 paper.

Stem cell therapy is not necessarily a new discovery, but it is relatively recent in the world of regenerative medicine.Stem cells were first used as much as century ago, first for eye procedures and as filler for the spinal cord, according to Regenexx, which claims to have pioneered orthopedic stem cell treatments in 2005.

Adult stem cells are retrieved directly from the patient, either frombone marrow or fat cells,and concentrated beforeits reinjectedinto the patient's site of pain.

In the case of amniotic fluid therapy,amniotic fluid, which contains stem cells and other growth factors, is injected into the site. These cellshave been shown to "expand extensively" and show "high renewal capacity,"according to research published in the National Library of Medicine.

We know that as you age, your stem cell count decreases,Nolan said, explaining the benefit of using cells from the amniotic membrane. We know that when we get it from the amniotic membrane, theres a large amount of stem cells that are present. From the amniotic membrane, there are no antibodies or antigens, so its safe for anyone to get.

At Cherry Street Health Group, theproduct usedis produced by General Surgical and distributed by RegenOMedix, according to Nolan.The product, which is called ReGen Anu RHEO, is American Tissue Bank approved and FDA cleared.

RHEO is marketed as "a human tissue allograft derived from placental tissue; amniotic membrane and amniotic fluid."Its a"powerful combination" of amniotic fluid and mesencymal stem cells, which are known to differentiate into a variety of cell types, according to RegenOMedix.It also contains growth factor proteins andis "rich" in other necessary components for tissue regeneration.

The product is non-steroidal and comes with no side effects, and the company says no adverse events have been recorded using the product.

Nolan said stem cell therapy has been offered as a treatmentat Cherry Street since 2016.

Across the U.S., there are as many as 56 businesses marketing some form of amniotic stem cellsto its consumers, according to the same paper.

At Rush University Medical Center in Chicago, for example, orthopedic surgeon Adam Yanke enrolled one of his patients into an experimental amniotic cell therapy treatment program. The woman, a 65-year-old suffering from osteoarthritis in both knees, told reporters the injections were "by far the most effective pain treatment" she had tried, and so farthat relief has lasted up to a year.

But while the use of amniotic fluid therapyas a regenerative medicine is becoming increasingly popular throughout the U.S.,the use of amniotic stemcellsdoesn't comewithout concern from some within the community.

Dr. Chris Centeno, who specializes in regenerative medicine andthe clinical use of adult stem cells, has blogged numerous times for Regenexx on the "scam" of using amniotic stem cells most recently in sharply worded post on May 22.

"Regrettably, we have an epidemic on our hands that began when sales reps began telling medical providers thattheir dead amniotic and cord tissues had loads of live cells on it," he wrote.

Nolan said he was familiar with Centeno's posts.

"A lot of the stem cell stuff is new," he said. "Some of the products out there ... They were doing testing on them and not finding cells."

Cherry Street Health Group has treatedabout 50patients with this form of regenerative medicine and had significant success, according to Nolan. Although Nolan owns the health group on Cherry Street in Danvers, the stem cell treatments are provided under the medical practice of Dr. Pat Scanlan.

Weve had really, really amazing success, Nolan said. Weve had over 95 percent success of all the patients weve had in the office. Its been a game changer from a practice standpoint.

The "worst thing" that could happen is there might not be any regeneration, he explained.

"You might get pain relief, but no regeneration," Nolan said. "But from what weve seen, there have been no negative side effects."

At Cherry Street, knees are the most commonly treated joints, followed by hips, shoulders and the lower back. The cervical spine is the least common.

"I hesitated on the surgery, and I'm gladI did," Ambrose said. "Even if[the stem cells]don't do any more than what they've done, its been well worth it."

Patients who do present with true bone on bone, however, are not candidates for this form of therapy, Nolan said.

The cost comparison

At Cherry Street Health Group, the cost of the injection comes toroughly $4,000 per knee, a cost that isn't covered by insurance. By comparison, health-care providers often charge insurers more than $18,000 for knee replacement surgeries in the Boston area, according to a report by the Blue Cross and Blue Shield Association.

The report, however, doesn't account for what the patient actually pays.

Nolan said when other factors of post-op are considered time off of work, rehabilitation time and cost the out-of-pocketcost for surgery compared to stem cell treatment is comparable.

"When you really boil it down, it can be the same or, in a lot of cases, a savings," he said.

Ambrose said it "boggles his mind" that more people don't choose this treatment over surgery.

"Why would you spend $40,000 on a car and not want to spend $4,000 on a knee?," he said."Its crazy. Yes, its out of pocket. So what? We buy a lot of stuff we dont need, and then for something like this, something that people, if they do it, theyll be glad they did it. Its just hard to convince them to do it."

In arecent report in STAT news, a health news start up of the Boston Globe, a study of orthopedic procedures in the U.S. suggested an estimated one-third of knee replacement surgeries are inappropriate. More than 640,000 of these surgeries are performed each year, making for a $10 billion dollar industry in knee surgery.

The study said that evidence isn't limited to just knee surgeries.

"There's a lot that needs to change when we look at health care in general,"Nolan said. "It's really no surprise that something like doing this regenerative medicine is going to take time for it to really take off."

Read this article:
Danvers health group offers alternative solution to surgery - Wicked Local North of Boston

Canadian clinics begin offering stem-cell treatments experts call unproven, possibly unsafe – National Post

The arthritis in Maureen Munsies ankles was so intense until barely a year ago, she literally had to crawl on hands and knees to get upstairs.

The pain, she recalls now, took my breath away, and played havoc with the avid hikers favourite pastime.

In desperation, Munsie turned to a Toronto-area clinic that provides a treatment many experts consider still experimental, unproven and of questionable safety.

The 63-year-old says the stem cells she received at Regenervate Medical Injection Therapy 18 months ago were transformational, all but eliminating the debilitating soreness and even allowing her to hike Argentinas Patagonia mountains two months ago.

For me its been a life saver, Munsie says. Ive been able to do it all again I dont have any of that pain, at all.

Canadians drawn to the healing promise of stem cells have for years travelled outside the country to such places as Mexico, China or Arizona, taking part in a dubious form of medical tourism.

But Regenervate is one of a handful of clinics in Canada that have begun offering injections of stem cells, satisfying growing demand but raising questions about whether a medical idea with huge potential is ready for routine patient care.

Especially when those patients can pay thousands of dollars for the service.

Clinics in Ontario and Alberta are treating arthritis, joint injuries, disc problems and even skin conditions with stem cells typically taken from patients fat tissue or bone marrow.

The underlying idea is compelling: stem cells can differentiate or transform into many other types of cell, a unique quality that evidence suggests allows them to grow or regenerate tissue damaged by disease or injury.

Researchers including hundreds in Canada alone are examining stem-cell treatments for everything from ailing hearts to severed spinal cords.

With few exceptions, however, the concept is still being studied in the lab or in human trials; virtually none of the treatments have been definitively proven effective by science or approved by regulators like Health Canada.

The fact that Canadian clinics are now offering stem-cell treatments commercially is concerning on a number of levels, not least because of safety issues, says Ubaka Ogbogu, a health law professor at the University of Alberta.

Three U.S. women were blinded after receiving stem-cell injections in their eyes, while other American patients have developed bony masses or tumours at injection sites, Ogbogu said.

Stem cells have to be controlled to act exactly the way you want them to act, and thats why the research takes time, he said. It is simply wrong for these clinics to take a proof of concept and run with it.

Ogbogu says Health Canada must crack down on the burgeoning industry but says the regulator has so far been conspicuous by its inaction.

Other experts say the procedures provided here typically for joint pain are likely relatively safe, but still warn that care must be taken that the stem cells do not develop into the wrong type of tissue, or at the wrong place.

Alberta Health Services convened a workshop on the issue late last year, concluding there is an urgent need to develop a certification system for cell preparation and delivery to avoid spontaneous transformation of (stem cells) into unwanted tissue.

But one of the pioneers of the service in Canada says theres no empirical evidence that such growths can develop, and suggests the treatments only real risk as with an invasive procedure is infection.

Meanwhile, patients at Regenervate have enjoyed impressive outcomes after paying fees from $750 to $3,900, says Dr. Douglas Stoddard, the clinics medical director.

About 80 per cent report less pain, stiffness and weakness within a few months of getting their stem-cell injection, he said.

I believe medical progress is not just limited to the laboratory and randomized double-blind trials, Stoddard said. A lot of progress starts in the clinic, dealing with patients You see something works, you see something has merit, and then its usually the scientists that seem to catch up later.

The Orthopedic Sport Institute in Collingwood, Ont., the Central Alberta Pain and Rehabilitation Institute and Cleveland Clinic in Toronto all advertise similar stem-cell treatments for orthopedic problems.

Edmontons Regen Clinic says it plans to start doing so this fall.

Ottawas Innovo says it also treats a range of back conditions with injections between the vertebrae, and uses stem cells to alleviate nerve damage.

Orthopedic Sport says its doctor focuses on FDA and Health Canada approved stem-cell injection therapy for patient care.

In fact, no treatment of the sort the clinics here provide has ever been authorized.

Health Canada says the vast majority of stem-cell therapies would constitute a drug and therefore need to be authorized after a clinical trial or new drug submission.

A number of stem-cell trials are underway, but only one treatment Prochymal has been approved, said department spokesman Eric Morrissette. Designed to combat graft-versus-host disease where bone marrow transplants for treating cancer essentially attack the patients body its unlike any of the services the stem-cell providers here offer.

But as the U.S. Food and Drug Administration aggressively pursues the hundreds of clinics in America, Health Canada says only that its committed to addressing complaints it receives.

It will take action based on the risk posed to the general public, said Morrissette, who encouraged people to pass on to the department information about possible non-compliant products.

Stoddard said the injections his clinics provide are made up of minimally manipulated tissue from patients own bodies and any attempt to crack down would be regulation for the sake of regulation.

But academic experts remain skeptical about the effectiveness of the treatments.

Scientific evidence suggests the injections may help alleviate joint pain temporarily, but probably just because of anti-inflammatory secretions from the cells not regeneration, said Dr. David Hart, an orthopedic surgery professor at the University of Calgary who headed the Alberta workshop.

Theres a need for understanding whats going on here and theres a need for regulation, he said.

Most of the clinics say they use a centrifuge to concentrate the stem cells after removing them from patients fat tissue or bone marrow. But its unclear if the clinics even know how many cells they are eventually injecting into patients, says Jeff Biernaskie, a stem-cell scientist at the University of Calgary.

Munsie, on the other hand, has no doubts about the value of her own treatment, even with a $3,000 price tag.

The procedure from extraction of fat tissue in her behind to the injection of cells into her ankles took barely over an hour.

Within three months, the retired massage therapist from north of Toronto says she could walk her dogs again. Last week, she was hiking near Banff.

Im a real believer in it, and the possibility of stem cells, says Munsie. I just think Wow, if we can heal with our own body, its pretty amazing.

tblackwell@nationalpost.com

More:
Canadian clinics begin offering stem-cell treatments experts call unproven, possibly unsafe - National Post

Stem cell-based therapies to treat spinal cord injury: a review – Dove Medical Press

Zhongju Shi,1,2 Hongyun Huang,3 Shiqing Feng1,2

1Department of Orthopaedics, Tianjin Medical University General Hospital, 2Institute of Neurology, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin, 3Institute of Neurorestoratology, General Hospital of Armed Police Forces, Beijing, Peoples Republic of China

Abstract: Spinal cord injury (SCI) is a devastating condition and major burden on society and individuals. Currently, neurorestorative strategies, including stem cell therapy products or mature/functionally differentiated cell-derived cell therapy products, can restore patients with chronic complete SCI to some degree of neurological functions. The stem cells for neurorestoration include neural stem cells, mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, etc. A better understanding of the merits, demerits and precise function of different stem cells in the treatment of SCI may aid in the development of neurorestorative strategies. However, the efficacy, safety and ethical concerns of stem cell-based therapy continue to be challenged. Nonetheless, stem cell-based therapies hold promise of widespread applications, particularly in areas of SCI, and have the potential to be novel therapeutics, which contributes to the repair of SCI. This review mainly focused on recent advances regarding the stem cell-based therapies in the treatment of SCI and discussed future perspectives in this field.

Keywords: spinal cord injury, neural stem cells, bone marrow-derived mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, induced pluripotent stem cells

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Read the original post:
Stem cell-based therapies to treat spinal cord injury: a review - Dove Medical Press

Stem Cell Assay Market Driven by Rising Diversity of Applications – TMR Research Blog (press release) (blog)

San Francisco, California, July 03, 2017: TMR Research announces a new report on the global stem cell assay market. The report examines the historical growth trajectory exhibited by the global stem cell assay market and its latest figures, and further provides reliable forecasts for the stem cell assay market based on complete analysis of the markets database. The report also takes a close look at the regional and competitive dynamics of the global stem cell assay market in order to shed light on the dynamics of the global market more clearly. The report is titled Stem Cell Assay Market Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2017 2025.

Testing antineoplastic drugs in order to check their potency in cancer treatment has emerged as a major application for the global stem cell assay market. The testing covers impurity, toxicity, and other aspects of the tumors and provides a qualitative and quantitative analysis of various aspects of the tumor. The comprehensive figures provided by stem cell assays has driven the demand from the global stem cell assay market.

The growing diversity of applications of stem cell assays is likely to be a major driver for the global stem cell assay market. Pluripotent stem cells have been used in the treatment of several diseases so far and are likely to remain a key part of the healthcare sector in the coming years due to their intrinsic potential to transform into a wide variety of cells in the human body. This makes them a highly promising research avenue in the treatment of diverse conditions such as Alzheimers, Parkinsons, diabetes, rheumatoid arthritis, and retinal diseases, apart from cancer. The growing prevalence of neurological and neurodegenerative conditions, particularly among the growing geriatric demographic in developed countries, is thus likely to be a major driver for the global stem cell assay market.

Steady research and development in the medical sector is likely to remain a key driver for the global stem cell assay market, as the diversity of application of stem cells is purely potential until applied to specific avenues. Growing government support to the medical sector is likely to help the global stem cell assay market in this regard, as significant investment is required to carry out advanced medical research.

Regionally, North America and Europe are likely to remain the leading contributors to the global stem cell assay market due to the presence of a stable healthcare sector in developed countries in the region. The ready incorporation of technological advancements such as stem cell assays in the day to day functioning of the healthcare sector is the key driver for the stem cell assay market in developed countries such as the U.S., Canada, the U.K., Germany, and France.

The report also profiles leading players in the global stem cell assay market in order to shed light on the competitive dynamics of the market. Stem cell assay market leaders examined in the report include Thermo Fisher Scientific Inc., GE Healthcare, STEMCELL Technologies Inc., Bio-Rad Laboratories Inc., Hemogenix Inc., Cell Biolabs Inc., and Promega Corporation.

Like Loading...

Continue reading here:
Stem Cell Assay Market Driven by Rising Diversity of Applications - TMR Research Blog (press release) (blog)

Regenerative medicine helps achy pets – WFLA

TAMPA, FL. Don and Judy Schmeling consider their chocolate lab, Alexandra, a member of the family.

We have three boys, says Judy. We like to say Alex is our girl.

When, at age nine, Alex started having knee pain, the Schmelings consulted their veterinarian, who suggested regenerative medicine, in the form of stem cell treatment.

Judy says, We decided to do it because she was still so young and had quite a few years ahead of her. We wanted her to have quality of life.

Dr. Farid Saleh of Ehrlich Animal Hospital removed a small amount of fat from Alexs belly, harvested the cells, and injected them into her knee during a same-day procedure performed at on site.

Youregiving the body a chance to regrow tissue instead of trying to heal or manage the diseased tissue thats there, explains Dr. Saleh.

After a few months, Alex was back to her old self. Shes now 12 years old.

Sometimes she acts like a puppy! Its been amazing, Judy says.

Alexs stem cells were harvested when she needed them, however Dr. Saleh says its not a bad idea to harvest them when pets are younger and under anesthesia for a procedure like a teeth cleaning.

If we could harvest something that we can use in the future to help our pets get better, it would be an amazing thing, says Dr. Saleh.

Stem cells can be stored, although doing so often requires a third-party company, and theres an annual fee. As for the harvesting and stem cell treatments, they average $2,500. The most common uses are for arthritis, and injuries to bones and joints. Less often, stem cell therapy is used to treat tumors. And, research indicates that stem cell therapy may be an option for treating chronic diseases.

STORIES OTHERS ARE CLICKING ON:

BACK TO TOP STORIES

Here is the original post:
Regenerative medicine helps achy pets - WFLA

TissueGene awarded $750000 Maryland Stem Cell Grant for Invossa clinical study – BSA bureau (press release)

The grant award will be used by TissueGene to fund a component of a clinical study at a Maryland location for its US Phase III clinical trial for Invossa.

Singapore -TissueGene, Inc., aUS-based regenerative medicine company, announced that the Maryland Stem Cell Research Fund (MSCRF) has awarded TissueGene a clinical grant for Invossa, the world's first cell and gene therapy for degenerative arthritis.

The clinical grant is to be used for conducting clinical trials inMarylandusing cell therapy. This money is part of Accelerating Cure, a new TEDCO initiative to support regenerative medicine and cell therapy technologies in Maryland.

The grant award will be used by TissueGene to fund a component of a clinical study at aMaryland location for its US Phase III clinical trial for Invossa. The ultimate outcome of this study is the verification that Invossa exerts its therapeutic effect not only by tissue regeneration but on other inflammatory aspects of the disease such as synovitis.

The title of the grant is "Assessment of the Efficacy of TG-C in Treating Synovitis Using Contrast Enhanced MRI in a Clinical Study of Knee Osteoarthritis." The Principal Investigator (PI) for the study will be Dr.Gurdyal Kalsi, Chief Medical Officer of TissueGene.

"We are excited to support this important clinical trial and the growth of TissueGene inMaryland," said Dr.Dan Gincel, TEDCO's VP University Partnerships, and MSCRF's Executive Director. "We look forward to see many more patients treated and cured from this and other devastating diseases."

Invossa is a first-in-class osteoarthritis drug designed to conveniently and effectively treat osteoarthritis of the knee through a single intra-articular injection. Clinical trials completed in Korea and on-going trials in the US have demonstrated pain relief, increased mobility, and improvements in joint structure offering substantial convenience for nearly 33 million Americans with osteoarthritis who would otherwise need surgery.

Visit link:
TissueGene awarded $750000 Maryland Stem Cell Grant for Invossa clinical study - BSA bureau (press release)

Stem Cell Therapy for Type 1 Diabetes – Medical News Bulletin

For over 20 years autologous hematopoietic stem cell treatment (AHSCT) has been a therapy for autoimmune diseases such as multiple sclerosis, rheumatoid arthritis and lupus; however, the exact mechanism of action remains unclear. Recent clinical research has also been exploring the use of stem cell therapy for type 1 diabetes, another autoimmune disease which affects over 422 million individuals globally.

Type 1 diabetes, formerly known as juvenile or insulin-dependent diabetes, is a chronic condition where little or no insulin is produced by the pancreas. Immune cells attack pancreatic beta cells which produce insulin, leading to inflammation. Insulin is an essential hormone for energy production as it enables the breakdown of sugars to enter the cells and produce energy. The onset of type 1 diabetes occurs when significant inflammation damages beta cells and results in insufficient maintenance of glucose haemostasis (balance of insulin and glucagon to maintain blood glucose levels).

Therapies currently used in type 1 diabetes treatment include insulin administration, blood glucose monitoring and screening for common comorbidities and diabetes-related complications. However, these treatments fail to reduce the damage on a patients immune system. The use of autologous hematopoietic stem cells as a potential type 1 diabetes therapy is based upon the ability of the stem cells to reset the immune system. Autologous hematopoietic stems cells are retrieved from a patients own bone marrow or peripheral blood (blood which circulates the body and contains red blood cells, white blood cells and platelets) and after conditioning are injected intravenously.

A recent study by Ye and colleagues published in Stem Cell Research & Therapy (2017) investigated the effects AHSCT had on the immune response in recently diagnosed diabetes type 1 patients. The study included 18 patients (12-35 years old) with type 1 diabetes who had been diagnosed within less than 6 months. Of these 18 participants, 10 received a traditional insulin injection as treatment and eight received AHSCT. An additional 15 patients who matched in age, gender and BMI of these two groups were enrolled as a control group.

To test the effects of the treatment on immune response, patients peripheral blood cells were assessed. Samples were taken before they started treatment and then again 12 months after either the AHSCT or insulin-only therapies were administered.

Before treatment, peripheral blood cell distribution was almost equivalent in the two groups; however, after 12 months a significant difference was observed. The results of this clinical trial showed that patients receiving AHSCT exhibited significantly reduced development and function of Th1 and Th17 cells (types of T cells which cause inflammation in autoimmune diseases), compared to those only receiving the insulin treatment.

The inhibition of T-cell proliferation and function, along with decreased production of cytokines (pivotal chemical messengers which aid an immune response) observed in patients receiving AHSCT treatment suggests there is a strong link between the therapy and effects on the patients immune response. This may explain why AHSCT results in better therapeutic effects when compared with insulin-only traditional therapy.

The authors note that the small number of participants and length of the study are the two main limitations. Future clinical studies should include a larger number of patients and long-term follow up, especially since AHSCT can cause damage to the bone marrow and lead to potentially serious infections.

Progression of type 1 diabetes, as mentioned above, results in unavoidable immune damage from inflammation. This study suggests the combination of therapies including AHSCT treatment and high-dose immunosuppressive drugs may be a potential new therapeutic approach to type 1 diabetes. It is hypothesized that this combination has the ability reset the immune system and increase the recovery capacity of beta cells. Further clinical studies are essential though, to shed more light on the mechanism and use of stem cell therapy for type 1 diabetes.

Written By:Lacey Hizartzidis, PhD

See the original post here:
Stem Cell Therapy for Type 1 Diabetes - Medical News Bulletin

3D Bone-Like Tissues Grown From Stem Cells – Asian Scientist Magazine

AsianScientist (June 28, 2017) - Researchers at the University of Tokyo have developed a cell culture method that generates three-dimensional bone-like tissues from mouse pluripotent stem cells using only small molecules as inducers. The current result, published in Science Advances, is a step toward the generation of three-dimensional tissues in cell culture which mimic or are patterned after our organs.

Three-dimensional tissue-like structures, called organoids, are generated in cell culture using various cell types derived from pluripotent stem cells. These include embryonic stem cells and induced pluripotent stem cellscells reprogrammed to act like embryonic stem cells, which can differentiate into most cell types. Our understanding of tissue formation processes, regenerative medicine and drug development stand to benefit from the study and development of such organoids.

However, most studies to date involve cell-to-cell transfer of genetic material, recombinant proteins, the sera of calf fetuses and other substances of unknown composition, which raise safety and cost concerns.

In 2014, a group led by Associate Professor Shinsuke Ohba at the University of Tokyos Graduate School of Medicine developed a protocol that used only four small molecules to induce the formation of bone-forming cells (osteoblasts) from pluripotent stem cells. Building on this protocol in the present study, Ohba and his colleague, Professor Ung-il Chung (Yuichi Tei), succeeded in generating three-dimensional bone-like tissues from mouse pluripotent stem cells embedded within sponges composed of atelocollagencollagen molecules that do not trigger an immune response. These mouse pluripotent stem cells generated osteoblasts and osteocytes (mature bone cells).

In addition, when these stem cell-derived osteoblasts and osteocytes were cultured with progenitors of osteoclasts (bone-resorbing cells) in the sponge, mature osteoclasts were formed. These results suggested that the osteoblasts and osteocytes derived from mouse embryonic stem cells are functional, as they are in living bodies, with the ability to support osteoclast formation.

This research potentially leads to the generation of bone-like tissues in cell culture, in which three cell populations responsible for the formation and maintenance of our bones, namely osteoblasts, osteocytes, and osteoclasts, function in a three-dimensional manner, said Ohba.

We hope the strategy will contribute to our understanding of the origin and development of bone diseases, and help elucidate the mechanisms underlying the formation and maintenance of bones, as well as promote bone regenerative medicine and the development of drugs for treating bone diseases.

The article can be found at: Zujur et al. (2017) Three-dimensional System Enabling the Maintenance and Directed Differentiation of Pluripotent Stem Cells under Defined Condition.

Source: University of Tokyo. Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

View original post here:
3D Bone-Like Tissues Grown From Stem Cells - Asian Scientist Magazine