UIC Launches Stem Cell, Regenerative Medicine Center – Chicago Tonight | WTTW


Chicago Tonight | WTTW
UIC Launches Stem Cell, Regenerative Medicine Center
Chicago Tonight | WTTW
The University of Illinois at Chicago is launching a new center that will focus on understanding tissue regeneration and spearheading future developments in stem cell biology as a means to repair diseased organs and tissues, according to a university ...
Chicago Medical School Launches Stem Cell Biology CenterPeoria Public Radio
Center to advance tissue regeneration, stem cell discoveriesUIC News

all 3 news articles »

See the rest here:
UIC Launches Stem Cell, Regenerative Medicine Center - Chicago Tonight | WTTW

Regenerative Medicine Can Help Make America Great – Morning Consult

When President Donald Trump urged the biopharmaceutical industry to reduce the price of new medicines and to increase its manufacturing in the United States, many took it as a threat.

We believe its a call to action. Americas ingenuity in biomedical research is unsurpassed. However, our country is losing out to other nations in the fastest growing biotechnology sector, called regenerative medicine: harnessing the capacity of our cells to repair and restore health and sustain well-being.

Second place is not an option. The regenerative medicine market is growing about 21 percent a year and is expected to be worth over $350 billion by 2050. Today, the U.S. regenerative medicine sector is generating $3.6 billion in revenues and has produced 14,000 jobs. By 2050, the industry could create nearly a million new jobs nationwide.

Regenerative medicine will also reduce the cost of disease. Such therapies will replace drugs, devices, and surgery, saving lives, increasing productivity, and reducing the cost of care. This transformation will add trillions in value to our economy.

Finally, regenerative medicine will also make America more secure. Our nation still lacks the ability to quickly and cheaply mass produce vaccines, antidotes, and cell therapies to counter pandemics and bioterrorism. Our fighting forces need reliable sources of these countermeasures and deserve immediate access to treatments that give them back their lives. We shouldnt outsource the safety and well-being of our nation and our Armed Forces to other countries.

To regain leadership in regenerative medicine, U.S. firms dont need government loans, tax credits or massive de-regulation. Instead, it needs the opportunity to invest in reducing the time and cost of manufacturing cellular therapies. To the extent that regenerative medicine is curative it must be made available at vaccine like prices. At present, only a handful of people can afford such treatments.

China and Japan are now in forefront of reducing the cost of producing stem cells, tissue, and other products with restorative biological properties. As a result, they are attracting more capital and forming more new companies than the U.S.

In 2014 Japan became the first country in the world to adopt an expedited approval system specifically for regenerative medical products and to allow outsourced cell culturing. Two products were approved under the new system within a year of its adoption.

By contrast, the Food and Drug Administration regulates any use of manufactured stem cells as equally risky without regard to prior use, health benefit, or therapeutic potential. Indeed, many of the most common stem cell therapies including bone marrow transplants and blood transfusions would require 10 years of FDA review if they were brought to market today.

The problem isnt over-regulation. Its outdated regulation. Safety checks and benchmarks for cell manufacturing should be based on real world evidence of past applications. Regulation should focus on the specific potential side effects for each specific potential use. In this regard, we agree with incoming FDA Commissioner Scott Gottlieb, who has noted, Expediting the development of these novel and transformative technologies like gene- and cell-based therapies doesnt necessarily mean lowering the standard for approval, as I believe other countries have done. But it does mean having a framework thats crafted to deal with the unique hypothetical risks that these products pose.

In fact, the United States has the best regenerative medicine manufacturing technology in the world. But it is literally sitting unused in warehouses.

For example, under the Accelerated Manufacture of Pharmaceuticals program, private companies partnered with the Defense Advanced Research Projects Agency to develop mobile cell and tissue manufacturing plants that can be set up almost anywhere. The facilities can produce cells and tissues at a fraction of the current cost. These mobile factories make real-time production of vaccines and biologics for potential bioterrorist threats and pandemics possible. They are also low-cost, high-tech platforms for experimental evaluation of any type of regenerative medicine.

AMPs are operating in Indonesia, Singapore, China, and Japan where cell products including vaccines are being mass produced. Not a single AMP is being used in the United States because of outdated regulations.

To remove this regulatory obstacle, the Trump administration should establish a separate regenerative medicine pathway. This pathway, which could be developed by DARPA, FDA, and the Centers for Disease Control and Prevention, would develop regulatory standards for the safe manufacturing and testing of development of regenerative products to treat battlefield related traumas such as traumatic brain injury, life-threatening limb damage, and drug-resistant pathogens.

The focus on the conditions and circumstances unique to war or counter-terrorism is both appropriate and strategic. After World War II, Franklin Roosevelt directed that the scientific and entrepreneurial talents used to achieve ramp up war-time production of penicillin and blood plasma be used in the days of peace ahead for the improvement of the national health, the creation of new enterprises bringing new jobs, and the betterment of the national standard of living.

What was created exceeded that vision. The cooperative efforts to achieve mass production of penicillin and blood plasma inspired and supported the creation of industries that employ millions of people today.

Similarly,developing an affordable source of cell therapies to heal our fighting forces and protect the homeland will yield a wide array of affordable technologies and cures that will produce, in FDRs words, a fuller and more fruitful employment and a fuller and more fruitful life. Simply put, by making the manufacture of regenerative medicine affordable can help make America great.

Robert Hariri is CEO of Celularity. Robert Goldberg is vice president of Center for Medicine in the Public Interest.

Morning Consult welcomes op-ed submissions on policy, politics and business strategy in our coverage areas. Updated submission guidelines can be foundhere.

Follow this link:
Regenerative Medicine Can Help Make America Great - Morning Consult

Mitochondria Behind Blood Cell Formation – Northwestern University NewsCenter

Mitochondria are tiny, free-floating organelles inside cells. New Northwestern Medicine research has discovered that they play an important role in hematopoiesis, the bodys process for creating new blood cells.

New Northwestern Medicine research published in Nature Cell Biology has shown that mitochondria, traditionally known for their role creating energy in cells, also play animportant role in hematopoiesis, the bodys process for creating new blood cells.

Historically, mitochondria are viewed as ATP energy producing organelles, explained principal investigator Navdeep Chandel, PhD,the David W. Cugell Professor ofMedicinein the Division ofPulmonary and Critical Care Medicine. Previously, my laboratory provided evidence that mitochondria can dictate cell function or fate independent of ATP production.We established the idea that mitochondria are signaling organelles.

In the currentstudy, Chandels team, including post-doctoral fellow Elena Ans, PhD, and graduate students Sam Weinberg and Lauren Diebold, demonstrated that mitochondria control hematopoietic stem cell fate by preventing the generation of a metabolite called 2-hydroxyglutarate (2HG). The scientists showed that mice with stem cells deficient in mitochondrial function cannot generate blood cells due to elevated levels of 2HG, which causes histone and DNA hyper-methylation.

This is a great example of two laboratories complementing their expertise to work on a project, said Chandel, also a professor ofCell and Molecular Biologyand a member of theRobert H. Lurie Comprehensive Cancer Center of Northwestern University.

Sam Weinberg, a graduate student in the Medical Scientist Training Program, and Lauren Diebold, a graduate student in the Driskill Graduate Program in Life Sciences, were co-authors on the paper.

Paul Schumacker, PhD, professor of Pediatrics, Cell and Molecular Biology and Medicine, was also a co-author on the paper.

Chandel co-authored an accompanying paper in Nature Cell Biology, led by Jian Xu, PhD, at the University of Texas Southwestern Medical Center, which demonstrated that initiation of erythropoiesis, the production of red blood cells specifically, requires functional mitochondria.

These two studies collectively support the idea that metabolism dictates stem cell fate, which is a rapidly evolving subject matter, said Chandel, who recently wrote a review in Nature Cell Biology highlighting this idea. An important implication of this work is that diseases linked to mitochondrial dysfunction like neurodegeneration or normal aging process might be due to elevation in metabolites like 2HG.

This research was supported by National Institutes of Health grants R35CA197532, T32GM008061, T32 T32HL076139, K01DK093543 and R01DK111430, and Cancer Prevention and Research Institute of Texas New Investigator award RR140025.

Continue reading here:
Mitochondria Behind Blood Cell Formation - Northwestern University NewsCenter

Inflammatory molecule essential to muscle regeneration in mice – Stanford Medical Center Report

Prostaglandin E2, or PGE2, is a metabolite produced by immune cells that infiltrate the muscle fiber as well by the muscle tissue itself in response to injury. Anti-inflammatory treatments have been shown to adversely affect muscle recovery, but because they affect many different pathways, its been tough to identify who the real players are in muscle regeneration.

Ho and Palla discovered a role for PGE2 in muscle repair by noting that its receptor was expressed at higher levels on stem cells shortly after injury. They found that muscle stem cells that had undergone injury displayed an increase in the expression of a gene encoding for a receptor called EP4, which binds to PGE2. Furthermore, they showed that the levels of PGE2 in the muscle tissue increased dramatically within a three-day period after injury, indicating it is a transient, naturally occurring immune modulator.

To determine its mechanism of action, Ho and Palla created a genetically engineered strain of laboratory mice that allowed them to dynamically monitor the number and activities of muscle stem cells over time. They then studied how the stem cells responded to leg muscle injuries caused by injection of a toxin or by application of cold temperatures. (The mice were anesthetized during the procedure and given pain relief during recovery.)

This transient pulse of PGE2 is a natural response to injury, said Blau. When we tested the effect of a one-day exposure to PGE2 on muscle stem cells growing in culture, we saw a profound effect on the proliferation of the cells. One week after a single one-day exposure, the number of cells had increased sixfold compared with controls.

After seeing what happened in laboratory-grown cells, Ho and Palla tested the effect of a single injection of PGE2 into the legs of the mice after injury.

When we gave mice a single shot of PGE2 directly to the muscle, it robustly affected muscle regeneration and even increased strength, said Palla. Conversely, if we inhibited the ability of the muscle stem cells to respond to naturally produced PGE2 by blocking the expression of EP4 or by giving them a single dose of a nonsteroidal anti-inflammatory drug to suppress PGE2 production, the acquisition of strength was impeded.

We are excited about this finding because it is counterintuitive, said Ho. One pulse of this inflammation-associated metabolite lingers long enough to significantly affect muscle stem cell function in these animals. This could be a natural way to clinically boost muscle regeneration.

The researchers next plan to test the effect of PGE2 on human muscle stem cells in the laboratory, and to study whether and how aging affects the stem cells response. Because PGE2 is also produced by the fetus and placenta during pregnancy, and is approved by the Food and Drug Administration for use in the induction of labor, a path to the clinic could be relatively speedy, they said.

Our goal has always been to find regulators of human muscle stem cells that can be useful in regenerative medicine, said Blau. It might be possible to repurpose this already FDA-approved drug for use in muscle. This could be a novel way to target existing stem cells in their native environment to help people with muscle injury or trauma, or even to combat natural aging.

Other Stanford authors are former technician Matthew Blake; graduate student Nora Yucel; postdoctoral Yu Xin Wang, PhD; former graduate student Klas Magnusson, PhD; research associate Colin Holbrook; research assistant and lab manager Peggy Kraft; and Scott Delp, PhD, professor of bioengineering, of mechanical engineering and of orthopaedic surgery.

The study was supported by the Muscular Dystrophy Association, the Baxter Foundation, the California Institute for Regenerative Medicine and the National Institutes of Health (grants AG044815, AG009521, NS089533, AR063963 and AG020961).

Stanfords Department of Microbiology and Immunology also supported the work.

See original here:
Inflammatory molecule essential to muscle regeneration in mice - Stanford Medical Center Report

WideCells well-placed for stem cell revolution – Proactive Investors UK

One company, several arms

PLC () has three separate businesses all housed under the same company, the biggest of which is currently CellPlan, the worlds first stem cell healthcare insurance plan.

While stem cell storage costs a few thousand pounds, the cost of the treatments that use them can run into the hundreds of thousands.

For an average premium of 150 per year, CellPlan provides insurance for up to 1mln of treatment, travel, accommodation and repatriation costs.

Following the recent award of a licence from Portuguese regulators at the beginning of June, CellPlan is now authorised to be sold in three countries the UK, Spain and Portugal.

WideCells entered the year with a definitive agreement with the UKs largest cord blood bank, Biovault, to market and sell its product to both new and existing customers of the facility.

With that licence in hand, the launch of CellPlan to Biovault stem cell storage customers is anticipated to follow later this month which should generate the plans maiden revenues.

WideCells has established the Institute of Stem Cell Technology which is based in the University of Manchester Innovation Centre. It focuses on stem cell research and regenerative medicine, and the company is already exploiting the commercial potential of this facility.

At the end of last year it inked a letter of intent with a California-based medical device company that could be worth up to 100,000.

Qigenix agreed to pay the sum in three stages so it can use WideCells' Institute of Stem Cell Technology to undertake some research.

WideCells third revenue stream comes from its blood banking operations, for which the group inked two more outlying deals at the end of January to take it into the rapidly expanding Brazilian umbilical cord cell storage market.

Between them, the two new reputable storage and processing facilities had more than 5,000 high net worth clients on their books.

The Brazilian cord blood banking market is projected to be worth almost US$450mln by 2023, making it the largest in South Americas booming stem cell industry.

In all, there are 500 of these banks dotted around the world; however, the top ten banks store around half the samples.

Last but not least is WideAcademy which is still in its infancy. Its WideCells education and training division, designed to promote awareness of the benefits of stem cell storage.

The plan is to work with strategic partners in the tech and education sector to produce and deliver informative and easily-digestible content and courseware.

For London-listed WideCells, the venture is something of win-win. It expects WideAcademy to be profitable on its own by charging for access to some of the resources, while at the same time helping to boost interest in its other businesses.

There are some big names on board, too. Incs () former head of education, Alan Greenberg, is heading up the WideAcademy team as the divisions senior vice president, while Jimmy leach, ex-head of digital communications at Downing Street, is the editor-in-chief.

WideCells published its maiden results for the year to 31 December 2016 back in March, having only listed last summer.

Like most developing companies, the group - which raised 2mln when it floated on the main market - only had revenues of 25,000 for the full-year to December 31 2016, down from 50,644 a year earlier, while its loss for the year increased to 1.361mln, up from 213,056 a year earlier reflecting higher administration costs following flotation.

But WideCells had cash and cash equivalents of 1.149mln at the year-end, up from 33,753 a year earlier.

That figure should be a little healthier now, given that it raised 649,000 through a private placing back in April.

Go here to see the original:
WideCells well-placed for stem cell revolution - Proactive Investors UK

LifeCell Community Stem Cell Banking Receives Global Recognition – Medical Dialogues

Chennai: It is believed to be a general practice that technological advancements and new concepts from the western world and other countries percolate into the Indian market. Breaking this taboo and general practice, LifeCell International has made an entry into global platform with their recently launched concept of Community Stem Cell Banking. In 15 years, LifeCell is thesecond stem cell bank to present its innovation at such a prestigious global platform.

Acknowledging the merit of this concept, LifeCell has been invited by AABB (formerly known as American Association of Blood Banks) to portray itsrecently launched concept of Community Stem Cell Banking at the15th International Cord Blood Symposium scheduled to be held at San Diego, USA between 8th 10th June, 2017.

The International Cord Blood Symposium (ICBS) brings all the umbilical cord blood related fields of hematopoietic stem cell transplantation, banking and potential in regenerative medicine together in one interactive three-day conference where world-renowned experts in the field of cord blood will present their new innovations on advancements in the industry.

LifeCell, Indias first and the largest stem cell bank, a pioneer in stem cell industry has been adding new innovations to its services. The innovative concept of Community Stem Cell Banking allows access to donor stem cells within the community, thereby extending the protection of stem cells to all conditions treatable by stem cells. In addition to the child, its siblings, parents and grandparents too can access the community pool of preserved stem cells for treatments when required thereby extending the protection of stem cells to the entire family. Also, there is no limit on number of withdrawals of stem cell units from the community providing a comprehensive protection.

Mr Mayur Abhaya, CEO & Managing Director, LifeCell International said, We are delighted with this acknowledgment for our innovations in stem cell industry. It is a prestigious moment for us being given an opportunity to present Community Stem Cell Banking in a global platform of industry leaders.

Community Stem Cell Banking will be the future of umbilical cord stem cell banking especially in a country like India where the inventory of donor stem cells or bone marrow registries of Indian ethnicity is very low at less than 1% of global inventory and hence the availability of matching donor stem cells is very low. LifeCell, with this new concept, aims to create a huge inventory of donor stem cells within the next few years, which could even exceed the global standards and this will pave way for the highest probability of finding a matching stem cell unit. It is notable to mention that this initiative of LifeCell was featured in Parents Guide to Cord Blood Foundation when this concept was launched in India.

Mr Vinesh Mandot, Technical Lead at LifeCell, would be presenting this innovative model in a session chaired by Dr. Frances Verter, Director of Parents Guide to Cord Blood Foundation at the international symposium.

Source: Press Release

What is your reaction?

Happy

Indifferent

Amused

Excited

Angry

Sad

Read more from the original source:
LifeCell Community Stem Cell Banking Receives Global Recognition - Medical Dialogues

July hearing for pioneering CAR-T cell therapy – The Pharma Letter – The Pharma Letter (registration)

The US Food and Drug Administrations (FDA) Oncologic Drugs Advisory Committee will review the Biologics

To continue reading this article and to access exclusive features, interviews, round-ups and commentary from the sharpest minds in the pharmaceutical and biotechnology space you need to be logged into the site and have an active subscription or trial subscription. Please loginorsubscribe in order to continue reading. Claim a week's trial subscriptionby signing up for free today and receive our daily pharma and biotech news bulletin free of charge, forever.

BiotechnologyCTL019Focus OnImmuno-oncologyNovartisOncologyOxford BioMedicaRegulationUS FDAUSA

Access The Pharma Letter's latest news free for 7 days

PLUS... you can receive the Pharma Letter headlines and news roundup email free forever

Click here to take a free trial

Unlimited access to The Pharma Letter site for a whole year Only 77 per month or 820 per year

Click here to subscribe

More:
July hearing for pioneering CAR-T cell therapy - The Pharma Letter - The Pharma Letter (registration)

Bank on stem cells, gift a life – Calcutta Telegraph

Panchwati Tower on Harmu Road in Ranchi where the stem cell bank is expected to come up. (Hardeep Singh)

In what may be a game-changer for healthcare in Jharkhand, a group of doctors from Ranchi have teamed up with a Mumbai-based pioneering research firm to plan the first stem cell bank of eastern India in the state capital.

Stem cells are undifferentiated biological cells that can differentiate into specialised cells and divide to produce more stem cells. They can be transplanted routinely to treat a variety of blood and bone marrow diseases, including cancer and immune disorders, while extensive research is underway on their potential to cure neurological and muscular problems.

In short, a stem cell bank in Ranchi will allow residents to store their embryonic or adult stem cells, which can be accessed anytime to treat ailing blood relatives.

Dr Deepak Verma, a senior orthopaedic consultant in the city specialising in difficult trauma surgery, said if everything went according to plan, the stem cell bank was expected to debut at Panchwati Tower on Harmu Road in another three to six months.

Dr Verma, along with pathologist Dr Sangita Agrawal and orthopaedic surgeon Dr S.N. Yadav, will form the core team of the Rs 6.5-crore facility, which will be set up in association with stem cell banking company ReeLabs, Mumbai.

"Ranchi will boast the fifth stem cell bank in India after Mumbai, Delhi, Chennai and Ahmedabad. It will be first such facility in eastern India. We plan to establish a stem cell treatment centre and a cancer immunotherapy centre to turn Ranchi into a healthcare destination," Dr Verma told this newspaper on Sunday.

While the bank will sprawl over an area of 5,000sqft, another 6,000sqft will be reserved for the therapy centres.

Elaborating on the banking system, the doctor said stem cells would be stored in cryogenic vials at minus 176 degrees and liquid nitrogen would be used to acquire the very low temperatures.

"People wishing to use the stem bank service will have to open an account. The bank will then collect stem cells from different sources such as placenta, amniotic sac, amniotic fluid, umbilical cord blood and cord tissue, menstrual blood, dental pulp, bone marrow and peripheral blood," Dr Verma said.

To deposit the stem cells, one may have to pay Rs 45,000 to Rs 2 lakh, depending on the package chosen.

"Those who will deposit stem cells can access the same for blood relatives suffering from 110 listed diseases that cannot be treated using conservative medicines," the doctor said, adding that stem cell therapy could help in cases of leukemia, thalassemia, Alzheimer's disease, cardiovascular diseases, stroke, diabetes and cirrhosis of liver, among others.

Do you think people in the state are aware of stem cell therapy?

Tell [emailprotected]

Read the original post:
Bank on stem cells, gift a life - Calcutta Telegraph

Chicago medical school launches stem cell biology center – Bradenton Herald

Chicago medical school launches stem cell biology center
Bradenton Herald
A medical school in Chicago is launching a new center to study tissue regeneration and stem cell biology. The College of Medicine at the University of Illinois at Chicago says there will be a symposium Monday to commemorate the opening of the center, ...

and more »

See more here:
Chicago medical school launches stem cell biology center - Bradenton Herald

Removal of aging cells could extend human life – Medical Xpress – Medical Xpress

June 9, 2017 Clearance of SnCs by GCV reduces the development of post-traumatic OA. Credit: UNIST

A recent study, led by an international team of researchers confirms that targeted removal of senescent cells (SnCs), accumulated in many vertebrate tissues as we age, contribute significantly in delaying the onset of age-related pathologies.

This breakthrough research has been led by Dr. Chaekyu Kim of the Johns Hopkins University School of Medicine, who is now at UNIST, and Dr. Ok Hee Jeon of the Johns Hopkins University School of Medicine in collaborations with the Mayo Clinic College of Medicine, the Buck Institute for Research on Aging, the University Medical Center Groningen, Unity Biotechnology, Inc., and the University of California, Berkeley.

In the study, the research team presented a novel pharmacologic candidate that alleviates age-related degenerative joint conditions, such as osteoarthritis (OA) by selectively destroying SnCs. Their findings, published April 24th in Nature Medicine (Impact Factor: 30.357), suggest that the selective removal of old cells from joints could reduce the development of post-traumatic OA and allow new cartilage to grow and repair joints.

Senescent cells (SnCs) accumulate with age in many vertebrate tissues and are present at sites of age-related pathlogy. Although these cells play an essential role in wound healing and injury repair, they may also promote cancer incidence in tissues. For instance, in articular joints, such as the knee and cartilage tissue, SnCs often are not cleared from the area after injury, thereby contributing to OA development.

To test the idea that SnCs might play a causative role in OA, the research team took both younger and older mice and cut their anterior cruciate ligaments (ACL) to minic injury. They, then, administered injections of an experimental drug, named UBX0101 to selectively remove SnCs after anterior cruciate ligament transection (ACLT) surgery.

Preclinical studies in mice and human cells suggested that the removal of SnCs significantly reduced the development of post-traumatic OA and related pain and created a prochondrogenic environment for new cartilage to grow and repair joints. Indeed, the research team reported that aged mice did not exhibit signs of cartilage regeneration after treatment with UBX0101 injections,

According to the research team, the relevance of their findings to human disease was validated using chondrocytes isolated from arthritic patients. The research team notes that their findings provide new insights into therapies targeting SnCs for the treatment of trauma and age-related degenerative joint disease.

Prior to this study, Johns Hopkins Technology Ventures (JHTV) granted UNITY Biotechnology Inc. the right to use the intellectual property around the senescent cell technology. UNITY is a company aiming to develop therapeutics that address age-related diseases. Last October, the company announced $116 million in Series B funding from some of the big names in venture capital, including Amazon CEO Jeff Bezo's venture fund Bezos Expeditions, Mayo Clinic Ventures, Venrock, and ARCH Venture Partners. UNITY has completed a rigorous screening and preclinical testing process of candidate drugs, discovered in this study, and is launching a new clinical trial to assess its first drug, for patients with osteoarthritis of the knee this year.

Explore further: Clearing out old cells could extend joint health, stop osteoarthritis

More information: Ok Hee Jeon et al, Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment, Nature Medicine (2017). DOI: 10.1038/nm.4324

In a preclinical study in mice and human cells, researchers report that selectively removing old or 'senescent' cells from joints could stop and even reverse the progression of osteoarthritis.

Researchers at Mayo Clinic have reported a causal link between senescent cellscells that accumulate with age and contribute to frailty and diseaseand osteoarthritis in mice. Their findings appear online in The Journals ...

Among patients with knee osteoarthritis, an injection of a corticosteroid every three months over two years resulted in significantly greater cartilage volume loss and no significant difference in knee pain compared to patients ...

Mayo Clinic researchers have uncovered three new agents to add to the emerging repertoire of drugs that aim to delay the onset of aging by targeting senescent cells - cells that contribute to frailty and other age-related ...

Injury to the anterior cruciate ligament (ACL) in the knee frequently leads to early-onset osteoarthritis, a painful condition that can occur even if the patient has undergone ACL reconstruction to prevent its onset. A new ...

Dear Mayo Clinic: I'm interested in the new procedure approved by the U.S. Food and Drug Administration that can repair cartilage in the knee. How does it work? Who's a good candidate for this procedure?

(HealthDay)Exercise doesn't just trim your tummy. It may also improve bone thickness, boost bone quality, and whittle away the fat found inside bones, new animal research suggests.

(Medical Xpress)A large team of researchers from the Netherlands, Italy and the U.S. has found a possible explanation for the injury and death to patients in a clinical trial held last year in France. In their paper published ...

Drexel University and Georgia Institute of Technology researchers have discovered how the Rad52 protein is a crucial player in RNA-dependent DNA repair. The results of their study, published today in Molecular Cell, reveal ...

Despite many studies looking at which bread is the healthiest, it is still not clear what effect bread and differences among bread types have on clinically relevant parameters and on the microbiome. In the journal Cell Metabolism ...

Yale scientists produced increased grooming behavior in mice that may model tics in Tourette syndrome and discovered these behaviors vanish when histaminea neurotransmitter most commonly associated with allergiesis ...

Some bodily activities, sleeping, for instance, mostly occur once every 24 hours; they follow a circadian rhythm. Other bodily functions, such as body temperature, cognitive performance and blood pressure, present an additional ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See more here:
Removal of aging cells could extend human life - Medical Xpress - Medical Xpress