Andrews Institute to study stem cells’ impact on knee – Pensacola News Journal

Joseph Baucum , jbaucum@pnj.com Published 4:06 p.m. CT April 16, 2017 | Updated 14 hours ago

Andrews Institute is conducting new stem cell research that could impact the FDA approval of certain treatments. Joseph Baucumjbaucum@pnj.com

Dr. Andrew Anz, an orthopedic surgeon and sports medicine specialist at the Andrews Institute in Gulf Breeze is working on cutting-edge stem cell research for cartilage therapy.(Photo: Tony Giberson/tgiberson@pnj.com)Buy Photo

By the time most reach age 55, Adam Anz estimatesas much as 30 percent of the population will incur some form of knee degeneration, a problem that equals pain and in many cases, surgery.

Its a problem that were all going to face at some point in our lives, said Anz, orthopaedic surgeon at Andrews Institute for Orthopaedics & Sports Medicine.

But in May, a new study will begin at Andrews Institute in Gulf Breeze that could play a game-changing role in evolving the range of medicine available for treating knee injuries. In the process, the research may also help drive down patients costs.

Anz will help spearhead a study next month into increasing the amount of stem cells doctors are able to harvest from bone marrow transplants with the goal of utilizing those cells to regrow cartilage in knees. Cartilage, a tough and flexible material, is essential to the knee, because it acts as a cushion between the bones in the joint. Damaged cartilage can often necessitate knee replacement.

ADDITIONAL CONTENT:Andrews Institute expands prep athletics care in region

In the study, Anz said researchers will attempt to increase the amount of stem cells in participants bone marrow, which would then empty from the marrow into their bloodstream. Researchers would collect the blood, separate the stem cells from it and inject the cells into patients knees. Doctors would then monitor if the marrow cells transform into cartilage cells and spark regeneration.

Its about determining how can we obtain those cells in efficient quantities and put those cells in the right place at the right time to help with healing patients injuries, Anz said.

Because the Food & Drug Administration has not approved the vast majority of stem cell-based remedies, not all treatments involving the cells are available for patients, including the cartilage procedure. For the treatments that are offered, health insurance providers do not cover them without the FDAs consent. Patients who choose to undergo them must pay out-of-pocket prices.

The study at Andrews Institute could push a stem cell cartilage treatment closer to FDA approval and by extension, availability and affordability. The research is an official FDA study. It is led by Khay Yong Saw, a Malaysian physicianwho has already demonstrated conceptual proof of the treatment in an animal study in 2006. He completed a randomized control trial in 2012. This study is the next step in proving the safety and efficacy of the procedure to gain federal endorsement.

ARTICLE CONTINUES BELOW PHOTOS

Autoplay

Show Thumbnails

Show Captions

ADDITIONAL CONTENT:Elite athletes just piece of Andrews Institute

Anz, optimistic about the studys potential, emphasized more research must be conducted into the effectiveness of stem cell treatments those already available and those still in the testing phase.

Its important to be excited about technologies, but its also important to be honest with the patients that more must be done to show these treatments are effective, said Anz, who estimated the cartilage study to require two years for participant enrollment and another two years before researchers can observe outcomes.

But some who have undergone stem cell treatments advocate for the procedures federal approval. Jody Falvey, a retired Pensacola resident, had a stem cell procedure conducted at Andrews Institute on her knee in the fall of 2012.

Falvey, 67, tore the medial and lateral meniscus in her knee during a family visit to South Florida while brewing coffee in the morning. The sensation, she said, felt like a knife slicing through her joint.

Following a consultation with Anz, who described an available stem cell treatment known as bone marrow aspirate concentrate, Falvey chose to have the procedure done. The treatment utilized cells from her own body to repair the knee. The process, from procedure to recovery, spanned about two years.

Falvey said her knee does not feel like it ever underwent surgery. The fact that it helped prevent her from having to undergo a knee replacement made the operation even better.

I did not want metal in my body, she said. This was just one of the greatest alternatives I had heard of. I would do it again in a heartbeat.

PENSACOLA NEWS JOURNAL

Andrews Institute expands prep athletics care in region

Read or Share this story: http://on.pnj.com/2ogFbRZ

Go here to read the rest:
Andrews Institute to study stem cells' impact on knee - Pensacola News Journal

Stem Cell Research Advancing Rapidly – Healthline

Stem cells have been touted as treatments for everything from hair loss to heart disease.

But are those claims scientifically sound?

Research on the technology continues to look promising, but many of its human applications are still preliminary and their effectiveness anecdotal.

Samumed, a $12 billion biotech start-up based in San Diego, profiled this month in Business Insider, exemplifies both sides of the coin.

The company has promised a bevy of age-reversing cures, including regrowing hair, treating wrinkles, and regenerating cartilage in people with osteoarthritis

However, their research isnt conclusive.

None of their treatments have received government approval yet.

Read more: Rheumatoid arthritis and stem cell treatments

Its easy to get excited about all this research.

Samumed Is Trying to Create the Fountain of Youth, says one headline.

Samumed Aims to Reverse Aging with Eternal Youth Treatments, says another.

Combined with $300 million in investment funding, the company has more than just buzz going for it in the biotech industry.

Their treatment for androgenetic alopecia (hair loss) is currently in phase II trials.

Its program to help people with osteoarthritis regrow cartilage in their knees is in phase III.

In total, the company has seven drugs in phase II trials, with plans to expand into more areas of disease research this year.

However, Samumed has raised some eyebrows in the industry with its secrecy. Some skeptics have likened the company to Theranos, a biotech start-up that was valued at $9 billion before an investigation by the Wall Street Journal led to a shutdown of the companys labs.

Samumed has been more open about presenting their data to the public but not about the actual treatments.

We're basically telling everyone, here's proof that it works, Samumed Chief Executive Officer, Osman Kibar, told Business Insider. How it works you just need to wait a little longer because we want to build as much of a head start as we can.

Read more: Stem cell treatments for multiple sclerosis

Beyond the applications of stem cells at Samumed, the technology is also being used to treat some of the United States most widespread health issues.

New research from the American Heart Association this month demonstrated the effectiveness of implanted stem cells into the hearts of people with cardiomyopathy.

Although the sample size was small (only 27 people), scientists noted function and symptomatic improvements of heart functioning as well as less frequency of hospitalization and lower medical costs. They conclude that the stem cell procedure is a feasible treatment for cardiomyopathy, but they note that a larger clinical follow-up is needed for more conclusive results.

In the past week, Newsweek reported on miracle stem cell treatments for burn victims that will promote healing without scars.

Stat News wrote about research on stem cells in mice that could potentially help cure Parkinsons disease.

Read more: Unproved stem cell treatments offer hope and risk

Some researchers in the industry are somewhat measured in their optimism of the technologys human applications.

I want to make sure that we provide a real cautionary note, especially to those individuals and those institutions that tout stem cells as the panacea for any ill, Dr. Cato Laurencin, director of the Institute for Regenerative Engineering at the University of Connecticut, told Healthline.

Laurencin, a medical practitioner at the forefront of stem cell technology, is a firm believer in the benefits of the treatment, but also remains skeptical of some of the claims associated with it.

Much of the evidence is still preliminary or anecdotal, and when people operate on information that is preliminary or anecdotal, there is the possibility for harm, he said.

His work in regenerative engineering a term he coined several years ago looks at the healing properties of implanted stem cells in the human body.

In research published this month, Laurencin and his team concluded that stem cells effectively improved healing to torn rotator cuff tendons in rats.

Rotator cuff tendon tears are a relatively common injury in humans and can be difficult to treat.

Unlike other tendons in the body, the rotator cuff tendon is unable to heal itself, said Laurencin.

Once it is torn, it is liable to be reinjured again and again.

However, the research released this month is about more than just applying stem cells to a certain kind of injury, its about how the stem cells are applied.

Read more: Scientists use 3-D environment to speed up growth of stem cells

Laurencin describes his field as an evolution of earlier work from 30 years ago in tissue engineering: a convergence of bringing together new technologies to create new science and new possibilities.

In this case, nanotechnology is at the heart of this stem cell operation.

Currently there are a variety of ways that stem cells can be implanted into a subject, including injections and bone marrow transplants.

For his research, Laurencin and his team used biomaterial based fiber matrices a nanomaterial conducive to growing and attaching stem cells to implant into the wounded area.

The results are promising, but Laurencin and his team will have to continue working with animals for some time before the process can be applied to humans.

The key is in understanding that stem cells have the potential for more than just regrowing damaged parts of the body.

The way we commonly think about a stem cell is it becoming a new tissue. But were also understanding that the stem cell itself can secrete biological factors that help regeneration occur. Thats what we think is happening here, said Laurencin.

His research into stem cells as a medicinal element in the body could have far reaching implications for all kinds of wound therapy.

Despite his measured approach, Laurencin is still willing to hypothesize about the excitement that the future of the field undoubtedly holds with proper time, funding, and research.

There are newts and salamanders that can regenerate a limb, he told Healthline.

How do we harness the cues that are taking place in these types of animals, and can we utilize what weve learned from these types of animals in humans?

Link:
Stem Cell Research Advancing Rapidly - Healthline

Stem cell invented that can grow into any tissue in the body – The … – The San Diego Union-Tribune

Salk Institute and Chinese researchers report creating a new kind of stem cell, one that is more versatile than any other normally grown in the lab.

Called an extended pluripotent stem cell, it can give rise to every cell type in the body, the researchers say in a recent study. This includes the extra-embryonic tissues such as the placenta that support the developing baby. Just one cell can generate a complete organism.

Embryonic stem cells and artificial embryonic stem cells called induced pluripotent stem cells cant make these extra-embryonic tissues. So neither embryonic nor IPS cells can give rise to a complete embryo, because the supportive tissues necessary for an embryo to survive arent there.

But the extended pluripotent stem cells can reliably give rise to both types of cells, and thus whole embryos and offspring, the scientists report.

The EPS cells were made from human and mouse embryonic stem cells. In addition, they were produced from skin cells, or fibroblasts by treating them with a chemical cocktail. IPS cells, invented in 2006, are generated from fibroblasts by a similar reprogramming process.

Use of IPS cells is regarded as morally acceptable by those who oppose use of human embryonic stem cells, because they cant form an entire embryo. This is the reasoning of the Catholic Church. But since the EPS cells can make whole embryos, at least in mice, how the church will react is unclear.

To demonstrate this ability to make all cell types, the researchers grew an entire mouse from just one EPS cell. They also grew chimeric mice, with human EPS cells integrating into the mice better than embryonic stem cells did.

The study on these new stem cells was published April 6 in the journal Cell. It can be found at j.mp/extendedstem.

Better tool

That characteristic of creating every cell in the body, called totipotency, is normally found only at the very beginning of embryonic development. Embryonic stem cells are usually extracted too late, when the cells have already divided into the embryonic and extra-embryonic lineages.

Totipotent stem cells have been observed in the lab, but they lasted briefly, and didnt yield stable totipotent cell lines.

Salk Institute stem cell researcher Juan Carlos Izpisa Bemonte was a cosenior author of the paper along with Hongkui Deng of Peking University in Beijing. The first authors were Yang Yang, Bei Liu, Jun Xu, and Jinlin Wang; all of Peking University, and Jun Wu, of the Salk Institute.

EPS cell lines provide a useful cellular tool for gaining a better molecular understanding of initial cell fate commitments and generating new animal models to investigate basic questions concerning development of the placenta, yolk sac, and embryo proper, the study stated.

Furthermore, they also provide an unlimited cell resource and hold great potential for in vivo disease modeling, in vivo drug discovery, and in vivo tissue generation in the future. Finally, our study opens a path toward capturing stem cells with intra- and/or inter-species bi-potent chimeric competency from a variety of other mammalian species.

Organs for transplant

The creation of chimeric mice is part of Izpisa Bemontes longstanding goal of growing human organs in animals for transplant.

While mice are too small to grow organs for transplant, they serve as a model to understand how cells from a different species, can be grown in a host body. In this new study, the mice served as a model of how well the EPS cells can integrate.

Izpisa Bemonte is now working to translate his research on chimeric mice to pigs, which are large enough to provide human organs. In January, a team he led reported on work with human-pig chimeras, which were not allowed to grow past the embryonic stage. They also created rat-mice chimeras.

The superior chimeric competency of both human and mouse EPS cells is advantageous in applications such as the generation of transgenic animal models and the production of replacement organs, Wu said in a Salk statement. We are now testing to see whether human EPS cells are more efficient in chimeric contribution to pigs, whose organ size and physiology are closer to humans.

We believe that the derivation of a stable stem cell line with totipotent-like features will have a broad and resounding impact on the stem cell field, Izpisua Belmonte said in the statement.

The work was funded by a number of sources. They include: the National Key Research and Development Program of China; the National Natural Science Foundation of China; the Guangdong Innovative and Entrepreneurial Research Team Program; the Science and Technology Planning Project of Guangdong Province, China; the Science and Technology Program of Guangzhou, China; the Ministry of Education of China (111 Project); the BeiHao Stem Cell and Q9 Regenerative Medicine Translational Research Institute; the Joint Institute of Peking University Health Science Center; University of Michigan Health System; Peking-Tsinghua Center for Life Sciences; the National Science and Technology Support Project; the CAS Key Technology Talent Program; the G. Harold and Leila Y. Mathers Charitable Foundation; and The Moxie Foundation.

bradley.fikes@sduniontribune.com

(619) 293-1020

See the article here:
Stem cell invented that can grow into any tissue in the body - The ... - The San Diego Union-Tribune

Oz: Hard work, exercise and diet can control diabetes – Pueblo Chieftain

Q: I hear there's a clinic in Canada that can medically cure type 2 diabetes without bariatric surgery. I was diagnosed two years ago. Is this true? -- William T., Bozeman, Mont.

A: It's almost true. Because type 2 is a chronic disease, when you have the disease down and out for the count, it's referred to as being in remission, not cured; the reasoning is, it could come back.

That said, a group of researchers from McMaster University in Ontario, Canada, achieved a three-month remission of type 2 diabetes for 40 percent of the people in one of their trial groups.

For the trial, 83 volunteers with type 2 diabetes were divided into three groups: For 16 weeks, members of one group received intense, personalized intervention, including an individual exercise routine, a meal plan cutting food intake by 500-750 calories daily and treatment with metformin, acarbose (an oral alpha-glucosidase inhibitor that lowers blood glucose) and insulin glargine. They also saw a nurse and dietitian regularly.

The second group received the same treatment for eight weeks.

And the third (control) group received standard blood-sugar management and health advice.

At the end of the trial, participants in the two intensive-treatment groups discontinued their medications. In the 16-week intervention group, 11 of 27 participants showed complete- or partial-remission three months later. In the eight-week intervention group, six of 28 saw those results. But remember, this is a trial, not an accepted therapeutic approach.

There are solutions, however. Regular physical activity, avoiding the five food felons, losing 5 to 10 percent of your body weight and taking prescribed medications can reverse type 2 diabetes in over half of participants with early type 2 diabetes or prediabetes. This Canadian study also demonstrates that with hard work, William, you can defeat your diabetes. We hope you're successful.

Q: I've developed age-related macular degeneration. Are stem cell treatments a viable option? -- Gladys G., Miami

A: Stem cell treatments for age-related macular degeneration (AMD) are not ready for prime time.

In 2014, a small study looked at using pluripotent stem cell therapy for dry AMD and found that it might be viable. The first stem cell clinical trial for wet macular degeneration was launched in 2015. A 2016 study in Investigative Ophthalmology & Visual Science concluded: "stem cell-based therapies for non-neovascular AMD are emerging and several clinical trials are in progress. However, there are major regulatory, safety and technical challenges that remain."

Why should you be wary? The New England Journal of Medicine reports on three women who received stem cell therapy for AMD at a clinic in Florida. Two of them checked listings of clinical trials on the website clinicaltrial.gov. They "enrolled" in the Study to Assess the Safety and Effects of Cells Injected Intravitreal in Dry Macular Degeneration. The sponsor was one of hundreds of unregulated for-profit stem cell therapy centers in the U.S. The third woman went directly to the company for treatment.

Their outcomes were horrifying.

The facility charged each woman $5,000. (Red flag: Legitimate clinical trials never ask for payment!) The company's staff then injected stem cells made from each woman's fat cells into her eyes. One woman went completely blind and two are virtually blind.

How do you know if a clinical trial is legit? It should be conducted by a reputable nonprofit research center or hospital/medical center and be free.

How do you know if a stem cell treatment is legit? Ask centers of medical excellence, like the Cleveland Clinic's Cole Eye Institute or The Harkness Eye Institute/CUMC, if they offer such treatments. If they don't, you shouldn't get them elsewhere.

Even some stem cell treatment businesses know they're unreliable. Here's a disclaimer we found on the Internet: "All claims made regarding the efficacy of ... treatments ... are based solely on anecdotal support collected by [the company]." In other words, no scientific evidence backs up their claims.

Mehmet Oz, M.D. is host of "The Dr. Oz Show," and Mike Roizen, M.D. is Chief Medical Officer at the Cleveland Clinic Wellness Institute. Submit your health questions at http://www.youdocsdaily@sharecare.com.

Continue reading here:
Oz: Hard work, exercise and diet can control diabetes - Pueblo Chieftain

Brain cells reprogrammed to make dopamine, with goal of Parkinson’s therapy – The San Diego Union-Tribune

In a pioneering study, European scientists have reprogrammed brain cells in mice to correct some of the movement disorders of Parkinsons disease.

The scientists also demonstrated the reprogramming in human brain cells grown in cultures.

In both mice and human cell cultures, the procedure converted brain cells called astrocytes into cells that produce dopamine, a neurotransmitter necessary for movement. Dopamine-making neurons are destroyed in Parkinsons disease; so replacing them should alleviate symptoms.

Like all biomedical research, this approach will require more development and testing before it can be considered for treating actual patients.

The study was published Monday in Nature Biotechnology. Pia Rivetti di Val Cervo was first author, and Ernest Arenas was senior author. Both are of Karolinska Institute in Stockholm, Sweden.

The study can be found online at j.mp/astropark.

Researchers worked on mice that had had their dopamine-making neurons destroyed. They used a viral delivery system to transmit three genes to the astrocytes that reprogrammed some of them into dopamine-making cells.

The next steps to be taken toward achieving this goal include improving reprogramming efficiency, demonstrating the approach on human adult striatal astrocytes, developing systems to selectively target human striatal astrocytes in vivo, and ensuring safety and efficacy in humans, the study concluded.

The study is a more sophisticated version of gene therapy approaches that have previously been investigated for Parkinsons, and is worth pursuing, said Parkinsons disease researcher Andres Bratt-Leal. However, much more work needs to be done before it can be considered for patients, he said. Meanwhile, other therapeutic projects are much closer to clinical testing.

Bratt-Leal is involved in one of those projects, a San Diego-based initiative to reprogram skin cells from Parkinsons patients into embryonic-like cells called induced pluripotent stem cells, and then mature them into the dopamine producing neurons. These neurons will then be implanted into the brains of the patients, if work by the Summit for Stem Cell Foundation succeeds.

Implanting new neurons has shown tremendous promise in animal models and clinical trials using dopamine-producing neurons derived from embryonic stem cells or induced pluripotent stem cells are going to start in the next 1 to 2 years, said Bratt-Leal, the foundations director of research. Gene therapy is promising, but there remain a lot of questions before it is ready for clinical trial.

In a dish, only a fraction of the cells are successfully made into cells which resemble dopamine-producing neurons, Bratt-Leal said. I'd like to know what happens to all the other cells which don't complete that transformation. Are the cells made with gene therapy as good as the neurons we can make from stem cells?

With cell therapy clinical trials around the corner and improvements in gene therapy technology, patients with Parkinson's disease have reasons to stay active and optimistic about the future.

bradley.fikes@sduniontribune.com

(619) 293-1020

Continue reading here:
Brain cells reprogrammed to make dopamine, with goal of Parkinson's therapy - The San Diego Union-Tribune

Stanford lab grows cornea cells for transplant – The Mercury News

PALO ALTO A Stanford research team has created a potentially powerful new way to fix damaged corneas a major source of vision problems and blindness.

Millions of new eye cells are being grown in a Palo Alto lab, enlisting one of medicines most important and promising new tools: refurbishing diseased and damaged tissue with healthy new cells.

One of the exciting possibilities of this cellular approach is that one donor cornea, which contributes a few parent cells, can generate enough cells to treat tens or hundreds of patients, said lead researcher Dr. Jeffrey Goldberg, professor and chairman of the Department of Ophthalmology at the Stanford University School of Medicine.

About 100,000 corneal transplants are done annually in the United States but they require surgery with donated corneas from cadavers. The procedure fails nearly a third of the time, and there arent enough high-quality donor corneas to go around.

Other scientists have been trying to grow full corneas from scratch, attaching a fragile film of cells to a membrane. Thats a challenging bioengineering problem.

Stanfords innovative strategy, eight years in the making, is to grow individual cells instead. The team then harvests a few mother corneal cells, called progenitor cells, donated from a cadaver.

These cells are then put into a warm broth in petri dishes, where they give birth to many new young corneal cells.

The cells are being grown at Stanfords new Laboratory for Cell and Gene Medicine, a 25,000-square-foot biological manufacturing facility on Palo Altos California Avenue.

The Stanford team enlisted a recent technological advance: magnetic nanoparticles. The particles are incredibly small, measuring only 50 nanometers in diameter. By comparison, a human hair is 75,000 nanometers in diameter.

The new young cells were magnetized with the nanoparticles, loaded into a syringe and injected into the eye.Then, using an electromagnetic force on a patch held outside of the eye, the team pulled the cells into the middle of the eye, to the back of cornea. Later, the magnetic nanoparticles fell off the cells, exited the eye and were excreted in the patients urine.

Ultimately, Goldberg said, the team hopes to mass produce off-the-shelf cells that can be easily transplanted into patients with severe damage to the cornea, the transparent outer coating of the eye that covers the iris and pupil.

In the first trial of 11 patients, a so-called Phase 1 trial, the team only studied safety.

Not only was the procedure safe, but we are seeing hints of efficacy that we are very excited about, Goldberg said. Were cautiously optimistic.

The Stanford team plans to expand the study in September to Phase 2 to measure how the vision of the patients improves.

The effort has been endorsed by the American Academy of Ophthalmology, which says it supports innovative clinical Many countries outside the United States and Europe have a shortage of donor eye tissue, leaving millions of people unable to obtain a donor cornea. If this early research is found to be safe and effective, this technique may help some patients avoid corneal transplant, said Dr. Philip R. Rizzuto, clinical spokesman for the American Academy of Ophthalmology.

If successful, the approach could also be used to replace other types of damaged eye cells, offering therapies for retinal and optic nerve diseases including glaucoma, the leading cause of irreversible blindness, he said.

The approach is part of an expanding field of lab-grown cell therapies. Sheets of healthy skin are used to treat burns, chronic skin wounds and diseases like epidermolysis bullosa, which causes incurable blistering. And bioengineered cartilage is increasingly used to treat certain knee injuries.

Stanford researchers believe that lab-grown corneal cells could become another important type of regenerative medicine.

Unlike other transplants, corneas in the Stanford teams approach dont have to be a perfect match. Rejection can be prevented with simple topical eyedrops.

Goldberg predicted that the approach could eventually replace about 80 percent of corneal transplants.

Specifically, it could repair the damaged inner layer of the cornea, called the endothelium, as seen in diseases like Fuchs dystrophy, which causes corneal damage due to swelling. It would not help in the 20 percent of transplants needed to fix the middle layer of the cornea, called the stroma.

Next month, the team will analyze its early Phase 1 data and also apply for permission from the U.S. Food and Drug Administration to begin Phase 2.

While relatively few people in the United States suffer diseases or injuries that cause devastating cornea damage, the numbers are much greater in developing nations, where infectious eye diseases remain common.

The new approach could offer a nonsurgical permanent solution in those countries, Goldberg said.

Half the world has no access to tissue, he said. I would love this to be one and done, solving patients problems for decades.

Here is the original post:
Stanford lab grows cornea cells for transplant - The Mercury News

‘No proof that stem cell therapy can cure autism’ – Times of India

NAVI MUMBAI: A forum group in Navi Mumbai conducted a question and answer session at Vashi to clear that there is no proof of stem cell therapy cure for autism. Around 100 parents of autistic children were part of the session held at Sunshine Autistic School in Vashi organised by the Forum for Autism group on Saturday. Guest speaker Dr Tatyana Dias, a PhD in neurobiology from the University of Edenburgh, UK, said, "All traditional therapies like occupational therapy, speech Therapy and special education are evidence-based which means they have been proved to be effective through immense research and practice. Whereas stem cell therapy is in research stage, its effectiveness is strongly doubted, even its practice is banned in many countries and if practised, it is done in labs and under strict regulations. In India at present there is no particular body or law to regulate stem cell research." Babita Raja, secretary, Forum for Autism, said, "Parents run from pillar to post for their children's treatment. We are hoping that this awareness programme would help them in deciding what they want to try."

Go here to see the original:
'No proof that stem cell therapy can cure autism' - Times of India

12th Annual Wisconsin Stem Cell Symposium to focus on bioengineering – University of Wisconsin-Madison

Over the past several years, gene editing has become a powerful tool for creating cellular models of human diseases, particularly with the emergence of technologies like CRISPR-Cas9.

But one concern with gene editing tools like CRISPR which allows scientists to cut and paste genetic sequences into a genome to correct errors or introduce changes is precision, says Krishanu Saha, a bioengineering professor at the University of WisconsinMadison. That is, editing genes sometimes introduces errors that could have unintended consequences.

Saha is using CRISPR to reprogram human pluripotent stem cells and immune cells to study diseases like Fragile X syndrome, to discover new drugs and develop cell therapies, and to ask fundamental questions about human biology. On Wednesday, April 19, he will present the strategies his lab has developed to make gene editing more precise at the 12th Annual Wisconsin Stem Cell Symposium.

My talk is focused on genome-level engineering of human cells, Saha says. I will cover ongoing work in my lab that engineers human pluripotent stem cells and T cells from cancer patients.

The strategies Saha and his research team have developed help correct pathogenic point mutations and introduce transgenes with precision, reducing and in some cases eliminating undesirable genomic effects.

Another UWMadison scientist, Professor of Chemical and Biological Engineering Eric Shusta, is using stem cells to explore the biology of the blood-brain barrier. This work will be the subject of his talk at the symposium, which is hosted by the UWMadison Stem Cell and Regenerative Medicine Center (SCRMC) and the BioPharmaceutical Technology Center Institute (BTCI).

The blood-brain barrier is an impermeable network of endothelial cells that protects the brain from toxins and other potentially harmful agents that may be circulating in the blood. A healthy blood-brain barrier is essential for well-being, but issues with this security system for the brain can lead to developmental or other types of disease.

Using stem cells, Shusta and his colleagues have been able to reconstruct the blood-brain barrier in the laboratory dish, providing scientists with a potent model for drug discovery and to explore neurological disorders that may be associated with a compromised barrier. The advent of patient-sourced induced pluripotent stem cells means it may be possible to mimic diseases or conditions and possibly devise treatments for disorders that are now untreatable.

The symposium will also gather a handful of national and international speakers, like Memorial Sloan Kettering Cancer Centers Michel Sadelain (New York) and Leiden University Medical Centers Christine Mummery (The Netherlands), focused around the theme: Engineering Cells and Tissues for Discovery and Therapy.

We sought to bring bioengineers together with biologists and clinicians this year, says Saha, who is also a co-organizer of the event with UWMadison Professor of Chemical and Biological Engineering Sean Palecek. Because bioengineers are working at many levels the genome, cell and tissue we have invited scientists across these scales.

Talks will focus on emerging strategies to control stem cell behavior in the lab and in the body and include genome and cell engineering; stem cells as models of cell and developmental biology; in vitro maturation of stem-cell derived tissues; tissue engineering and organoid development; biomanufacturing; and treatments utilizing engineered human cell products.

We see great synergy in bringing together techniques of controlling behavior across these scales to generate new research tools and therapeutics, Saha says.

Moderators of the symposium include Timothy Kamp, professor of medicine and co-director of SCRMC ; William Murphy, professor of biomedical engineering, orthopedics and rehabilitation, and co-director of SCRMC; Saha and Palecek. It takes place from 8:30 a.m. until 6 p.m. at the BioPharmaceutical Technology Center, 5445 E. Cheryl Parkway, Fitchburg, Wisconsin 53711.

See original here:
12th Annual Wisconsin Stem Cell Symposium to focus on bioengineering - University of Wisconsin-Madison

Put diabetes in remission; beware stem cell treatments for AMD – Hometown Focus

Q: I hear there's a clinic in Canada that can medically cure Type 2 diabetes without bariatric surgery. I was diagnosed two years ago. Is this true? -- William T., Bozeman, Montana

A: It's almost true. Because Type 2 is a chronic disease, when you have the disease down and out for the count, it's referred to as being in remission, not cured; the reasoning is, it could come back. That said, a group of researchers from McMaster University in Ontario, Canada, achieved a three-month remission of Type 2 diabetes for 40 percent of the people in one of their trial groups.

The Trial: Eighty-three volunteers with Type 2 diabetes were divided into three groups: For 16 weeks, members of one group received intense, personalized intervention, including an individual exercise routine, a meal plan cutting food intake by 500-750 calories daily and treatment with metformin, acarbose (an oral alpha-glucosidase inhibitor that lowers blood glucose) and insulin glargine. They also saw a nurse and dietitian regularly. The second group received the same treatment for eight weeks. And the third (control) group received standard blood sugar management and health advice.

The Results: At the end of the trial, participants in the two intensive-treatment groups discontinued their medications. In the 16- week intervention group, 11 of 27 participants showed complete or partial diabetes remission three months later. In the eight-week intervention group, six of 28 saw those results. But remember, this is a trial, not an accepted therapeutic approach.

There are solutions, however: Dr. Mike has demonstrated at his Wellness Institute and through online e-coaching programs that regular physical activity, avoiding the Five Food Felons, losing 5 to 10 percent of your body weight and taking prescribed medications can reverse Type 2 diabetes in over half of participants with early Type 2 diabetes or prediabetes. This Canadian study also demonstrates that with hard work, William, you can defeat your diabetes. We hope you're successful.

Q: I've developed age-related macular degeneration. Are stem cell treatments a viable option? -- Gladys G., Miami

A: stem cell treatments for age-related macular degeneration (AMD) are not ready for prime time. In 2014, a small study looked at using pluripotent stem cell therapy for dry AMD and found that it might be viable. The first stem cell clinical trial for wet macular degeneration was launched in 2015. A 2016 study in Investigative Ophthalmology & Visual Science concluded: "stem cell-based therapies for non-neovascular AMD are emerging and several clinical trials are in progress. However, there are major regulatory, safety and technical challenges that remain."

Why should you be wary? The New England Journal of Medicine reports on three women who received stem cell therapy for AMD at a clinic in Florida. Two of them checked listings of clinical trials on the website http://www.clinicaltrial.gov. They "enrolled" in the Study to Assess the Safety and Effects of Cells Injected Intravitreal in Dry Macular Degeneration. The sponsor was one of hundreds of unregulated for-profit stem celltherapy centers in the U.S. The third woman went directly to the company for treatment. Their outcomes were horrifying.

The facility charged each woman $5,000. (Red flag! Legitimate clinical trials NEVER ask for payment!) The company's staff then injected stem cells made from each woman's fat cells into her eyes. One woman went completely blind and two are virtually blind.

How do you know if a clinical trial is legit? It should be conducted by a reputable NOTFOR PROFIT research center or hospital/ medical center and be free.

How do you know if a stem cell treatment is legit? Ask centers of medical excellence, like the Cleveland Clinic's Cole Eye Institute or The Harkness Eye Institute/CUMC, if they offer such treatments. If they don't, you shouldn't get them elsewhere.

Even some stem cell treatment businesses know they're unreliable. Here's a disclaimer we found on the Internet: "All claims made regarding the efficacy of ... treatments ... are based solely on anecdotal support collected by [the company]." In other words, no scientific evidence backs up their claims.

Mehmet Oz, M.D. is host of The Dr. Oz Show, and Mike Roizen, M.D. is Chief Wellness Officer and Chair of Wellness Institute at Cleveland Clinic. Email your health and wellness questions to Dr. Oz and Dr. Roizen at youdocsdaily(at sign)sharecare.com.

(c) 2017 Michael Roizen, M.D. and Mehmet Oz, M.D. Distributed by King Features Syndicate, Inc.

More here:
Put diabetes in remission; beware stem cell treatments for AMD - Hometown Focus

US Stem Cell Inc (OTCMKTS:USRM) Gets Investment Up To $5M from (GACP) – The Oracle Dispatch

In February shares of US Stem Cell Inc (OTCMKTS:USRM) morphed from a quiet little company to an investment. I believe it can be traced back to a white paper done by Chief Scientific Officer, Kristin Comella. Her conclusions drew a new light on the value prop.

Effects of the intradiscal implantation of stromal vascular fraction plus platelet rich plasma in patients with degenerative disc disease was published in the January volume of the Journal of Translational Medicine. The study focused on the implantation of stromal vascular fraction (SVF) in patients suffering from degenerative disc disease. Patients underwent a local tumescent liposuction procedure to remove approximately 60 ml of fat tissue from the abdomen. The fat was separated to isolate the SVF and the cells were delivered directly into the damage discs. Patients were monitored for a period of 6 months post-treatment, noting considerable decreases in pain and increases in flexion.

If you look at the chart below it ignited the value proposition for this as an investment, and shares moved from a triple zero sub penny to .12 cents on big volume. This catalyst moved this stock 10x higher and bumped the valuation (market cap) from $3 million to $33 million.

US Stem Cell Inc (OTCMKTS:USRM) is a leader in novel regenerative medicine solutions and physician-based stem cell therapies for human and animal patients, and as a result of the share price move the company was able to secure operating capital in the form of a commitment to invest up to $5,000,000 from private equity firm General American Capital Partners LLC (GACP) in exchange for up to 63,873,275 shares of common stock.

We see exponential growth in the stem cell industry, estimated to grow to $170 billion by 2020, said Joseph DaGrosa, Jr., a Principal with General American Capital Partners. We are very pleased to join forces with U.S. Stem Cell, Inc., a leader in regenerative medicine solutions, to help expand our role in this important market.

Find outwhen (USRM) stock reaches critical levels. Subscribe to OracleDispatch.com Right Now by entering your Email in the box below.

$USRM 10-Day Chart Below:

The 21st Century Cures Act, signed into effect in December of 2016, builds on the FDAs ongoing efforts to advance medical product innovation and ensure that patients get access to treatments as quickly as possible, with continued assurance from high quality evidence that they are safe and effective.

Patient demand for regenerative medicine procedures as a viable alternative to surgery, as well as the transformative capacity of stem cell therapies, are leading the way to increased acceptance by both the medical and regulatory communities, said Mike Tomas, President and CEO of U.S. Stem Cell, Inc.

US Stem Cell, Inc. (formerly Bioheart, Inc.) is an emerging enterprise in the regenerative medicine / cellular therapy industry. They are focused on the discovery, development, and commercialization of cell based therapeutics that prevent, treat, or cure disease by repairing and replacing damaged or aged tissue, cells and organs and restoring their normal function. Theybelieve that regenerative medicine / cellular therapeutics will play a large role in positively changing the natural history of diseases, ultimately, we contend, lessening patient burdens, as well as reducing the associated economic impact disease imposes upon modern society.

USRMis broken down into 3 main areas (US Stem Cell Training, Vetbiologics, and US Stem Cell Clinic) which includes the development of proprietary cell therapy products, as well as revenue generating physician and patient based regenerative medicine / cell therapy training services, cell collection and cell storage services, the sale of cell collection and treatment kits for humans and animals, and the operation of a cell therapy clinic. Management maintains that revenues and their associated cash in-flows generated from our businesses will, over time, provide funds to support our clinical development activities, as they do today for our general business operations.

The trick now will be to keep shares up through good execution and keep the common shareholders intact. The lender now has many shares to sell if needed, but the intent is not to have this stock be a penny stock, we will see if they can accomplish this. For continuing coverage on shares of $USRM stock, as well as our other hot stock picks, sign up for our free newsletter today and get our next hot stock pick!

Go here to read the rest:
US Stem Cell Inc (OTCMKTS:USRM) Gets Investment Up To $5M from (GACP) - The Oracle Dispatch