Antiplatelet Drugs Could Boost Effectiveness of Adoptive T Cell Therapy – Bioscience Technology

Platelets, small fragments of large cells that are a very abundant component of blood, and best known for their role in blood-clotting, help hide cancer from the immune system by suppressing T cells, according to a new study.

Now, in preclinical studies, researchers led by Zihai Li, M.D. Ph.D., chair of the Medical University of South Carolinas Department of Microbiology and Immunology found adoptive T cell therapy was more effective against melanoma when combined with common platelet-inhibitors, such as aspirin.

A disorder known as thrombocytosis, where a patient has excess platelet product, has been associated with the progression of multiple cancer types. However, how platelets change T cell immunity to encourage tumor growth was not well understood and this study sought to investigate the role more closely.

A molecule called TGF-beta is linked to suppression of the cancer-fighting activity of T cells, the study found. Immunologists have been studying TGF-beta for more than 30 years as it regulates many aspects of the immune system.

More importantly, Lis team found a protein called GARP, on the surface of the platelets, acts like a molecular hook that binds to and activates TGF-beta.

We found for the first time that the GARP, TGF-beta complex is a key mechanism utilized by platelets to subvert T cell immunity, Li said.

The first indication that the bodys clotting system might play a role in suppressing cancer-fighting T cells, was when scientists observed melanoma mouse models with genetically defective platelets.

In the mice with genetically defective platelets, T cells that were isolated and then primed to recognize tumor cells were much more active when reinjected into the mice, and tumors grew significantly more slowly than in animals with normal platelets.

Platelets and T cells isolated from mouse and human blood were observed, and both showed the T cell response was suppressed by platelets with activated clotting activity. Using mass spectrometry, the team identified the molecule with the most T cell suppression was TGF-beta.

Next, Li investigated what would happen if the platelets couldnt activate TGF-beta. They genetically modified mice without the molecular hook GARP, and found that once the platelets didnt have the ability to grab and activate TGF-beta, they could not suppress the cancer-fighting T cells. The T cell immunotherapy was more effective at controlling melanoma.

In a final experiment, the team tested melanoma models of mice with normal platelets who received adoptive T cell therapy, in combination with two antiplatelet drugs, aspirin and clopidogrel. They found that animals who received the antiplatelet drugs survived longer and relapsed less.

One popular form of current immunotherapy is so-called checkpoint inhibitors. Li and his team are about to launch a clinical trial to test the combination of checkpoint inhibitors and aspirin and clopidogrel for advanced cancers.

Im very excited about this, Li said. We can test simple, over-the-counter antiplatelet agents to really improve immunity and make a difference in how to treat people with cancer.

The findings were published May 5 in Science Immunology.

The rest is here:
Antiplatelet Drugs Could Boost Effectiveness of Adoptive T Cell Therapy - Bioscience Technology

Growth in Stem Cell Research | Financial Tribune – Financial Tribune

Iran is expanding investment in stem cell research and its application in various therapies, particularly for hard-to-treat diseases, through the Office of the Vice- Presidency for Science and Technology. As a result of the increase in the number of companies active in the domain of stem cells in the past three years, more than 400 products are processed in the country, indicating a multifold growth compared with the eight-year tenure of previous administration when there were fewer than 50 knowledge-based firms in total.

There are over 40 knowledgebased firms in the field of stem cell and regenerative medicine alone in Iran today, said Amir Ali Hamidiyeh, secretary of the Headquarters for Development of Stem Cell Science and Technology (HDSCST). He made the statement at a press briefing for the second National Festival and International Congress on Stem Cell Sciences and Technologies and Regenerative Medicine to be held July 13- 15 in Tehran, Mehr News Agency reports. According to the conference secretariat, 1,444 people have signed up to attend the event from across the world, including from Iraq, India, Pakistan, Jordan, Russia, Australia, Germany, China, Britain and South Korea. They all are among their countrys respected figures in centers with high academic standing.

The congress is co-sponsored by the Vice-Presidency for Science and Technology and Council on Development of Stem Cell Sciences and Technology. So far, eight stem-cell therapy products for use in hospitals have been produced at the HDSCST laboratories. Manufacturinglicenses have been granted for anadditional number, while others are on thewait list.

Prior to 2014, only 25 knowledgebased companies had applied to operate in this field, of which only one was actively producing quality stem cell products, Hamidiyeh pointed out.

But since then, over 25 workgroups have been formed in cooperation with experts in the specific sciences. Stem cells are cells that have the ability to divide and develop into many different cell types in the body during early life and growth. Stem-cell therapy is the use of stem cells to treat or prevent a disease or condition. Bone marrow transplant is the most widely used stem-cell therapy, but some therapies derived from umbilical cord blood are also in use.

Future of Medicine in Stem

Cells The future of medicine is interrelated with stem cell therapy and the treatment ofrefractory and incurable diseases is in this field of medicine, according to Dr. Ahmad Vosouq Dizaj, the clinical deputy of Royan Institute. Having access to engineering sciences as well as the combination of biology and medicine can play a crucial role in redressing health problems, he said. Stem cells have the ability to replace damaged cells and treat disease. They can also be used to study diseases and provide a resource for testing new medical treatments. The use of stem cells reduces the risk of viral diseases transmission and incidence of Graft Versus Host Disease (GVHD). The ability to perform organ transplants is among the benefits ofumbilical cord blood transfusion.Using stems cells is also one of thebest ways to treat blood diseases sincethe method has a success rate of 70%worldwide.

Storage of stem cells is a valuable investment. So far, 27 cord blood banks have been launched across the country. There are two types: public and private banks for stem cell storage. The former does not charge a fee for storage. But in the latter, the cost of collection and genetictesting is about $645 and the annualcharge for storage is $33, according toISNA.Iran is a leading country in biomedicalresearch. Researchers and physicians have been successfully performing bone marrow transplants during the past fewyears.Irans stem cell research is centeredat the Royan Institute for ReproductiveBiomedicine, Stem Cell Biology andTechnology, located in northern Tehran.

The rest is here:
Growth in Stem Cell Research | Financial Tribune - Financial Tribune

Will Stem Cell Research Change Treatment of Heart Disease? – Health Essentials from Cleveland Clinic (blog)

Q: Ive been reading a lot about stem cells recently. Willstem cell research change the treatment of heart disease?

A: Theres some exciting early data where scientists have been able to use stem cells for regeneration of cardiac tissue, in particular certain parts of the heart or maybe even an entire heart in mice or rats.

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

However, its not been done yet in humans reliably and that would be the next step. If the research bears out, we may see this as an option for heart patients in perhaps five to 10 years.

The area where stem cells might first be used is in patients who have had damage to their heart because of a heart attack. These patients have scarring on the heart and that area of the heart is not beating anymore. If we can regenerate cardiac tissue to replace this scarred tissue, the hope is to get the heart fully working again.

Growing whole new hearts will likely be later down the line and will depend on the success of the research.

Preventive cardiologistHaitham Ahmed, MD, MPH

View original post here:
Will Stem Cell Research Change Treatment of Heart Disease? - Health Essentials from Cleveland Clinic (blog)

First public sector stem cell bank to come up at KGMU – Times of India

LUCKNOW: In what may come as a relief to over 1 lakh patients of thalassemia in India, a public sector stem cell bank is set to come up at UP's King George's Medical University here. A project of the university's transfusion medicine department, the stem cell bank would roll out stem cell therapy to patients of thalassemia and sickle cell anaemia. The proposal is awaiting clearance from state department of medical education.

Stem cells are omnipotent and can take shape of any cell inside the body. If infused in the pancreas, stem cells will become pancreatic while in the liver, they will become liver cells.

These are found in human bone marrow and can be derived from the umbilical cord which contains blood vessels that connect baby in the womb to the mother to ingest nutrition required for development.

Research on the therapeutic use of stem cells is underway in US, Europe, China, South East Asia besides India. In UP, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) and KGMU are both trying to explore the potential of stem cells to treat various health problems. SGPGI has, so far, restricted itself to use of allogenic (stem cells derived from bone marrow of a person), while KGMU has used stem cells derived from the umbilical cord.

Head of transfusion medicine department of KGMU, Prof Tulika Chandra said, "Several private sector stem cell banks like Life Cell and Cord Life India are operating in India but they serve only those who have deposited the baby's cord, while our bank will help everyone."

KGMU has sustained access to umbilical cord because of a very developed obstetrics and gynaecology department. The cord is gathered from the placenta in the uterus of pregnant women which nourishes and maintains the baby through the umbilical cord.

Sources in medical education department said the proposal is worth Rs 9 crore including infrastructure cost. "Stem cell bank promises to become financially self-sustaining within 2-3 years of inception," said a directorate officer.

Talking about why children with thalassemia and sickle cell anaemia were chosen, Chandra said, "Global literature shows umbilical cord stem cells can induce extraordinary results on such children. In fact, success rate is around 70-75% and higher score can be achieved if therapy is provided at an earlier age."

Read this article:
First public sector stem cell bank to come up at KGMU - Times of India

Oncology Nurses Must Watch for CAR T-Cell Therapy Side Effects – Cancer Network

It is increasingly important that oncology nurses and other healthcare providers recognize cytokine release syndrome (CRS) and other side effects that can be triggered by anticancer treatment with engineered chimeric antigen receptor (CAR) T-cell therapies, and that they understand the importance of early detection, a speaker emphasized at the Oncology Nursing Society (ONS) 42nd Annual Congress, held May 47 in Denver.

Careful monitoring is essential for early detection of CAR T-cell side effects, said study coauthor Brenna Hansen, BSN, RN, OCN, a research nurse specialist at the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland. Early recognition of symptoms results in early intervention and safe management of the patient by the multidisciplinary team.

CAR T-cell therapy involves equipping immune T cells with engineered receptors to facilitate immune attack on tumor cells expressing specific surface proteins. Patient T cells are collected and modified in a lab to express cancer-specific receptors. These are then infused back into the patient.

CAR T-cell therapies show promise against hematologic malignancies and other cancers but can trigger a range of initially subtle but potentially life-threatening side effects. Perhaps chief among these adverse reactions is CRS and neurologic side effects that might or might not occur with CRS. Most of these are reversible with corticosteroids or other treatment.

CRS symptoms include fever, tachycardia, and hypotension occurring within a week (typically 47 days) after CAR T-cell infusion, though CRS can occur more quickly. Ive seen CRS as soon as a day after infusion, Hansen cautioned.

Heart arrhythmias, fatigue, hypoxia, pulmonary edema, pneumonitis, electrolyte imbalances, nausea, vomiting, diarrhea, cytopenias, infections, elevated creatinine kinase, myalgia, and muscle weakness can all be signs of CRS.

Neurologic side effects can include tremors, headaches, confusion, loss of balance, trouble speaking, encephalopathy, seizures, long periods of somnolence, and sometimes, hallucinations, Hansen noted.

These symptoms can be subtle initially. Hansen described a CAR T-cell therapy patients transportation by ambulance to the hospital after detection of a subtle hand tremor because clinicians were concerned it could quickly worsen.

CAR T-cell therapies can also trigger receptor/cell-type specific side effects such as CAR19-associated B-cell aplasia and graft-vs-host disease. New side effects will likely emerge as new targets are found and CAR T-cell therapies become more commonly administered, she predicted.

Nurses play key roles in every stage of CAR T-cell toxicity monitoring and management, from inpatient monitoring at the bedside, including frequent assessments and checks of vital signs during high-risk periods, to outpatient and long-term monitoring, Hansen said.

Outpatient monitoring for patients who are infused as outpatients, or post-discharge, is key to spotting delayed toxicities, she emphasized. Clinic and triage nurses play key roles in the timely recognition of late CAR T-cell side effects.

Long-term monitoring is important, as well. Home oncology clinic nurses should monitor serum IgG (IVIG) and blood cell counts with differential.

If symptoms become severe, cells may be tempered with tocilizumab or corticosteroids, she said. However, this is avoided if possible to prevent damaging the anti-malignancy effects of the CAR T cells.

It is crucial that nursing staff be educated on side effects unique to CAR T-cell treatments, and that nursing guidance be provided specifying the signs and symptoms that should be communicated to patients other healthcare providersand patients themselvesto allow early detection and intervention. Having a written plan can help prevent confusion and provide clear guidelines for the patients care, she noted.

Read the rest here:
Oncology Nurses Must Watch for CAR T-Cell Therapy Side Effects - Cancer Network

Aspirin, other antiplatelet drugs boost T-cell therapy in mice with … – FierceBiotech

Engineered T-cell therapies, a promising way to prime a patients immune system against cancer, dont work for everyone. Scientists from the Medical University of South Carolina (MUSC)found one possible explanation that can be targeted: blood platelets.

The immune system sees tumors, or uncontrolled cell growth, as part of the self, which allows cancer to evade immune attack. In adoptive T-cell therapy, a patients own T cells are isolated from his or her blood, and then primed to recognize tumor cells.

Previous research has shown that some cancers curb T-cell activity and that platelets, a component of blood responsible for clotting, might make cancer worse. The MUSC team, led by senior author Zihai Li, M.D., Ph.D.,found that platelets help cancer to hide by secreting a molecule, TGF-beta, that suppresses T cells.

RELATED: New culture method boosts T cells' ability to recognize multiple cancers

While most TGF-beta is inactive, the researchers found that GARP, a molecular hook on the surface of platelets, traps and activates TGF-beta. As a result, platelets become the main source of TGF-beta used by tumor cells to tamp down on T-cell function, according to a statement.

The team ran a battery of preclinical trials, finding that a T-cell therapy more effectively awoke the immune system when given alongside common antiplatelet drugs, such as aspirin.

First, they noticed that melanoma tumors grew more slowly in mice with defective platelets than in mice with normal platelets. Adoptive T-cell therapy was more effective in genetically modified mice without GARP. And mice with normal platelets and melanoma that were given T-cell therapy along with aspirin and clopidogrelsurvived longer and relapsed less, according to the statement. But antiplatelet drugs alone did not fight the cancer.

"We can test simple, over-the-counter antiplatelet agents to really improve immunity and make a difference in how to treat people with cancer, Li said. The study was published in Nature Immunology.

This study could lay the foundation for further work testing antiplatelet approaches in melanoma and other cancers. Melanoma is not currently treated with adoptive T-cell therapy, but with checkpoint inhibitors, such as Bristol-Myers Opdivo and Yervoy.

Read the original here:
Aspirin, other antiplatelet drugs boost T-cell therapy in mice with ... - FierceBiotech

Stem cells therapy for naturally occurring intervertebral disc disease – Medical Xpress

May 9, 2017 Credit: Vetsuisse Faculty, UZH

The intervertebral disc is the "shock absorber" between the vertebrae of the spine, cushioning every step, bend and jump. If the fibrocartilage tissue in the spine degenerates over time, an intervertebral disc can "slip" pinching the medulla or nerves. The consequences include intense pain or even paralysis. Dogs and people are often susceptible to this disease. Since intervertebral discs themselves cannot regenerate, the affected disc material is removed in an operation that can be performed on both people and animals. The pressure on the nerves and medulla disappears, but the degeneration of the disc remains.

Frank Steffen, neurologist at the Clinic for Small Animal Surgery at the Vetsuisse Faculty of the University of Zurich, has developed a stem cell therapy for the condition. Stem cells are multipotent cells that can be differentiated into various cell types. Steffen hopes that the stem cells will possibly form new disc cartilage once injected into a damaged disc. His study on three sick German shepherds demonstrate that treatment with the body's own stem cells is well tolerated an important first step.

Gaining knowledge directly from the afflicted animal

Research on intervertebral disc regeneration is frequently performed using animal testing. At the Clinic for Small Animal Surgery in Zurich, researchers have taken another path: "Since we treat numerous dogs who spontaneously sustain a slipped disc every year, we have been able to gain important knowledge directly from animals that are actually afflicted with this disease," Steffen explains. "Due to the similarity in pathology and the course of the illness, conclusions can presumably be drawn for the treatment of affected persons as well." The project for the development of stem cell therapy in dogs is being conducted in cooperation with Swiss Paraplegic Research (SPR) in Nottwil, Switzerland.

With the permission of the dog owners, Steffen and his team removed stem cells from the marrow of the pelvic bone of the affected animals. After the cleaning and preparation of the cell material in the laboratory, the stem cells were injected into the degenerated intervertebral disc during an operation. "Our objective is for the stem cells to trigger cellular and molecular repair processes and, ideally, to form new intervertebral disc cells in order to contribute to the regeneration of the tissue," Steffen says.

After tolerability, check effectiveness

The results are promising: The three dogs tolerated the injections of their own stem cells and the researchers have determined no negative effects. However, later X-rays and magnetic resonance tomographies did not show clear indications that the damaged discs have regenerated in comparison with the control group.

Steffen says, "Proving the tolerability of the therapy was our first important step." Now, he is working on the effectiveness of the stem cell injections with the targeted addition of growth factors. "If our method proves successful one day, it would be a pioneering step for human medicine as well," the neurologist says.

Explore further: MRI can visualize effects of traction on herniated discs

More information: Frank Steffen et al. Bone Marrow-Derived Mesenchymal Stem Cells as Autologous Therapy in Dogs with Naturally Occurring Intervertebral Disc Disease: Feasibility, Safety and Preliminary Results, Tissue Engineering Part C: Methods (2017). DOI: 10.1089/ten.TEC.2017.0033

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Originally posted here:
Stem cells therapy for naturally occurring intervertebral disc disease - Medical Xpress

Former Tranmere footballer shares powerful picture as he begins fighting cancer with stem cell therapy – Liverpool Echo

Former Tranmere Rovers player Joe Thompson has shared an inspiring photo as he begins stem cell therapy to battle his cancer.

The 28-year-old is battling the disease for the second time, after first discovering tumours in his neck in 2013.

The footballer played 32 games for Rovers in 2012 and 2013, before being diagnosed with nodular sclerosing Hodgkins disease.

He fought through six months of chemotherapy before returning to football, joining Bury and then starting at Rochdale last summer.

Now Joe has shared a brave photo from hospital, as he undergoes stem cell therapy.

Posting the picture to Twitter he said: Little Update, First day of the Stem Cell Harvest Process! Docs are very surprised with how good my blood counts are! Hearts super fit.

When he first announced his cancer had resturned in March Joe said his wife and daughter were his daily motivation.

He said: I will fight this life hurdle with the same belief, courage and desire as my previous battle.

The support shown to me since I discovered my illness has returned has been immense.

I would like to thank my wife, Chantelle, who was my rock in my first encounter and will once again be by my side with the same encouragement, discipline and strength.

Not to mention the love shown to me by both my wife and beautiful daughter Thailula-Lily who are both my motivations daily.

Read more:
Former Tranmere footballer shares powerful picture as he begins fighting cancer with stem cell therapy - Liverpool Echo

How stem cell treatments can improve your sex life – Good4Utah

Utah Stem Cells Joint Treatment and Wellness Center is now offering treatments that could improve your sex life.

Dr. William Cimikoski is now performing procedures called the "O shot" (short for Orgasm Shot) and the "P shot" (short for Priapus shot).

The O shot and the P shot are both trademarked names and Dr.Cimikoski is a certified provider for these procedures.

The O shot is for sexual enhancement for women and helps them achieve orgasm better, and also treats incontinence. The P shot is for Erectile Dysfunction for men, which 50% of all men suffer from.

They work the same way that stem cells and PRP work to heal damaged joints. They can make the sexual tissue more healthy in both men and women.

Utah Stem Cells Joint Treatment and Wellness Center is offering a Mother's Day gift certificate for $200 off the procedure. For any couples that want to come in together they would receive a 20% discount for them both to do the procedure.

This article contains sponsored content.

Read the original:
How stem cell treatments can improve your sex life - Good4Utah

US Stem Cell Inc (OTCMKTS:USRM) Starting to Open Eyes – The Oracle Dispatch

White Papers are used often by Biotech companies as a tool to secure financing and US Stem Cell Inc (OTCMKTS:USRM)utilized a White Paper Series to open the eyes of investors as to how significant the results were. Normally this prompts those who take the time to read them and creates an Ah Ha, moment where the light goes on for the investor.

If you look at the timing of the White Paper released by Kristen Comella in late January you can see how the market reacted to this information. The stock went from triple zero sub penny to near .13 cents, which is a very large move. USRM went on to secure financing and has funding for operations for years to come, it is good to see stocks where this process works with fluidity, more microcap stocks should be looking at employing this White Paper marketing strategy to secure investors.

US Stem Cell Inc (OTCMKTS:USRM)is a Florida corporation and leader in novel regenerative medicine solutions and physician-based stem cell therapies to human and animal patients.Effects of the intradiscal implantation of stromal vascular fraction plus platelet rich plasma in patients with degenerative disc disease was published in the January volume of theJournal of Translational Medicine. The study focused on the implantation of stromal vascular fraction (SVF) in patients suffering from degenerative disc disease. Patients underwent a local tumescent liposuction procedure to remove approximately 60 ml of fat tissue from the abdomen. The fat was separated to isolate the SVF and the cells were delivered directly into the damaged discs. Patients were monitored for a period of 6 months post-treatment, noting considerable decreases in pain and increases in flexion.

Ms. Comellas previous paper, Effects of the intramyocardial implantation of stromal vascular fraction in patients with chronic ischemic cardiomyopathy, was released in theJournal of Translational Medicines June 2016 edition. Using the same procedure, chronic ischemic cardiomyopathy patients were evaluated after SVF injection and able to walk more than 80 additional meters 3 to 6 months after treatment.

Subscribe below and well keep you on top of whats happening before $USRM stock makes its next move.

$USRM 10-Day Chart Below:

U.S. Stem Cell, Inc., is committed to new technological advancements and therapies that give a renewed sense of hope to patients with degenerative diseases. SVF is the latest therapy in a long line of successful treatments the company pioneered. Ms. Comella plans to continue her work with SVF, which has consistently repeated its strong safety profile and success in treating patients.

The second piece of the puzzle was raising capital and the company recently secured a commitment to invest up to $5,000,000 from private equity firm General American Capital Partners LLC (GACP) in exchange for up to 63,873,275 shares of common stock.

We see exponential growth in the stem cell industry, estimated to grow to $170 billion by 2020, said Joseph DaGrosa, Jr., a Principal with General American Capital Partners. We are very pleased to join forces with U.S. Stem Cell, Inc., a leader in regenerative medicine solutions, to help expand our role in this important market.

The 21st Century Cures Act, signed into effect in December of 2016, builds on the FDAs ongoing efforts to advance medical product innovation and ensure that patients get access to treatments as quickly as possible, with continued assurance from high quality evidence that they are safe and effective.

Patient demand for regenerative medicine procedures as a viable alternative to surgery, as well as the transformative capacity of stem cell therapies, are leading the way to increased acceptance by both the medical and regulatory communities, said Mike Tomas, President and CEO of U.S. Stem Cell, Inc.

Few know that as recently as December 2015 these shares were near $2.00 as stem cell was a sector in biotech that had big multiples and a larger hope for the future. U.S. Stem Cell, Inc. (OTCMKTS:USRM) has renewed this hope for many shareholders who have stayed with the stock. Through consolidation and internal organizational changes the company has combined operating divisions (US Stem Cell Training, Vetbiologics, and US Stem Cell Clinic)which include the development of proprietary cell therapy products. They also generate physician and patient based regenerative medicine and cell collection and cell storage services, the sale of cell collection and treatment kits for humans and animals, and the operation of a cell therapy clinic.

The White Papers take the time to explain how the science works, and all this company needed was one yes answer from a larger investor to secure financing to jump start operations and ultimately the stock price. USRM is one of the most exciting stories on the OTC stay tuned we will update the story soon.For more news on $USRM and other fast-moving penny stocks, please subscribe to OracleDispatch.com below.

See the article here:
US Stem Cell Inc (OTCMKTS:USRM) Starting to Open Eyes - The Oracle Dispatch