Stem cell invented that can grow into any tissue in the body – The … – The San Diego Union-Tribune

Salk Institute and Chinese researchers report creating a new kind of stem cell, one that is more versatile than any other normally grown in the lab.

Called an extended pluripotent stem cell, it can give rise to every cell type in the body, the researchers say in a recent study. This includes the extra-embryonic tissues such as the placenta that support the developing baby. Just one cell can generate a complete organism.

Embryonic stem cells and artificial embryonic stem cells called induced pluripotent stem cells cant make these extra-embryonic tissues. So neither embryonic nor IPS cells can give rise to a complete embryo, because the supportive tissues necessary for an embryo to survive arent there.

But the extended pluripotent stem cells can reliably give rise to both types of cells, and thus whole embryos and offspring, the scientists report.

The EPS cells were made from human and mouse embryonic stem cells. In addition, they were produced from skin cells, or fibroblasts by treating them with a chemical cocktail. IPS cells, invented in 2006, are generated from fibroblasts by a similar reprogramming process.

Use of IPS cells is regarded as morally acceptable by those who oppose use of human embryonic stem cells, because they cant form an entire embryo. This is the reasoning of the Catholic Church. But since the EPS cells can make whole embryos, at least in mice, how the church will react is unclear.

To demonstrate this ability to make all cell types, the researchers grew an entire mouse from just one EPS cell. They also grew chimeric mice, with human EPS cells integrating into the mice better than embryonic stem cells did.

The study on these new stem cells was published April 6 in the journal Cell. It can be found at j.mp/extendedstem.

Better tool

That characteristic of creating every cell in the body, called totipotency, is normally found only at the very beginning of embryonic development. Embryonic stem cells are usually extracted too late, when the cells have already divided into the embryonic and extra-embryonic lineages.

Totipotent stem cells have been observed in the lab, but they lasted briefly, and didnt yield stable totipotent cell lines.

Salk Institute stem cell researcher Juan Carlos Izpisa Bemonte was a cosenior author of the paper along with Hongkui Deng of Peking University in Beijing. The first authors were Yang Yang, Bei Liu, Jun Xu, and Jinlin Wang; all of Peking University, and Jun Wu, of the Salk Institute.

EPS cell lines provide a useful cellular tool for gaining a better molecular understanding of initial cell fate commitments and generating new animal models to investigate basic questions concerning development of the placenta, yolk sac, and embryo proper, the study stated.

Furthermore, they also provide an unlimited cell resource and hold great potential for in vivo disease modeling, in vivo drug discovery, and in vivo tissue generation in the future. Finally, our study opens a path toward capturing stem cells with intra- and/or inter-species bi-potent chimeric competency from a variety of other mammalian species.

Organs for transplant

The creation of chimeric mice is part of Izpisa Bemontes longstanding goal of growing human organs in animals for transplant.

While mice are too small to grow organs for transplant, they serve as a model to understand how cells from a different species, can be grown in a host body. In this new study, the mice served as a model of how well the EPS cells can integrate.

Izpisa Bemonte is now working to translate his research on chimeric mice to pigs, which are large enough to provide human organs. In January, a team he led reported on work with human-pig chimeras, which were not allowed to grow past the embryonic stage. They also created rat-mice chimeras.

The superior chimeric competency of both human and mouse EPS cells is advantageous in applications such as the generation of transgenic animal models and the production of replacement organs, Wu said in a Salk statement. We are now testing to see whether human EPS cells are more efficient in chimeric contribution to pigs, whose organ size and physiology are closer to humans.

We believe that the derivation of a stable stem cell line with totipotent-like features will have a broad and resounding impact on the stem cell field, Izpisua Belmonte said in the statement.

The work was funded by a number of sources. They include: the National Key Research and Development Program of China; the National Natural Science Foundation of China; the Guangdong Innovative and Entrepreneurial Research Team Program; the Science and Technology Planning Project of Guangdong Province, China; the Science and Technology Program of Guangzhou, China; the Ministry of Education of China (111 Project); the BeiHao Stem Cell and Q9 Regenerative Medicine Translational Research Institute; the Joint Institute of Peking University Health Science Center; University of Michigan Health System; Peking-Tsinghua Center for Life Sciences; the National Science and Technology Support Project; the CAS Key Technology Talent Program; the G. Harold and Leila Y. Mathers Charitable Foundation; and The Moxie Foundation.

bradley.fikes@sduniontribune.com

(619) 293-1020

See the article here:
Stem cell invented that can grow into any tissue in the body - The ... - The San Diego Union-Tribune

Oz: Hard work, exercise and diet can control diabetes – Pueblo Chieftain

Q: I hear there's a clinic in Canada that can medically cure type 2 diabetes without bariatric surgery. I was diagnosed two years ago. Is this true? -- William T., Bozeman, Mont.

A: It's almost true. Because type 2 is a chronic disease, when you have the disease down and out for the count, it's referred to as being in remission, not cured; the reasoning is, it could come back.

That said, a group of researchers from McMaster University in Ontario, Canada, achieved a three-month remission of type 2 diabetes for 40 percent of the people in one of their trial groups.

For the trial, 83 volunteers with type 2 diabetes were divided into three groups: For 16 weeks, members of one group received intense, personalized intervention, including an individual exercise routine, a meal plan cutting food intake by 500-750 calories daily and treatment with metformin, acarbose (an oral alpha-glucosidase inhibitor that lowers blood glucose) and insulin glargine. They also saw a nurse and dietitian regularly.

The second group received the same treatment for eight weeks.

And the third (control) group received standard blood-sugar management and health advice.

At the end of the trial, participants in the two intensive-treatment groups discontinued their medications. In the 16-week intervention group, 11 of 27 participants showed complete- or partial-remission three months later. In the eight-week intervention group, six of 28 saw those results. But remember, this is a trial, not an accepted therapeutic approach.

There are solutions, however. Regular physical activity, avoiding the five food felons, losing 5 to 10 percent of your body weight and taking prescribed medications can reverse type 2 diabetes in over half of participants with early type 2 diabetes or prediabetes. This Canadian study also demonstrates that with hard work, William, you can defeat your diabetes. We hope you're successful.

Q: I've developed age-related macular degeneration. Are stem cell treatments a viable option? -- Gladys G., Miami

A: Stem cell treatments for age-related macular degeneration (AMD) are not ready for prime time.

In 2014, a small study looked at using pluripotent stem cell therapy for dry AMD and found that it might be viable. The first stem cell clinical trial for wet macular degeneration was launched in 2015. A 2016 study in Investigative Ophthalmology & Visual Science concluded: "stem cell-based therapies for non-neovascular AMD are emerging and several clinical trials are in progress. However, there are major regulatory, safety and technical challenges that remain."

Why should you be wary? The New England Journal of Medicine reports on three women who received stem cell therapy for AMD at a clinic in Florida. Two of them checked listings of clinical trials on the website clinicaltrial.gov. They "enrolled" in the Study to Assess the Safety and Effects of Cells Injected Intravitreal in Dry Macular Degeneration. The sponsor was one of hundreds of unregulated for-profit stem cell therapy centers in the U.S. The third woman went directly to the company for treatment.

Their outcomes were horrifying.

The facility charged each woman $5,000. (Red flag: Legitimate clinical trials never ask for payment!) The company's staff then injected stem cells made from each woman's fat cells into her eyes. One woman went completely blind and two are virtually blind.

How do you know if a clinical trial is legit? It should be conducted by a reputable nonprofit research center or hospital/medical center and be free.

How do you know if a stem cell treatment is legit? Ask centers of medical excellence, like the Cleveland Clinic's Cole Eye Institute or The Harkness Eye Institute/CUMC, if they offer such treatments. If they don't, you shouldn't get them elsewhere.

Even some stem cell treatment businesses know they're unreliable. Here's a disclaimer we found on the Internet: "All claims made regarding the efficacy of ... treatments ... are based solely on anecdotal support collected by [the company]." In other words, no scientific evidence backs up their claims.

Mehmet Oz, M.D. is host of "The Dr. Oz Show," and Mike Roizen, M.D. is Chief Medical Officer at the Cleveland Clinic Wellness Institute. Submit your health questions at http://www.youdocsdaily@sharecare.com.

Continue reading here:
Oz: Hard work, exercise and diet can control diabetes - Pueblo Chieftain

Brain cells reprogrammed to make dopamine, with goal of Parkinson’s therapy – The San Diego Union-Tribune

In a pioneering study, European scientists have reprogrammed brain cells in mice to correct some of the movement disorders of Parkinsons disease.

The scientists also demonstrated the reprogramming in human brain cells grown in cultures.

In both mice and human cell cultures, the procedure converted brain cells called astrocytes into cells that produce dopamine, a neurotransmitter necessary for movement. Dopamine-making neurons are destroyed in Parkinsons disease; so replacing them should alleviate symptoms.

Like all biomedical research, this approach will require more development and testing before it can be considered for treating actual patients.

The study was published Monday in Nature Biotechnology. Pia Rivetti di Val Cervo was first author, and Ernest Arenas was senior author. Both are of Karolinska Institute in Stockholm, Sweden.

The study can be found online at j.mp/astropark.

Researchers worked on mice that had had their dopamine-making neurons destroyed. They used a viral delivery system to transmit three genes to the astrocytes that reprogrammed some of them into dopamine-making cells.

The next steps to be taken toward achieving this goal include improving reprogramming efficiency, demonstrating the approach on human adult striatal astrocytes, developing systems to selectively target human striatal astrocytes in vivo, and ensuring safety and efficacy in humans, the study concluded.

The study is a more sophisticated version of gene therapy approaches that have previously been investigated for Parkinsons, and is worth pursuing, said Parkinsons disease researcher Andres Bratt-Leal. However, much more work needs to be done before it can be considered for patients, he said. Meanwhile, other therapeutic projects are much closer to clinical testing.

Bratt-Leal is involved in one of those projects, a San Diego-based initiative to reprogram skin cells from Parkinsons patients into embryonic-like cells called induced pluripotent stem cells, and then mature them into the dopamine producing neurons. These neurons will then be implanted into the brains of the patients, if work by the Summit for Stem Cell Foundation succeeds.

Implanting new neurons has shown tremendous promise in animal models and clinical trials using dopamine-producing neurons derived from embryonic stem cells or induced pluripotent stem cells are going to start in the next 1 to 2 years, said Bratt-Leal, the foundations director of research. Gene therapy is promising, but there remain a lot of questions before it is ready for clinical trial.

In a dish, only a fraction of the cells are successfully made into cells which resemble dopamine-producing neurons, Bratt-Leal said. I'd like to know what happens to all the other cells which don't complete that transformation. Are the cells made with gene therapy as good as the neurons we can make from stem cells?

With cell therapy clinical trials around the corner and improvements in gene therapy technology, patients with Parkinson's disease have reasons to stay active and optimistic about the future.

bradley.fikes@sduniontribune.com

(619) 293-1020

Continue reading here:
Brain cells reprogrammed to make dopamine, with goal of Parkinson's therapy - The San Diego Union-Tribune

Stanford lab grows cornea cells for transplant – The Mercury News

PALO ALTO A Stanford research team has created a potentially powerful new way to fix damaged corneas a major source of vision problems and blindness.

Millions of new eye cells are being grown in a Palo Alto lab, enlisting one of medicines most important and promising new tools: refurbishing diseased and damaged tissue with healthy new cells.

One of the exciting possibilities of this cellular approach is that one donor cornea, which contributes a few parent cells, can generate enough cells to treat tens or hundreds of patients, said lead researcher Dr. Jeffrey Goldberg, professor and chairman of the Department of Ophthalmology at the Stanford University School of Medicine.

About 100,000 corneal transplants are done annually in the United States but they require surgery with donated corneas from cadavers. The procedure fails nearly a third of the time, and there arent enough high-quality donor corneas to go around.

Other scientists have been trying to grow full corneas from scratch, attaching a fragile film of cells to a membrane. Thats a challenging bioengineering problem.

Stanfords innovative strategy, eight years in the making, is to grow individual cells instead. The team then harvests a few mother corneal cells, called progenitor cells, donated from a cadaver.

These cells are then put into a warm broth in petri dishes, where they give birth to many new young corneal cells.

The cells are being grown at Stanfords new Laboratory for Cell and Gene Medicine, a 25,000-square-foot biological manufacturing facility on Palo Altos California Avenue.

The Stanford team enlisted a recent technological advance: magnetic nanoparticles. The particles are incredibly small, measuring only 50 nanometers in diameter. By comparison, a human hair is 75,000 nanometers in diameter.

The new young cells were magnetized with the nanoparticles, loaded into a syringe and injected into the eye.Then, using an electromagnetic force on a patch held outside of the eye, the team pulled the cells into the middle of the eye, to the back of cornea. Later, the magnetic nanoparticles fell off the cells, exited the eye and were excreted in the patients urine.

Ultimately, Goldberg said, the team hopes to mass produce off-the-shelf cells that can be easily transplanted into patients with severe damage to the cornea, the transparent outer coating of the eye that covers the iris and pupil.

In the first trial of 11 patients, a so-called Phase 1 trial, the team only studied safety.

Not only was the procedure safe, but we are seeing hints of efficacy that we are very excited about, Goldberg said. Were cautiously optimistic.

The Stanford team plans to expand the study in September to Phase 2 to measure how the vision of the patients improves.

The effort has been endorsed by the American Academy of Ophthalmology, which says it supports innovative clinical Many countries outside the United States and Europe have a shortage of donor eye tissue, leaving millions of people unable to obtain a donor cornea. If this early research is found to be safe and effective, this technique may help some patients avoid corneal transplant, said Dr. Philip R. Rizzuto, clinical spokesman for the American Academy of Ophthalmology.

If successful, the approach could also be used to replace other types of damaged eye cells, offering therapies for retinal and optic nerve diseases including glaucoma, the leading cause of irreversible blindness, he said.

The approach is part of an expanding field of lab-grown cell therapies. Sheets of healthy skin are used to treat burns, chronic skin wounds and diseases like epidermolysis bullosa, which causes incurable blistering. And bioengineered cartilage is increasingly used to treat certain knee injuries.

Stanford researchers believe that lab-grown corneal cells could become another important type of regenerative medicine.

Unlike other transplants, corneas in the Stanford teams approach dont have to be a perfect match. Rejection can be prevented with simple topical eyedrops.

Goldberg predicted that the approach could eventually replace about 80 percent of corneal transplants.

Specifically, it could repair the damaged inner layer of the cornea, called the endothelium, as seen in diseases like Fuchs dystrophy, which causes corneal damage due to swelling. It would not help in the 20 percent of transplants needed to fix the middle layer of the cornea, called the stroma.

Next month, the team will analyze its early Phase 1 data and also apply for permission from the U.S. Food and Drug Administration to begin Phase 2.

While relatively few people in the United States suffer diseases or injuries that cause devastating cornea damage, the numbers are much greater in developing nations, where infectious eye diseases remain common.

The new approach could offer a nonsurgical permanent solution in those countries, Goldberg said.

Half the world has no access to tissue, he said. I would love this to be one and done, solving patients problems for decades.

Here is the original post:
Stanford lab grows cornea cells for transplant - The Mercury News

‘No proof that stem cell therapy can cure autism’ – Times of India

NAVI MUMBAI: A forum group in Navi Mumbai conducted a question and answer session at Vashi to clear that there is no proof of stem cell therapy cure for autism. Around 100 parents of autistic children were part of the session held at Sunshine Autistic School in Vashi organised by the Forum for Autism group on Saturday. Guest speaker Dr Tatyana Dias, a PhD in neurobiology from the University of Edenburgh, UK, said, "All traditional therapies like occupational therapy, speech Therapy and special education are evidence-based which means they have been proved to be effective through immense research and practice. Whereas stem cell therapy is in research stage, its effectiveness is strongly doubted, even its practice is banned in many countries and if practised, it is done in labs and under strict regulations. In India at present there is no particular body or law to regulate stem cell research." Babita Raja, secretary, Forum for Autism, said, "Parents run from pillar to post for their children's treatment. We are hoping that this awareness programme would help them in deciding what they want to try."

Go here to see the original:
'No proof that stem cell therapy can cure autism' - Times of India

12th Annual Wisconsin Stem Cell Symposium to focus on bioengineering – University of Wisconsin-Madison

Over the past several years, gene editing has become a powerful tool for creating cellular models of human diseases, particularly with the emergence of technologies like CRISPR-Cas9.

But one concern with gene editing tools like CRISPR which allows scientists to cut and paste genetic sequences into a genome to correct errors or introduce changes is precision, says Krishanu Saha, a bioengineering professor at the University of WisconsinMadison. That is, editing genes sometimes introduces errors that could have unintended consequences.

Saha is using CRISPR to reprogram human pluripotent stem cells and immune cells to study diseases like Fragile X syndrome, to discover new drugs and develop cell therapies, and to ask fundamental questions about human biology. On Wednesday, April 19, he will present the strategies his lab has developed to make gene editing more precise at the 12th Annual Wisconsin Stem Cell Symposium.

My talk is focused on genome-level engineering of human cells, Saha says. I will cover ongoing work in my lab that engineers human pluripotent stem cells and T cells from cancer patients.

The strategies Saha and his research team have developed help correct pathogenic point mutations and introduce transgenes with precision, reducing and in some cases eliminating undesirable genomic effects.

Another UWMadison scientist, Professor of Chemical and Biological Engineering Eric Shusta, is using stem cells to explore the biology of the blood-brain barrier. This work will be the subject of his talk at the symposium, which is hosted by the UWMadison Stem Cell and Regenerative Medicine Center (SCRMC) and the BioPharmaceutical Technology Center Institute (BTCI).

The blood-brain barrier is an impermeable network of endothelial cells that protects the brain from toxins and other potentially harmful agents that may be circulating in the blood. A healthy blood-brain barrier is essential for well-being, but issues with this security system for the brain can lead to developmental or other types of disease.

Using stem cells, Shusta and his colleagues have been able to reconstruct the blood-brain barrier in the laboratory dish, providing scientists with a potent model for drug discovery and to explore neurological disorders that may be associated with a compromised barrier. The advent of patient-sourced induced pluripotent stem cells means it may be possible to mimic diseases or conditions and possibly devise treatments for disorders that are now untreatable.

The symposium will also gather a handful of national and international speakers, like Memorial Sloan Kettering Cancer Centers Michel Sadelain (New York) and Leiden University Medical Centers Christine Mummery (The Netherlands), focused around the theme: Engineering Cells and Tissues for Discovery and Therapy.

We sought to bring bioengineers together with biologists and clinicians this year, says Saha, who is also a co-organizer of the event with UWMadison Professor of Chemical and Biological Engineering Sean Palecek. Because bioengineers are working at many levels the genome, cell and tissue we have invited scientists across these scales.

Talks will focus on emerging strategies to control stem cell behavior in the lab and in the body and include genome and cell engineering; stem cells as models of cell and developmental biology; in vitro maturation of stem-cell derived tissues; tissue engineering and organoid development; biomanufacturing; and treatments utilizing engineered human cell products.

We see great synergy in bringing together techniques of controlling behavior across these scales to generate new research tools and therapeutics, Saha says.

Moderators of the symposium include Timothy Kamp, professor of medicine and co-director of SCRMC ; William Murphy, professor of biomedical engineering, orthopedics and rehabilitation, and co-director of SCRMC; Saha and Palecek. It takes place from 8:30 a.m. until 6 p.m. at the BioPharmaceutical Technology Center, 5445 E. Cheryl Parkway, Fitchburg, Wisconsin 53711.

See original here:
12th Annual Wisconsin Stem Cell Symposium to focus on bioengineering - University of Wisconsin-Madison

Put diabetes in remission; beware stem cell treatments for AMD – Hometown Focus

Q: I hear there's a clinic in Canada that can medically cure Type 2 diabetes without bariatric surgery. I was diagnosed two years ago. Is this true? -- William T., Bozeman, Montana

A: It's almost true. Because Type 2 is a chronic disease, when you have the disease down and out for the count, it's referred to as being in remission, not cured; the reasoning is, it could come back. That said, a group of researchers from McMaster University in Ontario, Canada, achieved a three-month remission of Type 2 diabetes for 40 percent of the people in one of their trial groups.

The Trial: Eighty-three volunteers with Type 2 diabetes were divided into three groups: For 16 weeks, members of one group received intense, personalized intervention, including an individual exercise routine, a meal plan cutting food intake by 500-750 calories daily and treatment with metformin, acarbose (an oral alpha-glucosidase inhibitor that lowers blood glucose) and insulin glargine. They also saw a nurse and dietitian regularly. The second group received the same treatment for eight weeks. And the third (control) group received standard blood sugar management and health advice.

The Results: At the end of the trial, participants in the two intensive-treatment groups discontinued their medications. In the 16- week intervention group, 11 of 27 participants showed complete or partial diabetes remission three months later. In the eight-week intervention group, six of 28 saw those results. But remember, this is a trial, not an accepted therapeutic approach.

There are solutions, however: Dr. Mike has demonstrated at his Wellness Institute and through online e-coaching programs that regular physical activity, avoiding the Five Food Felons, losing 5 to 10 percent of your body weight and taking prescribed medications can reverse Type 2 diabetes in over half of participants with early Type 2 diabetes or prediabetes. This Canadian study also demonstrates that with hard work, William, you can defeat your diabetes. We hope you're successful.

Q: I've developed age-related macular degeneration. Are stem cell treatments a viable option? -- Gladys G., Miami

A: stem cell treatments for age-related macular degeneration (AMD) are not ready for prime time. In 2014, a small study looked at using pluripotent stem cell therapy for dry AMD and found that it might be viable. The first stem cell clinical trial for wet macular degeneration was launched in 2015. A 2016 study in Investigative Ophthalmology & Visual Science concluded: "stem cell-based therapies for non-neovascular AMD are emerging and several clinical trials are in progress. However, there are major regulatory, safety and technical challenges that remain."

Why should you be wary? The New England Journal of Medicine reports on three women who received stem cell therapy for AMD at a clinic in Florida. Two of them checked listings of clinical trials on the website http://www.clinicaltrial.gov. They "enrolled" in the Study to Assess the Safety and Effects of Cells Injected Intravitreal in Dry Macular Degeneration. The sponsor was one of hundreds of unregulated for-profit stem celltherapy centers in the U.S. The third woman went directly to the company for treatment. Their outcomes were horrifying.

The facility charged each woman $5,000. (Red flag! Legitimate clinical trials NEVER ask for payment!) The company's staff then injected stem cells made from each woman's fat cells into her eyes. One woman went completely blind and two are virtually blind.

How do you know if a clinical trial is legit? It should be conducted by a reputable NOTFOR PROFIT research center or hospital/ medical center and be free.

How do you know if a stem cell treatment is legit? Ask centers of medical excellence, like the Cleveland Clinic's Cole Eye Institute or The Harkness Eye Institute/CUMC, if they offer such treatments. If they don't, you shouldn't get them elsewhere.

Even some stem cell treatment businesses know they're unreliable. Here's a disclaimer we found on the Internet: "All claims made regarding the efficacy of ... treatments ... are based solely on anecdotal support collected by [the company]." In other words, no scientific evidence backs up their claims.

Mehmet Oz, M.D. is host of The Dr. Oz Show, and Mike Roizen, M.D. is Chief Wellness Officer and Chair of Wellness Institute at Cleveland Clinic. Email your health and wellness questions to Dr. Oz and Dr. Roizen at youdocsdaily(at sign)sharecare.com.

(c) 2017 Michael Roizen, M.D. and Mehmet Oz, M.D. Distributed by King Features Syndicate, Inc.

More here:
Put diabetes in remission; beware stem cell treatments for AMD - Hometown Focus

US Stem Cell Inc (OTCMKTS:USRM) Gets Investment Up To $5M from (GACP) – The Oracle Dispatch

In February shares of US Stem Cell Inc (OTCMKTS:USRM) morphed from a quiet little company to an investment. I believe it can be traced back to a white paper done by Chief Scientific Officer, Kristin Comella. Her conclusions drew a new light on the value prop.

Effects of the intradiscal implantation of stromal vascular fraction plus platelet rich plasma in patients with degenerative disc disease was published in the January volume of the Journal of Translational Medicine. The study focused on the implantation of stromal vascular fraction (SVF) in patients suffering from degenerative disc disease. Patients underwent a local tumescent liposuction procedure to remove approximately 60 ml of fat tissue from the abdomen. The fat was separated to isolate the SVF and the cells were delivered directly into the damage discs. Patients were monitored for a period of 6 months post-treatment, noting considerable decreases in pain and increases in flexion.

If you look at the chart below it ignited the value proposition for this as an investment, and shares moved from a triple zero sub penny to .12 cents on big volume. This catalyst moved this stock 10x higher and bumped the valuation (market cap) from $3 million to $33 million.

US Stem Cell Inc (OTCMKTS:USRM) is a leader in novel regenerative medicine solutions and physician-based stem cell therapies for human and animal patients, and as a result of the share price move the company was able to secure operating capital in the form of a commitment to invest up to $5,000,000 from private equity firm General American Capital Partners LLC (GACP) in exchange for up to 63,873,275 shares of common stock.

We see exponential growth in the stem cell industry, estimated to grow to $170 billion by 2020, said Joseph DaGrosa, Jr., a Principal with General American Capital Partners. We are very pleased to join forces with U.S. Stem Cell, Inc., a leader in regenerative medicine solutions, to help expand our role in this important market.

Find outwhen (USRM) stock reaches critical levels. Subscribe to OracleDispatch.com Right Now by entering your Email in the box below.

$USRM 10-Day Chart Below:

The 21st Century Cures Act, signed into effect in December of 2016, builds on the FDAs ongoing efforts to advance medical product innovation and ensure that patients get access to treatments as quickly as possible, with continued assurance from high quality evidence that they are safe and effective.

Patient demand for regenerative medicine procedures as a viable alternative to surgery, as well as the transformative capacity of stem cell therapies, are leading the way to increased acceptance by both the medical and regulatory communities, said Mike Tomas, President and CEO of U.S. Stem Cell, Inc.

US Stem Cell, Inc. (formerly Bioheart, Inc.) is an emerging enterprise in the regenerative medicine / cellular therapy industry. They are focused on the discovery, development, and commercialization of cell based therapeutics that prevent, treat, or cure disease by repairing and replacing damaged or aged tissue, cells and organs and restoring their normal function. Theybelieve that regenerative medicine / cellular therapeutics will play a large role in positively changing the natural history of diseases, ultimately, we contend, lessening patient burdens, as well as reducing the associated economic impact disease imposes upon modern society.

USRMis broken down into 3 main areas (US Stem Cell Training, Vetbiologics, and US Stem Cell Clinic) which includes the development of proprietary cell therapy products, as well as revenue generating physician and patient based regenerative medicine / cell therapy training services, cell collection and cell storage services, the sale of cell collection and treatment kits for humans and animals, and the operation of a cell therapy clinic. Management maintains that revenues and their associated cash in-flows generated from our businesses will, over time, provide funds to support our clinical development activities, as they do today for our general business operations.

The trick now will be to keep shares up through good execution and keep the common shareholders intact. The lender now has many shares to sell if needed, but the intent is not to have this stock be a penny stock, we will see if they can accomplish this. For continuing coverage on shares of $USRM stock, as well as our other hot stock picks, sign up for our free newsletter today and get our next hot stock pick!

Go here to read the rest:
US Stem Cell Inc (OTCMKTS:USRM) Gets Investment Up To $5M from (GACP) - The Oracle Dispatch

CAR-T Cell Therapy Means A Lot More Than One Or Two New Drug Approvals – Seeking Alpha

In the world of cancer medicine, immunotherapy has taken over with a vice-like grip, offering far-reaching potential for nearly every tumor type known to man. Most prominent in the marketplace have been the immune checkpoint inhibitors, with almost every one of the big five PD-1/PD-L1 antibodies (nivolumab, pembrolizumab, atezolizumab, avelumab, durvalumab) gaining some high-profile drug approval in the last 5 years, to say nothing of the landmark approval of Yervoy in 2011 to kick all of this fervor off.

But before immune checkpoint inhibitors were approved, we had cell-based immunotherapy, notably with the introduction (and subsequent challenges) of Provenge. Cell-based immunotherapy actually goes all the way back to the late 1800s, with bacterial infection being used as a vector to stimulate an immune response in cancer patients.

Now we've gotten more sophisticated. Three companies, Kite Pharma (NASDAQ:KITE), Juno Therapeutics (NASDAQ:JUNO), and Novartis (NYSE:NVS) have been frontrunners in the race to bring so-called CAR-T cell therapy to market for hematologic malignancies.

A primer

Source for image: cancer.gov

The intricate details of CAR-T cell manufacture are too complex to manage in a short publication like this one. But it can be simplified in broad terms down to a few steps:

Some of the more curious among us might be asking...why go to all this trouble? We can train the body's immune system to recognize specific targets. Heck, we've been doing it for decades now with Herceptin and Rituxan. What's wrong with the body's natural defense?

The answer is that CAR-T cells present a few extra advantages to ramp up the immune response: the CAR itself - The name of the technique gives this away. "Chimeric" isn't just a cool word (which it certainly is); it signifies that we've done something special to the receptor in question. In the current line of techniques, we've fused the antigen recognition portion of an antibody to the part of the T cell receptor that tells the cell to grow and divide.

This differs from the normal method the body has to detect a foreign antigen and develop T cells against it:

Source: Srivastava, et al.

You may not recognize the names of the molecules in this figure, but you should be able to see that on the left side, there is careful coordination of a large number of molecules that is required to activate a T cell.

CARs short circuit the whole process, allowing for direct activation of the T cells by tumor cells. This MHC-independent T cell activation is the linchpin of the whole process, bypassing a number of tumor cell defenses and allowing us to develop a special subset of T cells that specifically look for and eliminate any cells in the body that express the antigen we're looking for. In the current case, this is CD19, which is a marker of B cells, hence why all of these latest studies are looking at diseases like B-cell leukemia and diffuse large B-cell lymphoma.

Bioengineered T cells have an end in sight, with several techs being reviewed at the FDA

Since the seminal publication by Maude, et al in 2014 showing incredible response rates in a small cohort of children with relapsed/refractory acute lymphoblastic leukemia (ALL), the world has been watching and waiting for the emergence of CAR-T cell therapy and its revolutionary potential.

No rides are ever smooth in biotech, it seems. For a while, the three big players- KITE, JUNO, NVS- were chasing three different patient populations.

NVS had CTL019, which was being studied in pediatric patients with ALL.

JUNO had JCAR015 for adult patients with ALL.

KITE decided to chase a different beast first, focusing on patients with diffuse large B-cell lymphoma (DLBCL), an aggressive form of non-Hodgkin lymphoma.

In my mind, this presented three distinct patient classes that could allow all three technologies to be marketed simultaneously. In the United States, ALL in kids and adults is not generally managed by the same hematologists; pediatric doctors handle children, specifically.

Unfortunately, fate was not kind to JUNO, who had to suspend their ROCKET trial in adults due to life-threatening toxicity risk. I wrote about this episode last year, and even though the clinical hold was lifted, JUNO eventually terminated development of its JCAR015 platform in March 2017, choosing instead to focus on JCAR017 for DLBCL.

KITE and NVS, in contrast, have achieved significant progress in moving CAR-T cells to the clinic. Both axicabtagene ciloleucel and CTL019 are now being reviewed by federal regulators, and it is likely we'll see responses by the end of 2017.

Given results like those we've seen with the ZUMA and ELIANA (the former I covered in my digest series, 3 Things You Should Learn Today in Biotech), it seems like CAR-T cell therapy presents an enormously promising treatment strategy for these intractable B cell malignancies. Aside from the risk of cytokine storm (an active area of research), these CAR-T platforms are not associated with an outsized risk of severe toxicity, either. I am going to be very surprised if these two techs do not get the nod from the FDA.

Approval of just one of these methods has the promise to usher in a new era for immunotherapy

It is difficult to overstate how reticent the FDA can be to accept a new therapeutic strategy into the fold. They are definitely conservative, and I say this is a very GOOD thing. The history of cancer medicine is peppered with charlatans who have generated excitement and clamor for new, promising cancer therapies.

The FDA needs to be the voice of reason and consider everything, from manufacturing to efficacy to every bit of safety they can uncover. As such, many are frustrated with the speed at which they move.

But the data on CAR-T cells are too compelling to ignore. I think this is going to prompt the FDA to get more familiar with cell-based immunotherapy in general and develop a different tolerance for risk of these approaches.

This represents a major, major inroad for other forms of cell therapy, including JUNO's JCAR015 and the other KITE/NVS platforms for CAR-T cell therapy. We could potentially see approvals for CAR-T cells emerge quickly in other hematologic malignancy settings.

But it also could signal an increasing tolerance for other approaches. And this is the biggest implication for those looking for diamonds in the rough with the stock market. Lots of small up-and-comers are exploring cell-based immunotherapy in various forms. To name just a few:

It's time to get ready for a wild ride in immunotherapy

To be clear, pointing out these companies does not mean I'm suggesting you buy, buy, buy. There are still risks associated with all these nascent technologies, and many will not pan out. Hematologic malignancies have had a long history of achieving groundbreaking therapeutics results that do not translate to solid tumors, so CAR-T cell therapy for, say, pancreatic cancer sounds tantalizing, as this is a huge unmet need. But pancreatic cancer chews through "promising" technologies like nothing else. The graveyard is long and grim there.

Still, my thesis here is that the likely approval of CAR-T cells in heme malignancies is going to give the FDA more experience with "live" immunotherapies, which will help them produce better guidance for other players in the field. This will almost certainly generate substantial excitement, and intrepid investors had better get on the ball sooner rather than later, or else they'll find themselves chasing the gold. Use the experience of JUNO, KITE, and NVS to your favor, and learn what you can about these promising therapies. It will come to play a major role in your due diligence.

Disclosure: I am/we are long ADXS.

I wrote this article myself, and it expresses my own opinions. I am not receiving compensation for it (other than from Seeking Alpha). I have no business relationship with any company whose stock is mentioned in this article.

See more here:
CAR-T Cell Therapy Means A Lot More Than One Or Two New Drug Approvals - Seeking Alpha

Stem Cells for Knees: Promising Treatment or Hoax? – WebMD

April 14, 2017 -- At 55, George Chung of Los Angeles could keep up with skiers decades younger, taking on difficult slopes for hours and hours. "Skiing was my passion," he says.

Then the pain started, and the bad news. He had severe osteoarthritis, the ''wear-and-tear'' type, in both knees. Doctors suggested surgery, but he chose instead an investigational treatment -- injections of stem cells. Two months after the first treatment, he was out of pain. "I had been in pain of various degrees for 6 years," he says.

Now, nine treatments and 3 years later, he is back to intense skiing. Last year, he also took up long-distance cycling, completed five double-century cycling rides, and earned the prestigious California Triple Crown cycling award.

Treatments with stem cells -- which can grow into different types of cells -- are booming in the U.S., with an estimated 500 or more clinics in operation. Some clinics offer treatment for conditions ranging from autism to multiple sclerosis to erectile dysfunction, often without scientific evidence to support how well they work.

Treatment for knee arthritis is especially popular. Its one type of osteoarthritis, which afflicts 30 million Americans. Fees vary, but $2,000 per treatment for knee arthritis is about average. Insurance companies usually deny coverage, although in rare cases they may cover it when done alongwith another, established procedure.

Many doctors and scientists view the growth of stem cell treatments as very promising. But that growth comes as the FDA debates whether to tighten regulations on stem cell clinics after recent reports of patients suffering severe damage from treatment. The only stem cell-based product approved by the FDA is for umbilical cord blood-derived stem cells for blood cancers and other disorders.

In an editorial published March 16 in TheNew England Journal of Medicine, FDA officials warned the lack of evidence for unapproved stem cell treatments is ''worrisome." The officials cited reports of serious side effects, including two people who became legally blind after receiving the treatment in their eyes for macular degeneration.

In another case, a patient who received stem cell injections after a stroke developed paralysis and needed radiation treatment.

The FDA also notes that stem cell treatments potentially have other safety concerns, such as causing tumors to grow. And because patients mayreceive the treatmentsoutside of formal research studies, it can bedifficult to track their side effects.

Doctors say that treating the kneehasless of a chance forcomplications. It is also the body part with perhaps the most research.

Still, even doctors who offer the treatment for arthritic knees say more study is needed.

"We don't have a lot of controlled trials yet," says Keith Bjork, MD, an orthopedist in Amarillo, TX, who has given stem cell treatments to about 500 patients with knee arthritis in the past 5 years. "Their results are the strongest evidence," he says.

The most common side effects are joint stiffness and pain at the injection site as well as swelling, according to the results of one study.

For knee injections, doctors often take stem cells from the patient's bone marrow, fat tissue, or blood. Doctors who do the treatments cite anecdotal evidence as validation that the treatments work.

Marc Darrow, MD, the Los Angeles physical medicine specialist who cares for Chung, says he has done thousands of stem cell treatments. He uses stem cells from the patient's own bone marrow, a process he says is simple and fast.

His patients pain often subsides after knee injections, he says. He also has had cases in which the ''before'' and ''after'' X-rays suggest an increase in cartilage, he says.

Harvey E. Smith, MD, an assistant professor of orthopedic surgery at the Hospital of the University of Pennsylvania, says its clear the treatment has an effect. What is not as clear is how it lessens pain. Researchers are studying whether the stem cells themselves cut inflammation or if they release substances that affect other cells. They also are looking at whether the treatments can regenerate worn-out cartilage.

Published studies have produced mixed results. One from 2014 showed that stem cell injections given aftersurgery to remove torn knee cartilage showed evidence of cartilage regeneration and lessened pain. In March, researchers who reviewed the findings of six studies on stem cells for knee arthritis found that patients reported good results with no serious side effects. More data is needed, however, before researchers can recommend it.

''There is still not enough evidence to suggest this should be routine treatment for knee early osteoarthritis," says Wellington Hsu, MD, the Clifford C. Raisbeck professor of orthopedic surgery at Northwestern University Feinberg School of Medicine. Even so, he says, ''there is very little damage you are going to do with an injection to the knee. I think stem cells appear to be safe in orthopedic applications."

There is, of course, the risk that an investment of a couple thousand dollars will do nothing. But Hsu says that ''you are not going to find the catastrophic cases that will shut down a clinic [as may occur for other body parts].''

For people who have knee arthritis, the most invasive treatment is total knee replacement, Hsu says. Doctors are also testing other injectable therapies, including platelet-rich plasma, hyaluronic acid, and steroids, he says.

Consumers who decide to try stem cell treatments for achy knees should research their doctor and the specifics on the stem cell treatment. It's crucial to ask the clinic where the stem cells come from, Smith says. Ask if they will retrieve them from your own bone marrow or fat tissue, or if they will come from donors. The FDA requires donor cells and tissues to be tested for communicable diseases. There is no consensus on which source is best, but most doctors use stem cells from fat, Hsu says.

The FDA suggests patients who decide to get stem cells for any purpose should speak to their doctor about the potential risks and benefits, and ask whether they are part of an FDA-approved clinical trial. Most often, doctors who offer stem cell treatments are orthopedists, plastic surgeons, or physical medicine and rehabilitation doctors,

The reduction in pain, however, isnt permanent, Smith says. "The effect may last 6 months," he says, citing results from knee studies. When people are paying out of pocket, he adds, they may over-report good effects to feel like they got their money's worth.

Chung, the skier-cyclist, says the investment has been worth it. He plans to continue his injections once or twice a year, as needed, so he can stay active on the bike and the slopes.

SOURCES:

Wellington Hsu, MD, Clifford C. Raisbeck professor of orthopedic surgery, Feinberg Northwestern University School of Medicine, Chicago.

Harvey E. Smith, MD, assistant professor of orthopedic surgery, University of Pennsylvania, Philadelphia.

Keith Bjork, MD, orthopedic surgeon, Amarillo, TX; clinical advisory staff member, Amnio Technology.

Julian Cameron, MD, orthopedic surgeon, Tamarac, FL.

Marc Darrow, MD, Los Angeles physical medicine specialist.

George Chung, stem cell recipient, Los Angeles.

CDC: "Osteoarthritis Fact Sheet."

The Journal of Bone and Joint Surgery: "Adult Human Mesenchymal Stem Cells Delivered via Intra-Articular Injection to the Knee Following Partial Medial Meniscectomy."

The New England Journal of Medicine: "Clarifying Stem-Cell Therapy's Benefits and Risks."

American Academy of Orthopaedic Surgeons annual meeting, presentation: ''Platelet-Rich Plasma, Bone Morphogenetic Protein, and Stem Cells: What Surgeons Need to Know." March 14, 2017, San Diego.

International Society for Stem Cell Research. "Stem Cell Facts."

Andrea Fischer, FDA spokeswoman.

FDA: "Consumer Information on Stem Cells."

Link:
Stem Cells for Knees: Promising Treatment or Hoax? - WebMD