Here’s the Story on US Stem Cell Inc (OTCMKTS:USRM) – Oracle … – The Oracle Dispatch

US Stem Cell Inc (OTCMKTS:USRM) is a micro-cap name thats clearly begun to explode higher in recent days. The company has no clear headline catalyst and no other stem cell stocks are moving at all in recent days. Its a bit of a mystery. However, we can see some clues if we take a closer look at the companys recent headline flow and dig a bit under the surface.

In late January, the companys Chief Scientific Officer, Kristin Comella, published her most recent publication. The piece was titled, Effects of the intradiscal implantation of stromal vascular fraction plus platelet rich plasma in patients with degenerative disc disease. The market reaction was clearly on display. However, the boards seem to suggest something about a lawsuit settlement with a standing issue with Northstar Biotech. It is possible there is something about to break more publicly about a resolution that has some bearing on the prospects for this company. We do not see much out there on it and dont see any clear evidence of promotional activity.

US Stem Cell Inc (OTCMKTS:USRM) trumpets itself as a company committed to the development of effective cell technologies to treat a variety of diseases and injuries. By harnessing the bodys own healing potential, we may be able to reverse damaged tissue to normal function.

U.S. Stem Cells discoveries include multiple cell therapies in various stages of development that repair damaged tissues throughout the body due to injury or disease so that patients may return to a normal lifestyle.

U.S Stem Cell is focused on regenerative medicine. While most stem cell companies use one particular cell type to treat a variety of diseases, U.S Stem Cell utilizes various cell types to treat different diseases. It is our belief that the unique qualities within the various cell types make them more advantageous to treat a particular disease.

Find outwhen $USRM stock reaches critical levels. Subscribe to OracleDispatch.com Right Now by entering your Email in the box below.

According to company materials, US Stem cell, Inc. (formerly Bioheart, Inc.) is an emerging enterprise in the regenerative medicine / cellular therapy industry. We are focused on the discovery, development, and commercialization of cell-based therapeutics that prevent, treat, or cure disease by repairing and replacing damaged or aged tissue, cells, and organs and restoring their normal function. We believe that regenerative medicine / cellular therapeutics will play a large role in positively changing the natural history of diseases, ultimately, we contend, lessening patient burdens, as well as reducing the associated economic impact disease imposes upon modern society.

As noted by the company, the business, which includes three operating divisions (US Stem Cell Training, Vetbiologics, and US Stem Cell Clinic) includes the development of proprietary cell therapy products, as well as revenue generating physician and patient based regenerative medicine / cell therapy training services, cell collection and cell storage services, the sale of cell collection and treatment kits for humans and animals, and the operation of a cell therapy clinic.

Management maintains that revenues and their associated cash in-flows generated from our businesses will, over time, provide funds to support our clinical development activities, as they do today for our general business operations. We believe the combination of our own therapeutics pipeline, combined with our revenue generating capabilities, provides the Company with a unique opportunity for growth and a pathway to profitability.

Traders will note above 1000% during the past month in terms of shareholder gains in the name, a rally that has pushed up against longer standing distributive pressure in the stock. However, USRM has evidenced sudden upward volatility on many prior occasions. Furthermore, the stock has seen an influx in interest of late, with the stocks recent average trading volume running exceeding 610% above its longer-run average levels.

At this time, carrying a capital value in the market of $2.1M, US Stem Cellhas a store ($246K) of cash on the books, which compares with about $3.3M in total current liabilities. One should also note that debt has been growing over recent quarters. USRM is pulling in trailing 12-month revenues of $2.7M. In addition, the company is seeing major top line growth, with y/y quarterly revenues growing at 30.9%. We will update the story again soon as developments transpire. For continuing coverage on shares of $USRM stock, as well as our other hot stock picks, sign up for our free newsletter today and get our next hot stock pick!

See more here:
Here's the Story on US Stem Cell Inc (OTCMKTS:USRM) - Oracle ... - The Oracle Dispatch

Stem cells derived neuronal networks grown on a chip as an alternative to animal testing – Science Daily


Science Daily
Stem cells derived neuronal networks grown on a chip as an alternative to animal testing
Science Daily
In the sudy the researchers demonstrated that neurons differentiated in vitro from mouse embryonic stem cells cultured on multi-electrode arrays (MEAs) can serve as a physiologically relevant cell-based method for detecting BoNT/A holotoxin and complex.

Go here to see the original:
Stem cells derived neuronal networks grown on a chip as an alternative to animal testing - Science Daily

Facts About Cloning – Live Science

Dolly the Sheep in a field at The Roslin Institute.

Cloning is the process of taking genetic information from one living thing and creating identical copies of it. The copied material is called a clone. Geneticists have cloned cells, tissues, genes and entire animals.

Although this process may seem futuristic, nature has been doing it for millions of years. For example, identical twins have almost identical DNA, and asexual reproduction in some plants and organisms can produce genetically identical offspring. And scientists make genetic doubles in the lab, though the process is a little different.

There are three different types of cloning, according to the National Human Genome Research Institute (NHGRI):

In gene cloning, a genetic engineer extracts DNA from an organism and then uses enzymes to break the bonds between nucleotides (the basic building blocks of DNA) and snip the strand into gene-size pieces, according to the University of Nebraska.

Plasmids, small bits of DNA in bacterial cells, are combined with the genes. Then, they are transferred into living bacteria. These bacteria are allowed to grow into colonies to be studied. When a colony of bacteria containing a gene of interest is located, the bacteria can be propagated to make millions of copies of the plasmids. Then, the plasmids can be extracted for gene modification and transformation.

Gene modification, or gene design, is when a genetic engineer cuts the gene apart and replaces regions of it with new material. Transformation is the step in which the new genetic material is transferred to a new organism, which changed it genetically. The organism, such as a plant, is grown, and the seeds they produce have inherited the new genetic properties.

Reproductive cloning

In reproductive cloning, a genetic engineer removes a mature somatic cell (any cell except for reproductive cells) from an organism and transfers the DNA into an egg cell that has had its own DNA removed, according to the NHGRI. Then, the egg is jump-started chemically to start the reproductive process. Finally, the egg is implanted into the uterus of a female of the same species as the egg.

The mother gives birth to an animal that has the same genetic makeup as the animals that donated the somatic cell. This was the process that produced Dolly the sheep.

Therapeutic cloning

Therapeutic cloning works in a similar way to reproductive cloning. A cell is taken from an animal's skin and is inserted into the outer membrane of a donor egg cell. Then, the egg is chemically induced so that it creates embryonic stem cells. These stem cells can be harvested and used in experiments aimed at understanding diseases and developing new treatments. [Infographic: How Stem Cell Cloning Works]

The first study of cloning took place in 1885, when German scientist Hans Adolf Eduard Driesch began researching reproduction. In 1902, he was able to create a set of twin salamanders by dividing an embryo into two separate, viable embryos, according to the Genetic Science Learning Center. Since then, there have been many breakthroughs in cloning.

In 1958, British biologist John Gurdon cloned frogs from the skin cells of adult frogs. On July 5, 1996, a female sheep gave birth to the now-famous Dolly, a Finn Dorset lamb the first mammal to be cloned from the cells of an adult animal at the Roslin Institute in Scotland.

"The birth of Dolly and the new understanding of the opportunity to change the functioning of cells made researchers consider other possible ways of modifying cells," Ian Wilmut, the scientist who led the team that created Dolly, told Live Science.

Since Dolly, many more animal clones have been born, and the process is becoming more mainstream. Research has also been conducted on human-cell cloning. In 2013, scientists at Oregon Health and Science University took donor DNA from an 8-month-old with a rare genetic disease and successfully cloned human embryonic stem cells for the first time. Unfortunately, the researchers didn't remove the cells to save the child. The project was to prove that mature donor cells could be used to produce new ones. This research has evolved into using stem cells for many different applications, including hair regrowth, treatments for burns and more.

Several companies are currently providing services that use cloning technology. For example, South Korea-based Sooam Biotech clones pets for around $100,000. And a Texas-based company, Viagen Pets, clones cats for $25,000 and dogs for $50,000.

Even plants are being cloned. One company is cloning maple trees to provide lumber for guitar-makers, with the aim of duplicating a quality in the wood, called figuring, that gives a guitar a sort of shimmering appearance.

There are many other applications for cloning. The movie "Jurassic Park" stirred the public's imagination and asked the question, "Can we use cloning to bring back extinct species through cloning?" For this process to be successful, scientists would need living DNA from the extinct animal and a living animal egg that is closely related to the extinct creature.

On July 30, 2003, a group of scientists led by Jose Folch at the Center of Food Technology and Research of Aragon, in northern Spain, brought back an extinct wild goat called a bucardo, or Pyrenean ibex. The cloned animal lived for only 10 minutes, according to National Geographic, but the scientists proved that an extinct animal could be brought back. Researchers at Harvard are currently working to clone woolly mammoths, and they say they should be able to do so by 2019.

While cloning a human is currently illegal in most parts of the world, cloning stem cells from humans is a very promising field of research. Stem cells can be reprogrammed to become any type of cell needed to repair or replace damaged tissue or cells in the body. Stem cell research has the potential to help people who have spinal injuries and other conditions.

Another area of research, the cloning of hair follicles, began more than a decade ago. It's just one potential application of human-cell cloning: treating hair loss. "We have learned recently that human hair cells lose their potential to multiply when expanded in cell cultures in a petri dish," said Ken L. Williams Jr., a surgeon and founder of Orange County Hair Restoration and author of "Hair Transplant 360: Follicular Unit Extraction" (Jp Medical Ltd., 2015). "Global gene expression analysis of the human hair follicle, however, has revealed that a special 3D spheroid culture may be able to allow cloning of hair cells in the future years. By manipulating the environment that the human hair cells grow, induction or expansion of hair cells occurs."

Another example of practical human-cell cloning is to use stem cells to help burns heal. A biotech company, RenovaCare, has created what it calls the CellMist System. In this process, stem cells are applied to the burned area on the patient, and that application triggers new skin-cell growth. Though it's still experimental, this process could help burn victims heal faster and experience less scarring.

Additional resources

View original post here:
Facts About Cloning - Live Science

Foundation Medicine Receives Medicare Payment in Non-Small Cell Lung Cancer under a Local Coverage … – Business Wire (press release)

CAMBRIDGE, Mass.--(BUSINESS WIRE)--Foundation Medicine, Inc. (NASDAQ:FMI) today announced that it has received payment from Palmetto GBA, the Companys Medicare Administrative Contractor (MAC) in North Carolina, for its FoundationOne comprehensive genomic profiling assay when used in the clinical course of care for individuals in the United States with Stage IIIB/IV non-small cell lung cancer (NSCLC) who meet the eligibility requirements under Palmetto GBAs Local Coverage Determination L36143 (LCD). The LCD was most recently updated on December 22, 2016. Foundation Medicine began submitting an initial set of claims to Palmetto GBA in January 2017 for FoundationOne, and received its first payments for claims under this LCD on March 1, 2017.

Coverage and payment for FoundationOne under Palmetto GBAs LCD is a positive step toward advancing access to precision medicines for individuals living with non-small cell lung cancer, said Troy Cox, chief executive officer for Foundation Medicine. We look forward to continuing to work with Palmetto GBA as we gain additional payment experience under this LCD for non-small cell lung cancer. We will continue to work with FDA and CMS as they review our universal companion diagnostic test through the Parallel Review process with the goal of being the first pan-cancer, universal companion diagnostic test to receive FDA approval and a National Coverage Determination from CMS.

About Foundation Medicine Foundation Medicine (NASDAQ:FMI) is a molecular information company dedicated to a transformation in cancer care in which treatment is informed by a deep understanding of the genomic changes that contribute to each patient's unique cancer. The company offers a full suite of comprehensive genomic profiling assays to identify the molecular alterations in a patient's cancer and match them with relevant targeted therapies, immunotherapies and clinical trials. Foundation Medicines molecular information platform aims to improve day-to-day care for patients by serving the needs of clinicians, academic researchers and drug developers to help advance the science of molecular medicine in cancer. For more information, please visit http://www.FoundationMedicine.com or follow Foundation Medicine on Twitter (@FoundationATCG).

Cautionary Note Regarding Forward-Looking Statements for Foundation Medicine

This press release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including, but not limited to, statements regarding reimbursement of the Companys comprehensive genomic profiling assays, the benefits provided by anFDA-approved and CMS-covered version of the Companys universal companion diagnostic test, and progress with the Parallel Review process with FDAand CMS; the scope and timing of any approval of FoundationOne as a medical device by FDAand any potential national coverage decisions by CMS; and strategies for achievingMedicarecoverage decisions at the local or national level and new and expanded coverage from third-party payers.All such forward-looking statements are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include the risks that FDA does not approve our universal companion diagnosic test as a medical device or that CMS does not decide to offer our universal companion diagnostic test as a covered benefit underMedicare; FDAor CMS is delayed in the completion of the Parallel Review process; and the risks described under the caption "Risk Factors" inFoundation Medicine's Annual Report on Form 10-K for the year endedDecember 31, 2016, which is being filed with the Securities and Exchange Commission on the date hereof, as well as other risks detailed inFoundation Medicine'ssubsequent filings with theSecurities and Exchange Commission. All information in this press release is as of the date of the release, andFoundation Medicine undertakes no duty to update this information unless required by law.

The rest is here:
Foundation Medicine Receives Medicare Payment in Non-Small Cell Lung Cancer under a Local Coverage ... - Business Wire (press release)

Gene therapy lets a French teen dodge sickle cell disease – Sioux City Journal

Researchers say a French teen who was given gene therapy for sickle cell disease more than two years ago now has enough properly working red blood cells to dodge the effects of the disorder.

The teen was the first in the world to get the treatment for sickle cell, which affects 90,000 Americans, mostly blacks. It's caused by a defective gene for hemoglobin (HE-muh-glow-bin), the stuff in red blood cells that carries oxygen. The cells curl up and clog small blood vessels, causing pain and serious problems.

The boy was given a gene to prevent the sickling, and now half of his red cells work normally. Three similar gene therapy studies are underway in the U.S.

The case is detailed in Thursday's New England Journal of Medicine.

Read more from the original source:
Gene therapy lets a French teen dodge sickle cell disease - Sioux City Journal

Gene Therapy: A Breakthrough for Sickle Cell Anemia? – Montana Standard

WEDNESDAY, March 1, 2017 (HealthDay News) -- Researchers are reporting early success using gene therapy to treat, or even potentially cure, sickle cell anemia.

The findings come from just one patient, a teenage boy in France. But more than 15 months after receiving the treatment, he remained free of symptoms and his usual medications.

That's a big change from his situation before the gene therapy, according to his doctors at Necker Children's Hospital in Paris.

For years, the boy had been suffering bouts of severe pain, as well as other sickle cell complications that affected his lungs, bones and spleen.

Medical experts stressed, however, that much more research lies ahead before gene therapy can become an option for sickle cell anemia.

It's not clear how long the benefits will last, they said. And the approach obviously has to be tested in more patients.

"This is not right around the corner," said Dr. George Buchanan, a professor emeritus of pediatrics at the University of Texas Southwestern Medical Center in Dallas.

That said, Buchanan called the results a "breakthrough" against a disease that can be debilitating and difficult to treat.

Buchanan, who wasn't involved in the research, helped craft the current treatment guidelines for sickle cell.

"This is what people have been wanting and waiting for," he said. "So it's exciting."

Sickle cell anemia is an inherited disease that mainly affects people of African, South American or Mediterranean descent. In the United States, about 1 in 365 black children is born with the condition, according to the U.S. National Heart, Lung, and Blood Institute.

It arises when a person inherits two copies of an abnormal hemoglobin gene -- one from each parent. Hemoglobin is an oxygen-carrying protein in the body's red blood cells.

When red blood cells contain "sickle" hemoglobin, they become crescent-shaped, rather than disc-shaped. Those abnormal cells tend to be sticky and can block blood flow -- causing symptoms such pain, fatigue and shortness of breath. Over time, the disease can damage organs throughout the body.

There are treatments for sickle cell, such as some cancer drugs, Buchanan pointed out, but they can be difficult to manage and have side effects.

There is one potential cure for sickle cell, Buchanan said: a bone marrow transplant.

In that procedure, doctors use chemotherapy drugs to wipe out the patient's existing bone marrow stem cells -- which are producing the faulty red blood cells. They are then replaced with bone marrow cells from a healthy donor.

A major problem, Buchanan said, is that the donor typically has to be a sibling who is genetically compatible -- and free of sickle cell disease.

"We've known for a long time that bone marrow transplants can work," Buchanan said. "But most patients don't have a donor."

That's where gene therapy could fit in. Essentially, the aim is to genetically alter patients' own blood stem cells so they don't produce abnormal hemoglobin.

In this case, the French team, led by Dr. Marina Cavazzana, of Necker Children's Hospital's biotherapy department, focused on a gene called beta globin. In sickle cell anemia, beta globin is mutated.

First, the researchers extracted a stem cell supply from their teen patient's bone marrow, before using chemotherapy to wipe out the remaining stem cells.

Then they used a modified virus to deliver an "anti-sickling" version of the beta globin gene into the stem cells they'd removed pre-chemo. The modified stem cells were infused back into the patient.

Over the next few months, the boy showed a growing number of new blood cells bearing the mark of the anti-sickling gene. The result was that roughly half of his hemoglobin was no longer abnormal.

In essence, Buchanan explained, the therapy "converted" the patient to sickle-cell trait -- that is, a person who carries only one copy of the abnormal hemoglobin gene. Those individuals don't develop sickle cell disease.

"This is encouraging," said Dr. David Williams, president of the Dana-Farber/Boston Children's Cancer and Blood Disorders Center.

But, he cautioned, "the caveat is, this is one patient, and 15 months is a short follow-up."

Williams and his colleagues are studying a different approach to sickle cell gene therapy. It aims to restart the body's production of healthy fetal hemoglobin -- to replace the abnormal "adult" hemoglobin seen in sickle cell.

The hope, Williams said, is that gene therapy will ultimately offer a one-time treatment that cures sickle cell. But no one knows yet whether that will happen.

According to Williams, two key questions are: What's the long-term safety? And will the altered stem cells last for a patient's lifetime?

If gene therapy is proven to work, there will no doubt be practical obstacles to its widespread use, according to Buchanan. It's a high-tech treatment, and many sickle cell patients are low-income and far from a major medical center, he said.

But, Buchanan said, the new findings have now "opened a door."

The study was partly funded by Bluebird Bio, the company developing the therapy.

The results were published March 1 in the New England Journal of Medicine.

See the original post:
Gene Therapy: A Breakthrough for Sickle Cell Anemia? - Montana Standard

Cell Death in Gut Implicated in IBD | Newsroom | Weill Cornell … – Cornell Chronicle

The natural lifecycle of cells that line the intestine is critical to preserving stable conditions in the gut, according to new research led by a Weill Cornell Medicine investigator. The findings may lead to the development of new therapies to alleviate inflammatory bowel disease (IBD) and other chronic inflammatory illnesses.

In the study, published Nov. 9 in Nature, the scientists investigated the healthy turnover of epithelial cells, which are born and die every four to five days, to better understand how the gut maintains a healthy equilibrium. Because cells, called phagocytes, can clear dying cells so quickly in the body, it had been difficult to study this process in tissues. The inability to clear dying cells has been linked to inflammation and autoimmunity. Dying epithelial cells are shed into the gut lumen, so their active clearance is not necessary and they were thought to have no role in intestinal inflammation.

The investigators sought to understand whether phagocytes can take up dying epithelial cells in the gut and, if so, how these phagocytes respond. Specifically, the study tried to ascertain which genes are expressed by phagocytes after the uptake of dead cells. To answer these questions, the scientists engineered a mouse model where they could turn on apoptosis and catch phagocytes in the act of sampling dying cells. Through a series of experiments, they found that several of the genes modulated up or down in phagocytes bearing dead cells overlapped with the same genes that have been associated with susceptibility to IBD.

The mouse model used in the study enables the visualization of a dying red cell within the green fluorescently-labeled small intestinal epithelial cells. The green outline of villi shown delineates the single cell layer of the intestinal epithelium. Cell nuclei are shown in blue. Weill Cornell Medicine investigators tracked dying intestinal epithelial cells into the underlying phagocytes (not visible), and asked how their uptake modulates gene expression in those phagocytes.

The fact that there was an overlap shows that apoptosis must play a role in maintaining equilibrium in the gut, said Dr. Julie Magarian Blander, a senior faculty member in the Jill Roberts Institute for Research in Inflammatory Bowel Disease at Weill Cornell Medicine who was recently recruited as a professor of immunology from Mount Sinai. This study identified cell death within the epithelium as an important factor to consider when thinking about therapeutic strategies for patients with IBD.

In their experiments, the scientists expressed a green fluorescent protein fused to the diphtheria toxin receptor within intestinal epithelial cells of mice, which made them visible under a microscope and sensitive to diphtheria toxin. They injected into these mice a carefully titrated dose of toxin into the intestinal walls of mice to induce cell death. Then the team examined the phagocytes that turned green after they internalized dead cells. Macrophages, one kind of phagocyte, expressed genes that help process the increased lipid and cholesterol load they acquired from dying cells. Dendritic cells, another type of phagocyte, activated genes responsible for instructing the development of regulatory CD4 T cells, a class of suppressive white blood cells. Notably, both phagocytes expressed a common suppression of inflammation gene signature.

Because the same genes that confer susceptibility to IBD were modulated in response to apoptotic cell sampling, the research indicates that a disruption of the phagocytes immunosuppressive response would have consequences for homeostasis or stable conditions in the gut.

We know there is excessive cell death, inflammation and microbial imbalance in IBD, so the prediction is that the immunosuppressive program in phagocytes, associated with natural cell death in the gut epithelium, would be disrupted, Dr. Blander said. The goal in the treatment of IBD is to enhance healing in the gut, but now we know that this also helps phagocytes restore their immunosuppressive and homeostatic functions. We think this would translate into helping patients stay in remission. Theres a lot to learn from phagocytes and we may be able to target the same pathways they use to suppress inflammation in patients with IBD.

The study validates the importance of healing in the mucosa, or lining, of the intestine as a therapy and enhances the understanding of that process. The next phase of Dr. Blanders research will be to investigate how the inflammatory conditions of IBD alter cell death and the homeostatic immunosuppressive functions of intestinal phagocytes, and to do so in both mouse models and different groups of IBD patients undergoing anti-TNF therapy at the Jill Roberts Center for Inflammatory Bowel Disease at New York-Presbyterian and Weill Cornell Medicine.

See the original post:
Cell Death in Gut Implicated in IBD | Newsroom | Weill Cornell ... - Cornell Chronicle

D-backs’ De La Rosa counting on stem-cell therapy to avoid second Tommy John – Arizona Sports (registration) (blog)

Rubby De La Rosa had already undergone Tommy John surgery. So when his right elbow became an issue again, he had a tough decision to make.

He could have the surgery again and risk that it might not be as effective the second time around. Or he could venture down another avenue.

Either way, his career was at stake.

De La Rosa was in his second season as a Diamondback when it was interrupted in September by a familiar pain in his elbow.

His rookie season with the Dodgers in 2011 was cut short for the same reason. He ended up having his first Tommy John procedure.

So when the issue arose again last season, he and Dr. James Andrews who performed De La Rosas first Tommy John surgery discussed the options. They decided stem-cell therapy would be more effective than a second surgery. De La Rosa then received one stem cell injection in late September and another in December.

He has been playing catch and said he feels 100-percent healthy, but he will not begin throwing off the mound until mid-March.

What I see from it right now, its working, said De La Rosa, who will be 28 years old March 4. No more pain, no more soreness. Just waiting for my time.

Dr. Keith Jarbo is an orthopedic surgeon with OrthoArizona who specializes in elbow surgery. Jarbo, who has performed many Tommy John surgeries to repair the ulnar collateral ligament, said the procedure is less effective the second time around.

Stem-cell therapy has become more popular in orthopedics over the past five to 10 years, Jarbo said. Some doctors even use it in addition to Tommy John surgery to accelerate the healing process. He said stem cells are used because they are pluripotent, meaning they can develop into every type of cell that makes up the body.

They have a lot of the growth factors that are necessary for healing, Jarbo said. We think they can be important adjuncts for healing.

However, there is a risk. Jarbo said there is no research that compares the efficacy of stem-cell therapy to that of Tommy John surgery. With the lack of research, Jarbo said one doctor may be using different types of stem cells than another.

He said he doesnt use stem cells and wont until there is more research that shows it is effective. Until then, he cant assure his patients that stem-cell therapy will produce a ligament that has similar characteristics to what it did before the injury.

Its high-risk in the sense that we dont know exactly what its going to do, Jarbo said. We think that it promotes healing, but we dont know exactly what growth factors are within or whats going to happen.

I dont think youre necessarily getting a new, better tissue as if youre developing a robot. Youre really just trying to get good healing and strong appropriate tissue, whether thats with surgery or not.

Jarbo estimated Andrews conducts over 100 Tommy John surgeries per year. He said doctors like Andrews may be helpful in researching stem-cell therapys effectiveness if they can use stem cells on half of their patients and compare the results with the half that received Tommy John surgery.

De La Rosa is part of a group of trendsetters. Last season, Los Angeles Angels of Anaheim pitchers Garrett Richards and Andrew Heaney both received stem cell injections to stave off Tommy John surgery. Heaney ended up needing the surgery anyway.

D-backs manager Torey Lovullo said De La Rosa seems encouraged by his health.

We just know that Rubby is in a really good place, hes been throwing the ball really well hes smiling, and hes back to himself, which is always a good sign for him, he said.

Diamondbacks pitching coach Mike Butcher said stem-cell therapy is unpredictable, but seems to helping De La Rosa.

Its obviously helped out Rubby, Butcher said. The results have been good so far; he feels great. Now its just a matter of working toward the progression of where we can get him off the mound.

Jarbo said the largest risk with using stem-cell therapy may be that players are rushed back to action through an accelerated rehab program.

However, De La Rosa has been patient throughout his now five-month recovery.

He hopes it means the end of his elbow pain.

Its frustrating because sometimes you want to pitch but you cannot pitch because theres a lot of soreness, he said. When you do it right and you get hurt and everything switches, now you cant pitch with your whole motion and you have to limit a lot of things.

You get bad pitching.

See original here:
D-backs' De La Rosa counting on stem-cell therapy to avoid second Tommy John - Arizona Sports (registration) (blog)

Keithley’s Korner: Big benefits from Stem Cell Therapy – Ruidoso News

Tim Keithley, Guest columnist 7:45 a.m. MT March 2, 2017

Tim Keithley(Photo: Courtesy)

Like a lot of folks who love to go skiing, play tennis, and enjoy the Ruidoso year-round beautiful weather, I became discouraged when my right knee went out climbing down a staircase recently.

I waited a few days figuring that it might heal like it always has done before. But this time the injury felt different and seemed to be getting worse.

Turns out you have a torn tendon in your right knee, Dr. Steven Rath of Fusion Medical Spa said on New Mexico in the Morning.

It obviously wasnt going to heal itself, so we had Tim come in and consider stem cell therapy, Dr. Rath said. It turns out that we were able to help his body heal itself without putting him through painful knee surgery.

Within a day after the procedure this week, the knee was sore from having the shots injected right into the tendon, but the regular pain had subsided. It made me a believer in the stem cell therapy Dr. Rath has been talking about on the radio for some time.

Heres a simple explanation of the procedure: Dr. Rath draws your own blood, then separates out the healing platelets through a spinning process, then injects those back into your body to the specific area that needs healing.

Stem cell therapy is nothing new, but its still considered an alternative form of treatment and an experiment, Dr. Rath said. Part of the reason why insurance companies dont cover the procedure has to do with the fact that medical companies prefer patients have surgery when it may not be necessary.

There may be patients out there who definitely need surgery, but providing this procedure has kept many of my patients from having to go under the knife.

Having had the procedure done on my knee this week, I can testify that it works and has given me a new hope that soon Ill be back on the slopes and the tennis court without having the ordeal of potential knee surgery.

Thus far in my practice, stem cell therapy has helped many people in your same situation, Dr. Rath said.

Tim Keithley is the host of the New Mexico in the Morning radio show Monday through Friday, 9 to 10 a.m., on KRUI 1490 AM, KWMW 105.1 FM and 99.1 FM or live streaming at mtdradio.com.

Read or Share this story: http://r-news.co/2lDmO8k

Go here to see the original:
Keithley's Korner: Big benefits from Stem Cell Therapy - Ruidoso News

Artificial embryo shows early potential for medical therapies, not babies – CNN

The artificial structure shows promise as a tool for medical research, though it cannot develop into an actual baby.

After an egg is fertilized by a sperm, it begins to divide multiple times. This process generates a small, free-floating ball of stem cells: a blastocyst.

Within a mammalian blastocyst, the cells that will become the body of the embryo (embryonic stem cells) begin to cluster at one end. Two other types of cells, the extra-embryonic trophoblast stem cells and the endoderm stem cells, begin to form patterns that will eventually become a placenta and a yolk sac, respectively.

To develop further, the blastocyst has to implant in the womb, where it transforms into a more complex architecture. However, implantation hides the embryo from view -- and from experimentation.

In the study, Zernicka-Goetz wanted to replicate developing embryonic events using stem cells.

Other scientists who have attempted the same thing have used only embryonic stem cells, but these experiments, though they have yielded embryoid bodies, have not been entirely successful. The artificial bodies never follow the same chain of events found in nature, and they lack the structure of a natural embryo.

Zernicka-Goetz, a professor in Cambridge's Department of Physiology, Development and Neuroscience, hypothesized that the trophoblast stem cells communicate with the embryonic stem cells and guide their development.

She and her colleagues placed embryonic and trophoblast stem cells within an extra-cellular matrix: the non-cell component found in all tissues and organs that provides biochemical support to cells. This formed a scaffold on which the two stem cell types could co-develop.

The embryonic stem cells sent chemical messages to the trophoblast stem cells and vice versa, said Zernicka-Goetz. Essentially, the different stem cells began to "talk to each other," and this helped the embryonic stem cells, she explained.

"They respond by turning on particular developmental gene circuits or by physically changing shape to accomplish some architectural remodeling," she wrote in an email. "This happens in normal embryogenesis and it is what we are trying to recreate in the culture dish."

Ultimately, the cells organized themselves into a structure that not only looked like an embryo, it behaved like one, with anatomically correct regions developing at the right time and in the right place.

"The results were spectacular -- they formed structures that developed in a way strongly resembling embryos in their architecture and expressing specific genes in the right place and at the right time," Zernicka-Goetz wrote.

Despite its resemblance to a real embryo, this artificial embryo will not develop into a healthy fetus, the researchers said. That would require the endoderm stem cells, which "does other things that are most likely necessary for further development," said Zernicka-Goetz.

"Whether adding these to the system would be enough to achieve further development, I don't know," she said.

"Correct placental development" is essential for proper implantation into "either the womb or a substitute for the womb," she said. "To achieve this will be some time off."

According to Dr. Christos Coutifaris, president-elect of the American Society for Reproductive Medicine and a professor at the University of Pennsylvania, the new study is significant because it shows how "the cells that are extra-embryonic -- the ones that are going to give rise to the placenta -- actually play a role" in the development of cells that eventually become the fetus.

"It's not two completely separate entities," Coutifaris said, referring to the embryo and its support structure. Understanding how the two types of cells interact and the chemical signals they exchange is "really, really critical."

Zernicka-Goetz's model has practical applications in research, where it can be used to better understand the conversation between embryonic stem cells and trophoblast stem cells, he said. "You can manipulate these cells molecularly to try to understand these interactions and how early development occurs pre-implantation."

According to Kyle E. Orwig, an associate professor of obstetrics, gynecology and reproductive sciences, and molecular genetics and biochemistry at the University of Pittsburgh, Zernicka-Goetz's model "will enable investigators to investigate the effects of genetic manipulations, environmental toxins, therapeutics and factors on embryo development." Artificial embryos "represent a powerful tool for research that might reduce (but not eliminate) the need for human embryos," Orwig said.

Dr. David Adamson, a reproductive endocrinologist, an adjunct clinical professor at Stanford University and chairman of the International Committee Monitoring Assisted Reproductive Technologies, believes that it's "very important to continue to do basic science research in reproductive medicine."

"How our species reproduces is very important to know," Adamson said. "When you learn about reproduction and learn how cells reproduce and how cells differentiate and what makes things happen normally and what makes thing happen abnormally, then there clearly are a lot of potential therapeutic applications."

Past advances in reproductive medicine have helped scientists prevent genetic-based diseases, he said. Specifically, in vitro fertilization techniques have allowed doctors to biopsy and conduct genetic tests on embryos to prevent inherited illnesses, including Huntington's.

In vitro fertilization is "fundamentally transformative," said Adamson, who sees the new research as adding to the wealth of knowledge about this procedure.

In fact, Zernicka-Goetz works in the same nondescript brick building on the Cambridge campus where Robert Edwards, a reproductive medicine pioneer, once toiled. Edwards developed the Nobel Prize-winning technique of in vitro fertilization, which eventually resulted in the birth of the first "test tube" baby, Louise Brown.

Helping families have babies is the most obvious contribution of in vitro fertilization. Today, Adamson said, there have been approximately 6.5 million babies born using in vitro fertilization since the procedure was first developed. An exact number is not known because many countries, including China, do not have registries to count them, explained Adamson.

Meanwhile, Zernicka-Goetz said she will continue her work on embryonic development as she and the members of her lab are "totally driven by a curiosity to understand these fundamental aspects of life."

She plans to use human stem cells to create a similar embryonic model. Then she plans to use that model to learn more about normal embryonic development and understand when it goes wrong without needing to experiment on an actual human embryo.

The work also "continually teaches us about the properties of stem cells," Zernicka-Goetz said. She added that this knowledge is useful for developing "therapies to replace faulty tissues in so-called regenerative medicine."

Read this article:
Artificial embryo shows early potential for medical therapies, not babies - CNN