The craftsmanship of mimicking embryogenesis in a dish – BioNews

The regulatory mechanisms governing organ development are, in general, poorly defined. To recreate the complex processes involved in organ growth and maturation, scientists have started fiddling with three-dimensional (3D) cell culture. The 3D self-organisation cell/tissue culture approach is conceptually quite different from standard tissue engineering, where cells are cultured in a flat 2D environment. The idea behind itis that realistic tissue formation is dictated both by the internal processes of the cells, and their interactions with the surrounding environment, including communication with neighbouring cells. Therefore, in vivo tissue development could be more accurately simulated by placing cells within an optimal 3D microenvironment.

A breakthrough happened in 2011, when a Japanese group from RIKEN Centre for Developmental Biology in Kobe reported that in a 3D culture of mouse embryonic stem cell aggregates, the cells self-organised to form organoid tissues including an eyecup-like structure and a functional frontal part of the pituitary gland (1, 2). Although mice are not men, in biological science a standard path is to be able to reproduce in human systems what was discovered first in mice. Indeed, a couple of years later, a team from Austria grew cerebral organoids with discrete brain regions by placing human pluripotent stem cells in a 3D culture system (3).

The next major game-changer in the field of organoids was a study reporting self-assembly of functional human liver 'buds'. Liver buds are functional units formed at the early stages of organ development (4). This time, the starting point was not 3D aggregates of one pluripotent stem cell line; instead, three different cell types liver cells derived from induced pluripotent stemcells, connective tissue stem cells, and blood vessel cells were mixed in a specific ratio, which led to the self-assembly of a functional liver bud. Such functional organoids, built from several distinct cell types, represent a new generation of organoids. By using advanced genome editing techniques, such as CRISPR, to interfere with a single gene expression or function in each of the participating cell types, we will be able to study the complex cell communication signals that govern organogenesis. We will be able to define which cell type is providing which signalling molecules and what their roles are establishing the different cell types that make up tissue.

The laboratory of Professor Magdalena Zernicka-Goetz from the University of Cambridge used a similar approach to generate structures highly resembling post-implantation mouse embryos (5). They combined a single mouse embryonic stem cell with a small clump of three trophoblast stem cells (stem cells that would form the placenta), and cultured them within Matrigel, a 3D extracellular matrix (ECM) scaffold, in a medium that allowed both cell types co-develop. To examine the cross-talk between the two cells types and the signalling pathways involved, the team used cell lines with specific mutations in one of the two cell types, and monitored how lack of a specific gene and/or signal affected the morphogenesis of an embryo-like structure.

I do not see why we would not be technically able to mimic human embryogenesis in a dish using a similar approach. However, I could see how that can be viewed with a touch of controversy even though, in my mind, there are no ethical issues or controversy at all. Although the embryo-like structures might resemble human embryos in vivo, they would have no potential to develop into a live organism. To those prophets who would see such development as a collapse of ethos and humanity, I want to say that I am pretty confident that in the future women will still be a part of our society. They will still be pregnant and they will still deliver babies. They will not be replaced with incubators nurturing endless copies of some future version of Kim Jong-un, Vladimir Putin or Donald Trump. Pregnancy and fetal development are too complex to be simulated.

The future of this work, as I see it, is not only as a 'powerful platform to dissect physical and molecular mechanisms that mediate critical crosstalk during natural embryogeneisis', as the Cambridge team say (5), but also as a sophisticated model for human embryotoxicity screening, to learn more about embryo development and the causes of infertility. Currently used in vitro testing protocols are based on animal embryos, not human embryos, and therefore lack specificity and predictability. This model has the potential to be used for large-scale throughput screening of the multiple stages of human embryo development. By studying and testing these stages, we can learn about the growth and differentiation processes of the embryo in great detail. Furthermore, we can test in vitro whether potential drug candidates affect any of these early embryo development stages. In such a way the embryotoxic or cancerous potential of an agent could be easily assessed in a human system, and many unexplained infertility cases classified as 'infertility of unknown etiology' could be resolved and appropriately addressed.

Link:
The craftsmanship of mimicking embryogenesis in a dish - BioNews

Some genetic variations difficult to evaluate using current stem cell modeling techniques – Phys.Org

March 13, 2017

Some heritable but unstable genetic mutations that are passed from parent to affected offspring may not be easy to investigate using current human-induced pluripotent stem cell (hiPSC) modeling techniques, according to research conducted at The Icahn School of Medicine at Mount Sinai and published March 14, in the journal Stem Cell Reports. The study serves to caution stem cell biologists that certain rare mutations, like the ones described in the study, are difficult to recreate in laboratory-produced stem cells.

Stem cell-based disease modeling involves taking cells from patients, such as skin cells, and introducing genes that reprogram the cells into human-induced pluripotent stem cells (hiPSCs). These "master cells" are unspecialized, meaning they can be pushed to become any type of mature cell needed for research, such as skin, liver or brain. The hiPSCs are capable of renewing themselves over a long period of time, and this emerging stem cell modeling technique is helping elucidate the genetic and cellular mechanisms of many different disorders.

"Our study describes how a complex chromosomal rearrangement genetically passed by a patient with psychosis to her affected son was not well recreated in laboratory-produced stem cells," says Kristen Brennand, PhD, Associate Professor of Genetics and Genomic Sciences, Neuroscience, and Psychiatry at the Icahn School of Medicine, and the study's senior investigator. "As stem cell biologists dive into studying brain disorders, we all need to know that this type of rare mutation is very hard to model with induced stem cells."

To investigate the genetic underpinnings of psychosis, the research team used hiPSCs from a mother diagnosed with bipolar disease with psychosis, and her son, diagnosed with schizoaffective disorder. In addition to the normal 46 chromosomes (23 pairs), the cells in mother and son had a very small extra chromosome, less than 1/10th normal size. This microduplication of genes is increasingly being linked to schizophrenia and bipolar disorders, and the extra chromosomal bit, known as a marker (mar) element, falls into the category of abnormally duplicated genes.

For the first time, the Mount Sinai research team tried to make stem cells from adult cells with this type of mar defect. Through the process, they discovered that the mar element was frequently lost during the reprogramming process.

While mar elements in the general population are rare (less than .05 percent in newborn infants), more than 30 percent of individuals with these defects are clinically abnormal, and mar elements are also significantly more likely to be found in patients with developmental delays.

The study found that the mother's cells were mosaic, meaning some cells were normal while others were not, and the hiPSCs the team created accurately replicated that condition: some were normal and some had the extra mar chromosome. But the technique did not work well with the son's cells. While all of his cells should have had the mar element, as with his mother, some of the reprogrammed stem cells did not contain the extra bit of chromosome.

"We realized we kept losing the mutation in the stem cells we made, and the inability to recreate cells with mar elements may hamper some neuropsychiatric research," says Dr. Brennand. "The bottom line is that it is essential that stem cell biologists look for existing mar elements in the cells they study, in order to check that they are retained in the new stem cells."

Explore further: Researchers engineer new thyroid cells

Researchers have discovered a new efficient way to generate thyroid cells, known as thyrocytes, using genetically modified embryonic stem cells.

A protein that stays attached on chromosomes during cell division plays a critical role in determining the type of cell that stem cells can become. The discovery, made by EPFL scientists, has significant implications for ...

Researchers at the RIKEN Brain Science Institute have used human-induced pluripotent stem cells (hiPSCs) to identify a characteristic of abnormal brain development in schizophrenia. Published in Translational Psychiatry, ...

Oxygen in the air is well known to cause damaging rust on cars through a process known as oxidation. Similarly, a research group at Lund University in Sweden, has now identified that certain cells during embryonic development ...

Induced pluripotent stem cells (iPSCs)adult cells reprogrammed back to an embryonic stem cell-like statemay better model the genetic contributions to each patient's particular disease. In a process called cellular reprogramming, ...

Successful reprogramming of muscle cells derived from biopsies of patients with Andersen's syndrome (AS) led to the formation of induced pluripotent stem (iPS) cells that can serve as a valuable model for understanding the ...

New research by Professor Beth Shapiro of the UC Santa Cruz Genomics Institute and University of Alberta Professor Duane Froese has identified North America's oldest bison fossils and helped construct a bison genealogy establishing ...

Scientists have determined the first 3D structures of intact mammalian genomes from individual cells, showing how the DNA from all the chromosomes intricately folds to fit together inside the cell nuclei.

Scientists have documented many cases in which the timing of seasonal events, such as the flowering of plants or the emergence of insects, is changing as a result of climate change. Now researchers studying a grassland ecosystem ...

Most fish live either in fresh water or salt water, but others, including tilapia, have the remarkable ability to physiologically adjust to varying salinity levelsa trait that may be critically important as climate change ...

When an individual cell needs to move somewhere, it manages just fine on its own. It extends protrusions from its leading edge and retracts the trailing edge to scoot itself along, without having to worry about what the other ...

A subset of protein complexes whose role has long been thought to consist only of chemically degrading and discarding of proteins no longer needed by cells appears to also play a role in sending messages from one nerve cell ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See the article here:
Some genetic variations difficult to evaluate using current stem cell modeling techniques - Phys.Org

Fate Therapeutics cleared to begin clinical trial assessing NK cell therapy in blood cancer; shares up 9% – Seeking Alpha

Thinly traded micro cap Fate Therapeutics (FATE +9.4%) jumps out the blocks on more than a 6x surge in volume in response to its announcement that the FDA has approved its Investigational New Drug (IND) application for FATE-NK100, an adaptive memory natural killer (NK) cell product. The approval paves the way for a first-in-human clinical trial in patients with advanced acute myeloid leukemia (AML).

The early-stage study, to be conducted at the University of Minnesota, will determine the maximum tolerated dose of a single intravenous administration of FATE-NK100 in an accelerated dose escalation design in four patients.

FATE-NK100 is a next-generation immunotherapy based on a subset of NK cells that have shown robust anti-tumor activity in addition to promoting endogenous T cell response while resisting immune checkpoints.

NK cells identify and kill cancer cells by recognizing a range of stress signals expressed on tumor cells. Normal healthy cells are unaffected/unharmed. This is a different mechanism of action compared to T cells which require a specific tumor antigen to elicit an immune response and must be customized for each patient. The company says a significant advantage of NK-based immunotherapy is the avoidance of graft-versus-host disease, a common and potentially serious side-effect of T cell therapies.

More here:
Fate Therapeutics cleared to begin clinical trial assessing NK cell therapy in blood cancer; shares up 9% - Seeking Alpha

New Cardiac Stem Cell Therapy passes Phase I/II Trials – Labiotech.eu (blog)

TiGenix announces positiveone-year results forits phase I/II trial of donor-derived cardiac stem cell therapy in acute myocardial infarction (AMI).

The Belgian biotech TiGenixis developing allogeneic stem cell therapies. Now the companyhasannouncedthat its cardiac stem cell therapyAlloCSC-01 reached its primary endpoints in aphase I/IItrial.

In 2015, the companyacquired Coretherapixin a292M deal for its allogeneic cardiac stem cell pipeline, which is being developed for the treatment of AMI.The first-in-human trial was designed to test the safety and feasibility of an intracoronary infusion of donor-derivedexpanded cardiac stem cells (AlloCSCs)in patients with AMI and left ventricular dysfunction.

AlloCSC-01consists of adult allogeneic cardiac stem cells isolated from the heartof donors and expanded in vitro. In vivo studies suggest that these cellshave cardio-reparative potential by activating regenerative pathways and promoting the formation of new hearttissue.

Thecurrent phase II study demonstrated thesafety of these allogeneic stem cells. Initial results also revealed a larger reduction of infarct size in a subgroup of patients.

Myocardial infarction caused by blockade of coronary arteries

TiGenix is well known forChondroCellect, which was the first cell therapyto reach the European market for the repair of knee cartilage.After the companyrecently withdrew its market authorization for this product, due to a lack of reimbursement, the biotech is focusing on another stem cell therapy, Cx601, in addition to AlloCSC-01. Under development for Crohns disease, Cx601 is currently awaitingEMA approval and is in phase III trials in the US.

For a late-stage clinical company, TiGenix has a low market cap of191M. Even so, the company seems to be doing well these days with the progress of Cx601 and AlloCSC-01.

If AlloCSC-01 obtains market approval, it could treat the more than 1.9 millionpeople affected by AMI, a major cause of heart failure. So far, most treatments are palliative or restore myocardial function by angioplasty and insertion of a stent to support the vascular lumen.

Stem cell therapy of the heart is definitely not a new topic, but many trials have been conducted using the patients own stem cells derived from the bone marrow. A recent meta-analysisof such trials has suggested that these therapies are safe, but do not enhance cardiac function. TiGenixs approach using allogeneic heart-derived stem cells may offer a new and promisingopportunity in thefield.

Images via shutterstock.com / Liya Graphics andVeronika Zakharova

Read the original here:
New Cardiac Stem Cell Therapy passes Phase I/II Trials - Labiotech.eu (blog)

Veterinary Doctors Conduct Study Looking To Ease Arthritis Pain – CBS Philly

March 13, 2017 6:01 PM By Stephanie Stahl

PHILADELPHIA (CBS) Doctors at the University of Pennsylvania School of Veterinary Medicine are conducting a study to see if stem cell therapy will ease the pain of arthritis and the results of their research could benefit human patients as well.

Its Zoeys last check up,walking on a special mat called a forceplate to measure how much weight she puts on each leg.

It was just a year ago that putting weight on her front legs was painful.The 2-year-old Golden Retriever was diagnosed with elbow dysplasia, a condition that created arthritis in both elbows.

It is the most common cause of chronic pain in dogs, saidDr. Kimberly Agnello at Penn Vet.

Zoeys owner, Christine Brown, says she was a bundle of energy when she first got Zoey.

She was so sweet, said Brown. She was your typical energetic puppy.

But soon Brown knew her dog was hurting.

After coming back from a walk and taking a nap, she would get up and limp, said Brown. With her being a puppy it was devastating.

Zoey was enrolled in aPenn Vet trial to determine the benefits of stem cell therapy as a treatment to ease arthritic pain.

They are randomized into three groups, whether they receive an interarticular joint injection of hyaluronic acid or they geteither stem cells derived from their bone marrow or stem cells derived from fat, saidAgnello.

The stems cells from the dogs bone marrow are injected back into the elbow joint. Doctors hope it will relieve the arthritic pain.

We also remove a little fragment of bone that can be causing some more pain, saidAgnello.

The research isnt just about arthritis in dogs but humans as well.

The goals of this study are to look for different treatments to not only help our canine patientsbut also to help human patients with arthritis, saidAgnello.

For now results are promising.

Oh my gosh, she is not limping, she runs and jumps, and has a great time, said Brown.

The trial is ongoing so there is no hard data yet to show final results if stem cells are effective for treating arthritis, but Dr.Agnello says there are many dogs in the study and almost all of them have improved during the year-long research.

Stephanie Stahl, CBS 3 and The CW Philly 57s Emmy Award-winning health reporter, is featured daily on Eyewitness News. As one of the television industrys most respected medical reporters, Stephanie has been recognized by community and he...

DIY St. Patricks Day Party Guide

A Taste Of Philly Wine Week

Getaway Guide To Early Spring

See the original post here:
Veterinary Doctors Conduct Study Looking To Ease Arthritis Pain - CBS Philly

Vitamin C can target and kill cancer stem cells, study shows – Medical News Today

Cancer is currently one of the top killers worldwide, and the number of cancer cases is only expected to rise. Although there are a number of therapies available, most of them are toxic and cause serious side effects. New research examines the impact of the natural vitamin C on cancer cell growth.

Cancer is the second leading cause of death and disease worldwide, accounting for almost 9 million deaths in 2015, according to the World Health Organization (WHO).

The global number of new cases of cancer are expected to grow by around 70 percent in the next 20 years.

In the United States, the National Cancer Institute (NCI) estimate that almost 40 percent of U.S. men and women will have developed cancer at one point during their lives.

There are various treatment options available for cancer, but they are not always effective; most of them are toxic, and they tend to have a variety of side effects.

In some more aggressive cases, the cancer does not respond to treatment, and it is believed that cancer stem-like cells are the reason why the cancer comes back and metastasizes.

New research, published in the journal Oncotarget, examines the effectiveness of three natural substances, three experimental drugs, and one clinical drug in stopping the growth of these cancer stem cells (CSCs.)

The study was conducted by researchers from the University of Salford in Manchester in the United Kingdom, and was led by Dr. Gloria Bonuccelli.

In total, the researchers measured the impact of seven substances: the clinical drug stiripentol, three experimental drugs (actinonin, FK866, and 2-DG), and three natural substances (caffeic acid phenyl ester (CAPE), silibinin, and ascorbic acid (vitamin C).)

The research focused on the bioenergetic processes of CSCs, which enable the cells to live and multiply. The study aimed to disrupt the CSCs' metabolism and ultimately prevent their growth.

Of all the substances tested, the team found that actinonin and FK866 were the most effective. However, the natural products were also found to prevent the formation of CSCs, and vitamin C was 10 times more effective than the experimental drug 2-DG.

Additionally, the study revealed that ascorbic acid works by inhibiting glycolysis - the process by which glucose is broken down within the cell's mitochondria and turned into energy for the cell's proliferation.

Dr. Michael P. Lisanti, professor of translational medicine at the University of Salford, comments on the findings:

"We have been looking at how to target cancer stem cells with a range of natural substances including silibinin (milk thistle) and CAPE, a honey-bee derivative, but by far the most exciting are the results with vitamin C. Vitamin C is cheap, natural, nontoxic and readily available so to have it as a potential weapon in the fight against cancer would be a significant step."

"This is further evidence that vitamin C and other nontoxic compounds may have a role to play in the fight against cancer," says the study's lead author.

"Our results indicate it is a promising agent for clinical trials, and as an add-on to more conventional therapies, to prevent tumor recurrence, further disease progression, and metastasis," Bonuccelli adds.

Vitamin C has been shown to be a potent, nontoxic, anticancer agent by Nobel Prize winner Linus Pauling. However, to the authors' knowledge, this is the first study providing evidence that ascorbic acid can specifically target and neutralize CSCs.

Learn how 300 oranges' worth of vitamin C can impair cancer cells.

Here is the original post:
Vitamin C can target and kill cancer stem cells, study shows - Medical News Today

For The First Time Ever, Scientists Have Successfully Created An … – Wall Street Pit

For The First Time Ever, Scientists Have Successfully Created An Artificial Embryo

It may soon become possible to grow artificial human life in a lab by using stem cells to create an actual embryo. While that might creep some people out because it sure sounds a lot like a precursor to designer babies or even clones, the scientists doing the research would like to make it clear that their intention is something totally different.

By growing embryos and replicating what happens during the early stages of reproduction, they are hoping that they will be able to understand why more than two out of three miscarriages happen, and use then this knowledge to prevent or at least minimize such unfortunate circumstances. In other words, the research is being done to help prevent the loss of lives, not create artificial ones.

Right now, scientists are only allowed to conduct experiments on embryos developed from egg cells donated through in vitro fertilization (IVF) clinics. There arent many of those, however. Plus, regulations (and ethics) dictate that they have to be destroyed after 14 days. But by being able to create their own unlimited supply of artificial embryos, research can be done faster and more extensively. As an added bonus, ethics will not be an issue.

To create the embryos, a research team from the University of Cambridge led by Professor Magdalena Zernicka-Goetz combined embryonic stem cells (ESCs) with extra-embryonic trophoblast stem cells or TSCs (the ones responsible for forming the placenta during a normal pregnancy).

Previous attempts to grow embryos didnt work because only embryonic stem cells were used and this prevented the cells from assembling in their correct positions. Adding the second type of placental stem cell solved this problem.

According to Professor Goetz, although they are aware that interaction between different types of stem cells is important for development, their experiment showed just how important that partnership was. After adding the extra-embryonic trophoblast stem cells, the two types of stem cells began communicating with each other, almost like guiding and telling each other where to go, what to do, and when to do it, until they were eventually able to form an embryo-like structure appearance-wise and behavior-wise, with separate clusters that will give rise to the different body organs, if development was allowed to continue.

The research team is quick to point out, however, that this is as far as they will allow it to progress. In other words, the artificial embryo will not continue to grow into a fetus because it will need a third type of stem cell for that one which forms the yolk sac that is responsible for providing nutrition.

So far, the technique has only been tested on mouse stem cells. Eventually, the team hopes to achieve the same results on human stem cells. And that might prove to be the key that can potentially help solve the problem of failed pregnancies in the future.

As Professor Goetz said in a statement she issued, the team is very optimistic that this will allow [them] to study key events of this critical stage of human development without actually having to work on embryos. Knowing how development normally occurs will allow us [noted Goetz] to understand why it so often goes wrong.

The research was recently published in the journal Science.

Continued here:
For The First Time Ever, Scientists Have Successfully Created An ... - Wall Street Pit

Treating sickle cell disease with gene therapy – Jamaica Observer

After nearly two years of debate about its possible benefits and risks, the gene editing technique is now here to stay.

An article in the December 27, 2015 edition of the Sunday Observer told of the first recorded use of the inexpensive CASPR-Cas9 gene editing technology to cut and splice out bad genes and replace them with healthy genes.

INHERITED DISEASE

A gene is a unit of heredity that is passed down from parent to child, and which carries characteristics that become apparent in the child. Each cell of the human body has around 25,000 genes, and each of those genes carry information that determines the individual traits or features of the person. So there is a gene for eye colour, hair colour, skin colour, and so on.

However, when some genes are defective or they undergo changes or mutation, illnesses can occur. Illnesses may also occur when there are missing genes which should have played a particular role. Some of the problems with genes may also be inherited from a parent.

One such illness well known to us in Jamaica is sickle cell disease. This is a severe hereditary disease in which the haemoglobin protein that is present in red blood cells to carry oxygen around the body is mutated and abnormal. Red blood cells are customarily round and circular in shape to flow smoothly through our blood vessels, but when oxygen levels are low in the bloodstream, the abnormal haemoglobin that is present in people with sickle cell disease cause the red blood cells to bend into a sickle crescent shape, making it difficult for them to flow through the tiny blood vessels of the body, and consequently may cause severe joint pains and other complications.

GENE THERAPY

The concept behind gene therapy is to use the technology of genetic engineering to replace abnormal genes with healthy ones.

Whilst this concept has been around for 30 years, the process became much more accessible with the development of the inexpensive CASPR-Cas9 gene editing technology around two years ago.

In April 2015, scientists in China were able to use the technology to splice out bad genes that were present in human embryonic stem cells and replace them with healthy ones. The stem cells, however, were never implanted into women at the time for their development into humans.

In December 2015, a speaker at the annual symposium of the American Society of Hematology described possible work in which an infant with sickle cell disease would have his or her blood stem cells edited to repair the haemoglobin gene, thereby preventing the formation of blood cells that would have caused sickling. The specific work would involve harvesting the blood stem cells of the diseased infant, editing them outside the body with a normal DNA sequence, then returning them to the infant in a bone marrow transplant.

ETHICAL CONCERNS

As this technique involved editing the haemoglobin gene within the somatic stem cell rather than in the embryonic stem cell, this choice was deemed by many to be the more ethically acceptable approach. Many people are very concerned that the gene editing technique may be used to make long-lasting hereditable changes at the embryo stage or on germ cells (human sperm or eggs), and some find this unacceptable.

This notwithstanding, in February 2016, the United Kingdom Fertilisation and Embryology Authority, who are the UK regulators on fertility matters, granted permission for scientists in London to edit the genomes (the complete set of genetic instructions, which includes all genes) of human embryos for research purposes. The developmental biologists were allowed to use the gene editing technique in healthy embryos to alter genes that are active within the first few days after fertilisation of the egg.

The approved research would utilise healthy human embryos that had been left over from in vitro fertilisation procedures performed in fertility clinics. However, the caveat was that the researchers should stop the research after seven days of study, and the researched embryos destroyed. The study would illuminate how the modification of genes could assist in developing treatments for infertility.

MOST RECENT SUCCESS

A report in the most recent edition of the New England Journal of Medicine informed that a teenage boy with sickle cell disease appeared to have been cured using the gene therapy technique. The treatment had stopped the painful symptoms of the disease, and the teenager was doing well.

Success stories such as this are normally the first step in efforts to reproduce the benefits obtained in individual cases by conducting clinical trials of the treatment on large groups of affected people. Hopefully we will hear of such studies and their outcomes in the near future.

Until preliminary results are verified, however, scepticism will exist regarding whether the positive results obtained in one person will be translated to many more people. Time will tell.

Derrick Aarons MD, PhD is a consultant bioethicist/family physician, a specialist in ethical issues in medicine, the life sciences and research, and is the Ethicist at the Caribbean Public Health Agency CARPHA. (The views expressed here are not written on behalf of CARPHA)

Original post:
Treating sickle cell disease with gene therapy - Jamaica Observer