Oxidative Medicine and Cellular Longevity An Open Access …

Oxidative Medicine and Cellular Longevity is a unique peer-reviewed, open access journal that publishes original research and review articles dealing with the cellular and molecular mechanisms of oxidative stress in the nervous system and related organ systems in relation to aging, immune function, vascular biology, metabolism, cellular survival and cellular longevity. Oxidative stress impacts almost all acute and chronic progressive disorders and on a cellular basis is intimately linked to aging, cardiovascular disease, cancer, immune function, metabolism and neurodegeneration. The journal fills a significant void in todays scientific literature and serves as an international forum for the scientific community worldwide to translate pioneering bench to bedside research into clinical strategies.

Oxidative Medicine and Cellular Longevity was founded in 2008 by Professor Kenneth Maiese who served as the Editor-in-Chief of the journal between 2008 and 2011.

The most recent Impact Factor for Oxidative Medicine and Cellular Longevity is 3.516 according to 2014 Journal Citation Reports released by Thomson Reuters in 2015.

Oxidative Medicine and Cellular Longevity currently has an acceptance rate of 42%. The average time between submission and final decision is 52 days and the average time between acceptance and publication is 28 days.

Original post:
Oxidative Medicine and Cellular Longevity An Open Access ...

Cell Therapy and Regenerative Medicine

Adult (Somatic) stem cells are unspecialized cells that are found in different parts of the body and, depending on the source tissue, have different properties. Adult stem cells are capable of self-renewal and give rise to daughter cells that are specialized to form the cell types found in the original body part.

Adult stem cells are multipotent, meaning that they appear to be limited in the cell types that they can produce based on current evidence. However, recent scientific studies suggest that adult stem cells may have more plasticity than originally thought. Stem cell plasticity is the ability of a stem cell from one tissue to generate the specialized cell type(s) of another tissue. For example, bone marrow stromal cells are known to give rise to bone cells, cartilage cells, fat cells and other types of connective tissue (which is expected), but they may also differentiate into cardiac muscle cells and skeletal muscle cells (this was not initially thought possible).

Hematopoietic stem cells that give rise to all blood and immune cells are today the most understood of the adult stem cells. Hematopoietic stem cells from bone marrow have been providing lifesaving cures for leukemia and other blood disorders for over 40 years. Hematopoietic stem cells are primarily found in the bone marrow but have also been found in the peripheral blood in very low numbers. Compared to adult stem cells from other tissues, hematopoietic stem cells are relatively easy to obtain.

Mesenchymal stem cells are also found in the bone marrow. Mesenchymal stem cells are a mixed population of cells that can form fat cells, bone, cartilage and ligaments, muscle cells, skin cells and nerve cells.

Hematopoietic and stromal stem cell differentiation:4

Umbilical cord blood from newborns is a rich source of hematopoietic stem cells. Research has found that these stem cells are less mature than other adult stem cells, meaning that they are able to proliferate longer in culture and may contribute to a broader range of tissues. Research is ongoing to determine whether umbilical cord stem cells are pluripotent or multipotent and the extent of their plasticity.

Cord blood, which traditionally has been discarded, has emerged as an alternative source of hematopoietic stem cells for the treatment of leukemia, lymphoma and other lethal blood disorders. It has also been used as a life-saving treatment for children with infantile Krabbes disease, a lysosomal storage disease that produces progressive neurological deterioration and death in early childhood.

Regardless of the adult stem cells' source bone marrow, umbilical cord blood or other tissues these cells are present in minute quantities. This makes identification, isolation and purification challenging. Scientists are currently trying to determine how many kinds of adult stem cells exist and where they are located in the body.

Read more:
Cell Therapy and Regenerative Medicine

Personalized RegenerativeMedicine : Dr David Steenblock

Personalized Regenerative Medicine

Making sure the bases are covered. That is how Dr David Steenblock and Personalized Regenerative Medicine delivers on its mission is to provide advanced care for chronic and degenerative disease. Our first step is to do a complete physical evaluation, including all appropriate lab work to help us determine what are the issues that each View Article

When a doctor sees a patient for the first time he will ask for copies of medical records as part of gathering information and data that, in combination with taking a medical history and doing relevant exams and tests, helps him arrive at a diagnosis (or confirm previously made ones) and formulate a medical care View Article

Providing advanced care for chronic and degenerative disease often times requires augmenting natures own repair & restoration mechanism with stem cells. This is one way that Dr David Steenblock and Personalized Regenerative Medicine provide comprehensive care it our patients. When diseasesets in and begins to progress the sufferers bodytries to repair the damage by activating View Article

In his decades of private practice, Dr David Steenblock and Personalized Regenerative Medicine has established himself as a pioneer in many fields of medicine. Dr David Steenblock and Personalized Regenerative Medicines mission is to deliver advanced care for chronic and degenerative diseases such as ALS, Stroke, Cerebral Palsy and Cardiac conditions. From stroke care andacute View Article

Putting it all together. This where Dr David Steenblock and Personalized Regenerative Medicine separate themselves from their peers in delivering advanced care for chronic and degenerative disease. Once a patients diagnosis is confirmed, modified or even overturned and the results of all tests ordered are in, Dr. Steenblock formulates a treatment plan. The therapeutic regimen View Article

Researchers in the USA have offered an explanation for the sparse inflammatory responses seen in some fungal infections.This may help physicians netter understand how to treat certain chronic and degenerative diseases, such as ALS. Stephen Klotz at the University of Arizona and co-workers examined autopsy specimens from 15 patients with histological evidence of aspergillosis, mucormycosis, View Article

Supercharged Chelation therapy is now available. If you already have read about or experienced the benefits of chelation but wondering if there was some way to enhance the therapy Dr Steenblock has come up with a better method for re-vitalization of your arteries and your entire body. The secret is STEM CELLS! The most simple View Article

While the promise of stem cell medicine has never been greater, the question of outcomes has long been an issue. Until now. Dr Steenblock has been focused on two critical issues in his career: identifying the causes of disease and treating patients. Over his many years of practice, Dr Steenblock has treated tens of thousands View Article

Dr Steenblock has long believed that Alzheimers Disease is connected to bacteria that enters the nervous system due to trauma. Recent articles have come to show that his ideas and research are correct. Traces of fungus have been discovered in the brains of Alzheimers sufferers, researchers said Thursday, relaunching the question: might the disease be View Article

Chelation therapy, an alternative technique long dismissed by conventional heart doctors, has taken a giant step toward becoming a first-line mainstream medical treatment, thanks to a boost from the National Institutes of Health. Dr Steenblock has been utilizing this powerful therapeutic approach for many years to treat various conditions. The federal health agencys National Center View Article

See the original post:
Personalized RegenerativeMedicine : Dr David Steenblock

Herbal medicine | Cancer Research UK

Herbal medicine uses plants, or mixtures of plant extracts, to treat illness and promote health. It aims to restore your body's ability to protect, regulate and heal itself. It is a whole body approach, so looks at your physical, mental and emotional well being. It is sometimes called phytomedicine, phytotherapy or botanical medicine.

The two most common types of herbal medicine used in the UK are Western herbal medicine and Chinese herbal medicine. Some herbalists practice less common types of herbal medicine such as Tibetan or Ayurvedic medicine (Indian).

Many modern drugs are made from plants. But herbalists dont extract plant substances in the way the drug industry does. Herbalists believe that the remedy works due to the delicate chemical balance of the whole plant, or mixtures of plants, not one particular active ingredient.

Western herbal medicine focuses on the whole person rather than their illness. So the herbalist looks at your personal health history, family history, diet and lifestyle. Herbalists use remedies made from whole plants, or plant parts, to help your body heal itself or reduce the side effects of medical treatments. Western herbal therapies are usually made from herbs that grow in Europe and North America but also use herbs from China and India.

Chinese herbal medicine is part of a whole system of medicine called Traditional Chinese Medicine (TCM) which includes

TCM aims to restore the balance of your Qi (pronounced chee). TCM practitioners believe that Qi is the flow of energy in your body, and is essential for good health. Chinese herbalists use plants according to their taste and how they affect a particular part of the body or an energy channel in the body. They may use a mixture of plants and other substances.

The Chinese remedy reference book used by TCM practitioners contains hundreds of medicinal substances. Most of the substances are plants but there are also some minerals and animal products. Practitioners may use different parts of plants such as the leaves, roots, stems, flowers or seeds. Usually, herbs are combined and you take them as teas, capsules, tinctures, or powders.

View original post here:
Herbal medicine | Cancer Research UK

The Stem Cell Theory of Cancer – Stanford Medicine Center

Research has shown that cancer cells are not all the same. Within a malignant tumor or among the circulating cancerous cells of a leukemia, there can be a variety of types of cells. The stem cell theory of cancer proposes that among all cancerous cells, a few act as stem cells that reproduce themselves and sustain the cancer, much like normal stem cells normally renew and sustain our organs and tissues. In this view, cancer cells that are not stem cells can cause problems, but they cannot sustain an attack on our bodies over the long term.

The idea that cancer is primarily driven by a smaller population of stem cells has important implications. For instance, many new anti-cancer therapies are evaluated based on their ability to shrink tumors, but if the therapies are not killing the cancer stem cells, the tumor will soon grow back (often with a vexing resistance to the previously used therapy). An analogy would be a weeding technique that is evaluated based on how low it can chop the weed stalksbut no matter how low the weeks are cut, if the roots arent taken out, the weeds will just grow back.

Another important implication is that it is the cancer stem cells that give rise to metastases (when cancer travels from one part of the body to another) and can also act as a reservoir of cancer cells that may cause a relapse after surgery, radiation or chemotherapy has eliminated all observable signs of a cancer.

One component of the cancer stem cell theory concerns how cancers arise. In order for a cell to become cancerous, it must undergo a significant number of essential changes in the DNA sequences that regulate the cell. Conventional cancer theory is that any cell in the body can undergo these changes and become a cancerous outlaw. But researchers at the Ludwig Center observe that our normal stem cells are the only cells that reproduce themselves and are therefore around long enough to accumulate all the necessary changes to produce cancer. The theory, therefore, is that cancer stem cells arise out of normal stem cells or the precursor cells that normal stem cells produce.

Thus, another important implication of the cancer stem cell theory is that cancer stem cells are closely related to normal stem cells and will share many of the behaviors and features of those normal stem cells. The other cancer cells produced by cancer stem cells should follow many of the rules observed by daughter cells in normal tissues. Some researchers say that cancerous cells are like a caricature of normal cells: they display many of the same features as normal tissues, but in a distorted way. If this is true, then we can use what we know about normal stem cells to identify and attack cancer stem cells and the malignant cells they produce. One recent success illustrating this approach is research on anti-CD47 therapy.

Next Section >> Case Study: Leukemia

The rest is here:
The Stem Cell Theory of Cancer - Stanford Medicine Center

Beta cell regeneration – Center for Regenerative Medicine …

Researchers and physicians are studying how to regenerate beta cells in the lab and within the pancreas, which may lead to new treatments for type 1 and type 2 diabetes.

Beta cell dysfunction is a characteristic of both type 1 and type 2 diabetes. In type 1 diabetes, beta cells insulin-producing cells found in the pancreas are destroyed, while in type 2 diabetes, they may not produce enough insulin.

Since it's not possible today to generate new, patient-specific, functional beta cells, people with type 1 diabetes need insulin therapy. People with type 2 diabetes often need medications, with certain cases requiring insulin therapy.

Center for Regenerative Medicine researchers, led by Yasuhiro Ikeda, D.V.M., Ph.D., and Yogish C. Kudva, MBBS, both of Mayo Clinic in Rochester, Minn., are taking two related approaches to beta cell regeneration that may lead to new treatments for diabetes.

In the laboratory. In vitro beta cell regeneration uses induced pluripotent stem (iPS) cells, a type of bioengineered stem cell that acts like an embryonic stem cell. Using a person's own skin cells or blood cells as a starting point, Mayo researchers have successfully generated patient-specific iPS cells and subsequently converted them into glucose-responsive, insulin-producing cells in the laboratory.

Once fully optimized, such cells may enable a novel cell therapy for beta cell dysfunction in diabetes. And since the transplanted cells are derived from the patient's own cells, there would be no need to give the patient any immunosuppressive drugs, which are necessary for pancreas and islet cell transplants today.

In a patient's own pancreas. Mayo researchers are working to enhance a person's natural ability to regenerate beta cells using gene therapy, which involves delivering to the pancreas cellular factors known to enhance beta cell growth and regeneration.

Investigators have developed pancreatic beta cell- and exocrine tissue-specific gene delivery vectors, and they are now studying the therapeutic effects of pancreatic overexpression of beta cell regenerating factors.

Recent results have shown that pancreatic delivery of a synthesized artificial fusion protein can prevent diabetes development in drug-induced diabetic mice. Several other strategies are also being evaluated.

.

Follow this link:
Beta cell regeneration - Center for Regenerative Medicine ...

Penn Medicine News: Genetically Modified "Serial Killer" T …

(PHILADELPHIA) -- In a cancer treatment breakthrough 20 years in the making, researchers from the University of Pennsylvania's Abramson Cancer Center and Perelman School of Medicine have shown sustained remissions of up to a year among a small group of advanced chronic lymphocytic leukemia (CLL) patients treated with genetically engineered versions of their own T cells. The protocol, which involves removing patients' cells and modifying them in Penn's vaccine production facility, then infusing the new cells back into the patient's body following chemotherapy, provides a tumor-attack roadmap for the treatment of other cancers including those of the lung and ovaries and myeloma and melanoma. The findings, published simultaneously today in the New England Journal of Medicine and Science Translational Medicine, are the first demonstration of the use of gene transfer therapy to create "serial killer" T cells aimed at cancerous tumors.

"Within three weeks, the tumors had been blown away, in a way that was much more violent than we ever expected," said senior author Carl June, MD, director of Translational Research and a professor of Pathology and Laboratory Medicine in the Abramson Cancer Center, who led the work. "It worked much better than we thought it would."

The results of the pilot trial of three patients are a stark contrast to existing therapies for CLL. The patients involved in the new study had few other treatment options. The only potential curative therapy would have involved a bone marrow transplant, a procedure which requires a lengthy hospitalization and carries at least a 20 percent mortality risk -- and even then offers only about a 50 percent chance of a cure, at best.

"Most of what I do is treat patients with no other options, with a very, very risky therapy with the intent to cure them," says co-principal investigator David Porter, MD, professor of Medicine and director of Blood and Marrow Transplantation. "This approach has the potential to do the same thing, but in a safer manner."

Secret Ingredients June thinks there were several "secret ingredients" that made the difference between the lackluster results that have been seen in previous trials with modified T cells and the remarkable responses seen in the current trial. The details of the new cancer immunotherapy are detailed in Science Translational Medicine.

After removing the patients' cells, the team reprogrammed them to attack tumor cells by genetically modifying them using a lentivirus vector. The vector encodes an antibody-like protein, called a chimeric antigen receptor (CAR), which is expressed on the surface of the T cells and designed to bind to a protein called CD19.

Once the T cells start expressing the CAR, they focus all of their killing activity on cells that express CD19, which includes CLL tumor cells and normal B cells. All of the other cells in the patient that do not express CD19 are ignored by the modified T cells, which limits side effects typically experienced during standard therapies.

The team engineered a signaling molecule into the part of the CAR that resides inside the cell. When it binds to CD19, initiating the cancer-cell death, it also tells the cell to produce cytokines that trigger other T cells to multiply -- building a bigger and bigger army until all the target cells in the tumor are destroyed.

Serial Killers "We saw at least a 1000-fold increase in the number of modified T cells in each of the patients. Drugs don't do that," June says. "In addition to an extensive capacity for self-replication, the infused T cells are serial killers. On average, each infused T cell led to the killing of thousands of tumor cells and overall, destroyed at least two pounds of tumor in each patient."

The importance of the T cell self-replication is illustrated in the New England Journal of Medicine paper, which describes the response of one patient, a 64-year old man. Prior to his T cell treatment, his blood and marrow were replete with tumor cells. For the first two weeks after treatment, nothing seemed to change. Then on day 14, the patient began experiencing chills, nausea, and increasing fever, among other symptoms. Tests during that time showed an enormous increase in the number of T cells in his blood that led to a tumor lysis syndrome, which occurs when a large number of cancer cells die all at once.

By day 28, the patient had recovered from the tumor lysis syndrome and his blood and marrow showed no evidence of leukemia.

"This massive killing of tumor is a direct proof of principle of the concept," Porter says.

The Penn team pioneered the use of the HIV-derived vector in a clinical trial in 2003 in which they treated HIV patients with an antisense version of the virus. That trial demonstrated the safety of the lentiviral vector used in the present work.

The cell culture methods used in this trial reawaken T cells that have been suppressed by the leukemia and stimulate the generation of so-called "memory" T cells, which the team hopes will provide ongoing protection against recurrence. Although long-term viability of the treatment is unknown, the doctors have found evidence that months after infusion, the new cells had multiplied and were capable of continuing their seek-and-destroy mission against cancerous cells throughout the patients bodies.

Moving forward, the team plans to test the same CD19 CAR construct in patients with other types of CD19-positive tumors, including non-Hodgkin's lymphoma and acute lymphocytic leukemia. They also plan to study the approach in pediatric leukemia patients who have failed standard therapy. Additionally, the team has engineered a CAR vector that binds to mesothelin, a protein expressed on the surface of mesothelioma cancer cells, as well as on ovarian and pancreatic cancer cells.

In addition to June and Porter, co-authors on the NEJM paper include Bruce Levine, Michael Kalos, and Adam Bagg, all from Penn Medicine. Michael Kalos and Bruce Levine are co-first authors on the Science Translational Medicine paper. Other co-authors include June, Porter, Sharyn Katz and Adam Bagg from Penn and Stephan Grupp the Children's Hospital of Philadelphia.

The work was supported by the Alliance for Cancer Gene Therapy, a foundation started by Penn graduates Barbara and Edward Netter, to promote gene therapy research to treat cancer, and the Leukemia & Lymphoma Society.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 17 years, according toU.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2013 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals byU.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2013, Penn Medicine provided$814million to benefit our community.

See the original post here:
Penn Medicine News: Genetically Modified "Serial Killer" T ...

Future of Stem Cell Research – Creating New organs and …

Written by Patrick Dixon

Futurist Keynote Speaker: Posts, Slides, Videos - Biotechnology, Genetics, Gene Therapy, Stem Cells

Stem cell research. Embryonic stem cells and adult stem cells - biotech company progress, stem cell investment, stem cell research results, should you invest in stem cell technology, stem cell organ repair and organ regeneration? Treatment using adult stem cells for people like the late Christopher Reeves, with recent spinal cord injuries - or stroke, or heart damage.

Comment by Dr Patrick Dixon on stem cell research and science of ageing, health care, life expectancy, medical advances, pensions, retirement, lifestyles. (ReadFREE SAMPLE of The Truth about Almost Everything- his latest book.)

Every week there are new claims being made about embryonic stem cells and adult stem cells, what is the truth? Scientific facts have often been lost in the media debate. The death of Superman hero Christopher Reeves has also focussed attention on stem cell research, and the urgent needs of those with spinal cord injury.

Here is a brief summary of important stem cell trends. You will also find on this site keynote presentations on stem cell research, speeches and powerpoint slides on the future of health care, the future of medicine, the future of the pharmaceutical industry, and the future of ageing - all of which are profoundly impacted by stem cell research.

There is no doubt that we are on the edge of a major stem cell breakthrough. Stem cells will one day provide effective low-cost treatment for diabetes, some forms of blindness, heart attack, stroke, spinal cord damage and many other health problems. Animal stem cell studies are already very promising and some clinical trials using stem cells have started (article written in September 2004).

As a physician and a futurist I have been monitoring the future of stem cells for over two decades and advise corporations on these issues. Stem cell investment, research effort, and treatment focus is moving rapidly away from embryonic stem cells (ethical and technical challenges) to adult stem cells which are turning out to be far easier to convert into different tissues than we thought.

I have met a number of leading researchers, and their progress in stem cell research is now astonishing, while over 2,000 new research papers on embryonic or adult stem cells are published in reputable scientific journals every year.

Stem cell technology is developing so fast that many stem cell scientists are unaware of important progress by others in their own or closely related fields. They are unable to keep up. The most interesting work is often unpublished, or waiting to be published. There is also of course commercial and reputational rivalry, which can on occasions tempt scientists to downplay the significance of other people's results (or their claims).What exactly are stem cells? Will stem cells deliver? Should you invest in biotech companies that are developing stem cell technology? What should physicians, health care professionals, planners and health departments expect? What will be the impact of stem cell treatments on the pharmaceutical industry? How expensive will stem cell treatments be? What about the ban on embryonic stem cell research in many nations? Do embryonic stem cell treatments have a future or will they be overtaken by adult stem cell technology?

Embryonic stem cells are also hard to control, and hard to grow in a reliable way. They have "minds" of their own, and embryonic stem cells are often unstable, producing unexpected results as they divide, or even cancerous growths. Human embryonic stem cells usually cause an immune reaction when transplanted into people, which means cells used in treatment may be rapidly destroyed unless they are protected, perhaps by giving medication to suppress the immune system (which carries risks).

One reason for intense interest in human cloning technology is so-called therapeutic cloning. This involves combining an adult human cell with a human egg from which the nucleus has been removed. The result is a human embryo which is dividing rapidly to try and become an identical twin of the cloned adult. If implanted in the womb, such cloned embryos have the potential to be born normally as cloned babies, although there are many problems to overcome, including catastrophic malformations and premature ageing as seen in animals such as Dolly the sheep.

In theory, therapeutic cloning could allow scientists to take embryonic stem cells from the cloned embryo, throw the rest of the embryo away and use the stem cells to generate new tissue which is genetically identical to the person cloned. In practice, this is a very expensive approach fraught with technical challenges as well as ethical questions and legal challenges.

An alternative is to try to create a vast tissue bank of tens of thousands of embryonic cells lines, by extracting stem cells from so many different human embryos that whoever needs treatment can be closely matched with the tissue type of an existing cell line. But even if this is achieved, problems of control and cancer remain. And again there are many ethical considerations with any science that uses human embryos, each of which is an early developing but complete potential human being, which is why so many countries have banned this work.

However a moment's thought tells us how illogical such a view was, and indeed we are now finding that many cells in children and adults have extraordinary capacity to generate or stimulate growth of a wide variety of tissues, if encouraged in the right way.

Take for example the work of Professor Jonathan Slack at Bath University who has shown how adult human liver cells can be transformed relatively easily into insulin producing cells such as those found in the pancreas, or the work of others using bone marrow cells to repair brain and spinal cord injuries in mice and rats, and now doing the same to repair heart muscle in humans.

Why should this surprise us? We know that almost all cells in your body contain your entire genome or book of life: enough information to make an entire copy of you, which is the basis of cloning technology. So in theory, just about every cell can make any tissue you need. However, the reality is that in most cells almost every gene you have is turned off - but as it turns out, not as permanently as we thought.

If we take one of your skin cells and fuse it with an unfertilized human egg, the chemical bath inside a human egg activates all the silenced genes, and the combined cell becomes so totipotent that it starts to make a new human being.

What then if we could find a way to reactivate just a few silenced genes, and perhaps at the same time silence some of the others? Could we find a chemical that would mimic what happens in the embryo, with the power to transform cells from one type into another? Yes we can. Jonathan Slack and others have done just that. What was considered impossible five years ago is already history.

Could we take adult cells and force them back into a more general, undetermined embryonic state? Yes we can. It is now possible to create cells with a wide range of plasticity, all from adult tissue. The secret is to get the right gene activators into the nucleus, not so hard as we thought.

Suppose you have a heart attack. A cardiothoracic surgeon talks to you about using your own stem cells in an experimental treatment. You agree. A sample of bone marrow is taken from your hips, and processed using standard equipment found in most oncology centers for treating leukemia. The result is a concentrated number of special bone marrow cells, which are then injected back into your own body - either into a vein in your arm, or perhaps direct into the heart itself.

The surgeon is returning your own unaltered stem cells back to you, to whom these cells legally belong. This is not a new molecule requiring years of animal and clinical tests. Your own adult stem cells are available right now. No factory is involved - nor any pharmaceutical company sales team.

What is more, there are no ethical questions (unlike embryonic stem cells), no risk of tissue rejection, no risk of cancer.

Now we begin to see why research funds are moving so fast from embryonic stem cells to adult alternatives.

Harvard Medical School is another center of astonishing progress in adult stem cells. Trials have shown partially restored sight in animals with retinal damage. Clinical trials are expected within five years, using adult stem cells as a treatment to cure blindness caused by macular degeneration - old-age blindness and the commonest cause of sight-loss in America. Within 10 years, it is hoped that people will be able to be treated routinely with their own stem cells in a clinic using a two-hour process.

If you want further evidence of this switch in interest from embryonic to adult stem cells, look at the makers of Dolly the sheep. The Rosslyn Institute in Scotland are pioneers in cloning technology. They, along with others, campaigned successfully in UK Parliament for the legal right to use the same technology in human embryos (therapeutic cloning, not with the aim of clones being born). But three years later, they had not even bothered to apply for a human cloning licence.

Why not? Because investors were worried about throwing money at speculative embryo research with massive ethical and reputational risks. Newcastle University made headlines in August 2004 when granted the first licence to clone human embryos - but the real story was why it had taken so long to get a single research institute in the UK to actually get on and apply. Answer: medical research moved on and left the "therapeutic" human cloners behind.

The debate centers on technical questions and semantics, rather than the reality of results. Take for example heart repair. We know that bone marrow cells can land up in damaged heart and when present, the heart is repaired. It is hard to be certain what proportion of this remarkable process is due to stimulants released locally by bone marrow cells, or by the bone marrow cells actually differentiating into heart tissue.

It remains a confusing picture, not least because in the lab, cells seem to change character profoundly, but in clinical trials it appears the effects of many stem cells are stimulatory. But who cares? As a clinician, I am delighted if injecting your bone marrow cells into your back means that you are walking around 3 months after a terrible injury to your spine instead of being in a wheelchair for the rest of your life. I am not so concerned with exactly how it all works, and nor will you be.

In summary, expect rapid progress in adult stem cells and slower, less intense work with embryonic stem cells. Embryonic stem cell technology is already looking rather last-century, along with therapeutic cloning. History will show that, by 2020, we were already able to produce a wide range of tissues using adult stem cells, with spectacular progress in tissue building and repair. In some cases, these stem cells will be actually incorporated into the new repairs as differentiated cells, in other cases, they will be temporary assistants in local repair processes.

And along the way we will see a number of biotech companies fold, as a result of over-investment into embryonic stem cells, plus angst over ethics and image, without watching the radar screen closely enough, failing to see the onward march of adult stem cell technology.

Using embryos as a source of spare-part cells will always be far more controversial than using adult tissue, or perhaps cells from umbilical cord after birth, and investors will wish to reduce uneccessary risk, both to the projects they fund, and to their own organisations by association.

Despite this, we can expect embryonic stem cell research to continue in some countries, with the hope of scientific breakthroughs of various kinds.

Article written May 2004.

Related news items:

Newer news items:

Older news items:

Thanks for promoting with Facebook LIKE or Tweet. Really interested to hear your views. Post below.

Javacript is required for help and viewing images.

1

Read the rest here:
Future of Stem Cell Research - Creating New organs and ...

CAR T-Cell Immunotherapy for ALL – National Cancer Institute

On This Page

For years, the cornerstones of cancer treatment have been surgery, chemotherapy, and radiation therapy. Over the last decade, targeted therapies like imatinib (Gleevec) and trastuzumab (Herceptin)drugs that target cancer cells by homing in on specific molecular changes seen primarily in those cellshave also emerged as standard treatments for a number of cancers.

Illustration of the components of second- and third-generation chimeric antigen receptor T cells. (Adapted by permission from the American Association for Cancer Research: Lee, DW et al. The Future Is Now: Chimeric Antigen Receptors as New Targeted Therapies for Childhood Cancer. Clin Cancer Res; 2012;18(10); 278090. doi:10.1158/1078-0432.CCR-11-1920)

And now, despite years of starts and stutter steps, excitement is growing for immunotherapytherapies that harness the power of a patients immune system to combat their disease, or what some in the research community are calling the fifth pillar of cancer treatment.

One approach to immunotherapy involves engineering patients own immune cells to recognize and attack their tumors. And although this approach, called adoptive cell transfer (ACT), has been restricted to small clinical trials so far, treatments using these engineered immune cells have generated some remarkable responses in patients with advanced cancer.

For example, in several early-stage trials testing ACT in patients with advanced acute lymphoblastic leukemia (ALL) who had few if any remaining treatment options, many patients cancers have disappeared entirely. Several of these patients have remained cancer free for extended periods.

Equally promising results have been reported in several small trials involving patients with lymphoma.

These are small clinical trials, their lead investigators cautioned, and much more research is needed.

But the results from the trials performed thus far are proof of principle that we can successfully alter patients T cells so that they attack their cancer cells, said one of the trial's leaders, Renier J. Brentjens, M.D., Ph.D., of Memorial Sloan Kettering Cancer Center (MSKCC) in New York.

Adoptive cell transfer is like giving patients a living drug, continued Dr. Brentjens.

Thats because ACTs building blocks are T cells, a type of immune cell collected from the patients own blood. After collection, the T cells are genetically engineered to produce special receptors on their surface called chimeric antigen receptors (CARs). CARs are proteins that allow the T cells to recognize a specific protein (antigen) on tumor cells. These engineered CAR T cells are then grown in the laboratory until they number in the billions.

The expanded population of CAR T cells is then infused into the patient. After the infusion, if all goes as planned, the T cells multiply in the patients body and, with guidance from their engineered receptor, recognize and kill cancer cells that harbor the antigen on their surfaces.

Although adoptive cell transfer has been restricted to small clinical trials so far, treatments using these engineered immune cells have generated some remarkable responses in patients with advanced cancer.

This process builds on a similar form of ACT pioneered by Steven Rosenberg, M.D., Ph.D., and his colleagues from NCIs Surgery Branch for patients with advanced melanoma.

The CAR T cells are much more potent than anything we can achieve with other immune-based treatments being studied, said Crystal Mackall, M.D., of NCIs Pediatric Oncology Branch (POB).

Even so, investigators working in this field caution that there is still much to learn about CAR T-cell therapy. But the early results from trials like these have generated considerable optimism.

CAR T-cell therapy eventually may become a standard therapy for some B-cell malignancies like ALL and chronic lymphocytic leukemia, Dr. Rosenberg wrote in a Nature Reviews Clinical Oncology article.

More than 80 percent of children who are diagnosed with ALL that arises in B cellsthe predominant type of pediatric ALLwill be cured by intensive chemotherapy.

For patients whose cancers return after intensive chemotherapy or a stem cell transplant, the remaining treatment options are close to none, said Stephan Grupp, M.D., Ph.D., of the Childrens Hospital of Philadelphia (CHOP) and the lead investigator of a trial testing CAR T cells primarily in children with ALL. This treatment may represent a much-needed new option for such patients, he said.

Trials of CAR T cells in adults and children with leukemia and lymphoma have used T cells engineered to target the CD19 antigen, which is present on the surface of nearly all B cells, both normal and cancerous.

In the CHOP trial, which is being conducted in collaboration with researchers from the University of Pennsylvania, all signs of cancer disappeared (a complete response) in 27 of the 30 patients treated in the study, according to findings published October 16 in the New England Journal of Medicine.

Nineteen of the 27 patients with complete responses have remained in remission, the study authors reported, with 15 of these patients receiving no further therapy and 4 patients withdrawing from the trial to receive other therapy.

According to the most recent data from a POB trial that included children with ALL, 14 of 20 patients had a complete response. And of the 12 patients who had no evidence of leukemic cells, called blasts, in their bone marrow after CAR T-cell treatment, 10 have gone on to receive a stem cell transplant and remain cancer free, reported the studys lead investigator, Daniel W. Lee, M.D., also of the POB.

Dr. Crystal Mackall

Our findings strongly suggest that CAR T-cell therapy is a useful bridge to bone marrow transplant for patients who are no longer responding to chemotherapy, Dr. Lee said.

Similar results have been seen in phase I trials of adult patients conducted at MSKCC and NCI.

In findings published in February 2014, 14 of the 16 participants in the MSKCC trial treated to that point had experienced complete responses, which in some cases occurred 2 weeks or sooner after treatment began. Of those patients who were eligible, 7 underwent a stem cell transplant and are still cancer free.

The NCI-led trial of CAR T cells included 15 adult patients, the majority of whom had advanced diffuse large B-cell lymphoma. Most patients in the trial had either complete or partial responses, reported James Kochenderfer, M.D., and his NCI colleagues.

Our data provide the first true glimpse of the potential of this approach in patients with aggressive lymphomas that, until this point, were virtually untreatable, Dr. Kochenderfer said. [NCI Surgery Branch researchers have also reported promising results from one of the first trials testing CAR T cells derived from donors, rather than the patients themselves, to treat leukemia and lymphoma.]

Other findings from the trials have been encouraging, as well. For example, the number of CAR T cells increased dramatically after infusion into patients, as much as 1,000-fold in some individuals. In addition, after infusion, CAR T cells were detected in the central nervous system, a so-called sanctuary site where solitary cancer cells that have evaded chemotherapy or radiation may hide. In two patients in the NCI pediatric trial, the CAR T-cell treatment eradicated cancer that had spread to the central nervous system.

If CAR T cells can persist at these sites, it could help fend off relapses, Dr. Mackall noted.

CAR T-cell therapy can cause several worrisome side effects, perhaps the most troublesome being cytokine-release syndrome.

The infused T cells release cytokines, which are chemical messengers that help the T cells carry out their duties. With cytokine-release syndrome, there is a rapid and massive release of cytokines into the bloodstream, which can lead to dangerously high fevers and precipitous drops in blood pressure.

Cytokine-release syndrome is a common problem in patients treated with CAR T cells. In the POB and CHOP trials, patients with the most extensive disease prior to receiving the CAR T cells were more likely to experience severe cases of cytokine-release syndrome.

For most patients, trial investigators have reported, the side effects are mild enough that they can be managed with standard supportive therapies, including steroids.

The research team at CHOP noticed that patients experiencing severe reactions all had particularly high levels of IL-6, a cytokine that is secreted by T cells and macrophages in response to inflammation. So they turned to two drugs that are approved to treat inflammatory conditions like juvenile arthritis: etanercept (Enbrel) and tocilizumab (Actemra), the latter of which blocks IL-6 activity.

The patients had excellent responses to the treatment, Dr. Grupp said. We believe that [these drugs] will be a major part of toxicity management for these patients.

The other two teams subsequently used tocilizumab in several patients. Dr. Brentjens agreed that both drugs could become a useful way to help manage cytokine-release syndrome because, unlike steroids, they dont appear to affect the infused CAR T cells activity or proliferation.

Even with these encouraging preliminary findings, more research is needed before CAR T-cell therapy becomes a routine option for patients with ALL.

We need to treat more patients and have longer follow-up to really say what the impact of this therapy is [and] to understand its true performance characteristics, Dr. Grupp said.

We need to treat more patients and have longer follow-up to really say what the impact of this therapy is [and] to understand its true performance characteristics.

Dr. Stephan Grupp

Several other trials testing CAR T cells in children and adults are ongoing and, with greater interest and involvement from the pharmaceutical and biotechnology sector, more trials testing CAR T cells are being planned.

Researchers are also studying ways to improve on the positive results obtained to date, including refining the process by which the CAR T cells are produced.

Research groups like Dr. Brentjens are also working to make a superior CAR T cell, including developing a better receptor and identifying better targets.

For example, Dr. Lee and his colleagues at NCI have developed CAR T cells that target the CD22 antigen, which is also present on most B cells, although in smaller quantities than CD19. The CD22-targeted T cells, he believes, could be used in concert with CD19-targeted T cells as a one-two punch in ALL and other B-cell cancers. NCI researchers hope to begin the first clinical trial testing the CD22-targeted CAR T cells in November 2014.

Based on the success thus far, several research groups across the country are turning their attention to developing engineered T cells for other cancers, including solid tumorslike pancreatic and brain cancers.

The stage has now been set for greater progress, Dr. Lee believes.

NCI investigators, for example, now have a platform to plug and play better CARs into that system, without a lot of additional R&D time, he continued. Everything else should now come more rapidly.

Link:
CAR T-Cell Immunotherapy for ALL - National Cancer Institute

Adult vs. Embryonic Stem Cells – Brown University

Advantages of Adult Stem Cells

Both lines of stem cells have an enormous therapeutic potential. While embryonic stem cells offer the potential for wider therapeutic applications, adult stem cells avoid the ethical issues roused by embryonic stem cell research. Therefore, many stem cell therapies are currently being tested using adult stem cells. Additionally, adult stem cells offer the potential for autologous stem cell donation, which may help to avoid issues of immune rejection in certain situations.

It is also known that upon injection into mice with compromised immune systems, undifferentiated embryonic stem cells elicit the formation of a benign tumor called a teratoma. This tumor formation causes scientists to doubt the therapeutic applicability of embryonic stem cells. It is not yet known whether similar results are observed with adult stem cells [17].

Advantages of Embryonic Stem Cells

The advantages of embryonic stem cells is that they offer one cell source for multiple indications. They provide the potential for a wider variety of applications than do adult stem cells. Additionally, they theoretically have the possibility of being immuno-privileged, due to their highly undifferentiated state. A privileged immune status would remove one of the main barriers of stem cell therapies, as self rejection is one stem cell therapys main complications [17]. The idea that embryonic stem cells can be immune privilaged, must be viewed skeptically, however, as this theory has not yet been proven.

Another advantage of embryonic stem cells, is that they appear to be immortal in vitro, while adult and differentiated stem cells cannot be cultured indefinitely in the lab. Once differentiated, these stem cells seem to die off like typical tissue cells.

Click Here to go Back to: Stem Cell Types

Click Here to go to: Stem Cell Classification

Click Here to go to: Clinical Therapies

Click Here to go to: Stem Cells and Research

Click Here to go to: History of Stem Cells

Click Here to go to: Stem Cell Funding

Click Here to go to: Challenges

Read more:
Adult vs. Embryonic Stem Cells - Brown University