Zhang Y, Lin C, Liu M, Zhang W, Xun X, Wu J, et al. Burden and trend of cardiovascular diseases among people under 20 years in China, Western Pacific region, and the world: an analysis of the global burden of disease study in 2019. Front Cardiovasc Med. 2023;10:1067072.
Article PubMed PubMed Central Google Scholar
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254743.
Article PubMed Google Scholar
Pflanz S, Sonnek S. Work stress in the military: prevalence, causes, and relationship to emotional health. Mil Med. 2002;167(11):87782.
Article PubMed Google Scholar
Bustamante-Snchez , Tornero-Aguilera JF, Fernndez-Elas VE, Hormeo-Holgado AJ, Dalamitros AA, Clemente-Surez VJ. Effect of stress on autonomic and cardiovascular systems in military population: a systematic review. Cardiol Res Pract. 2020;2020:7986249.
Article PubMed PubMed Central Google Scholar
Steptoe A, Kivimki M. Stress and cardiovascular disease. Nat Rev Cardiol. 2012;9(6):36070.
Article CAS PubMed Google Scholar
Grsz A, Tth E, Pter I. A 10-year follow-up of ischemic heart disease risk factors in military pilots. Mil Med. 2007;172(2):2149.
Article PubMed Google Scholar
Heidenreich PA, Sahay A, Kapoor JR, Pham MX, Massie B. Divergent trends in survival and readmission following a hospitalization for heart failure in the Veterans Affairs health care system 2002 to 2006. J Am Coll Cardiol. 2010;56(5):3628.
Article PubMed Google Scholar
Mamas MA, Sperrin M, Watson MC, Coutts A, Wilde K, Burton C, et al. Do patients have worse outcomes in heart failure than in cancer? A primary care-based cohort study with 10-year follow-up in Scotland. Eur J Heart Fail. 2017;19(9):1095104.
Article PubMed Google Scholar
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146603.
Article PubMed PubMed Central Google Scholar
Lawson CA, Zaccardi F, Squire I, Ling S, Davies MJ, Lam CSP, et al. 20-year trends in cause-specific heart failure outcomes by sex, socioeconomic status, and place of diagnosis: a population-based study. Lancet Public Health. 2019;4(8):e40620.
Article PubMed PubMed Central Google Scholar
Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnab-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98102.
Article CAS PubMed PubMed Central Google Scholar
Tenreiro MF, Louro AF, Alves PM, Serra M. Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen Med. 2021;6(1):30.
Article PubMed PubMed Central Google Scholar
Curfman G. Stem cell therapy for heart failure: an unfulfilled promise? JAMA. 2019;321(12):11867.
Article PubMed Google Scholar
Zhang J, Bolli R, Garry DJ, Marbn E, Menasch P, Zimmermann WH, et al. Basic and translational research in cardiac repair and regeneration: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78(21):2092105.
Article CAS PubMed PubMed Central Google Scholar
Plackett B. Cells or drugs? The race to regenerate the heart. Nature. 2021;594(7862):S167.
Article CAS Google Scholar
Tehzeeb J, Manzoor A, Ahmed MM. Is stem cell therapy an answer to heart failure: a literature search. Cureus. 2019;11(10):e5959.
PubMed PubMed Central Google Scholar
Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298(5601):218890.
Article CAS PubMed Google Scholar
Raya A, Koth CM, Bscher D, Kawakami Y, Itoh T, Raya RM, et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci USA. 2003;100 Suppl 1(Suppl 1):1188995.
Mnch J, Grivas D, Gonzlez-Rajal , Torregrosa-Carrin R, de la Pompa JL. Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart. Development. 2017;144(8):142540.
PubMed Google Scholar
Zhao L, Ben-Yair R, Burns CE, Burns CG. Endocardial Notch signaling promotes cardiomyocyte proliferation in the regenerating zebrafish heart through Wnt pathway antagonism. Cell Rep. 2019;26(3):546-54.e5.
Article CAS PubMed PubMed Central Google Scholar
Wang J, Karra R, Dickson AL, Poss KD. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol. 2013;382(2):42735.
Article CAS PubMed Google Scholar
Kikuchi K, Holdway JE, Major RJ, Blum N, Dahn RD, Begemann G, et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell. 2011;20(3):397404.
Article CAS PubMed PubMed Central Google Scholar
Bednarek D, Gonzlez-Rosa JM, Guzmn-Martnez G, Gutirrez-Gutirrez , Aguado T, Snchez-Ferrer C, et al. Telomerase is essential for zebrafish heart regeneration. Cell Rep. 2015;12(10):1691703.
Article CAS PubMed PubMed Central Google Scholar
Gemberling M, Karra R, Dickson AL, Poss KD. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. Elife. 2015;4:e05871.
Article PubMed PubMed Central Google Scholar
Zhao L, Borikova AL, Ben-Yair R, Guner-Ataman B, Macrae CA, Lee RT, et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci USA. 2014;111(4):14038.
Article CAS PubMed PubMed Central Google Scholar
Pfefferli C, Jawiska A. The careg element reveals a common regulation of regeneration in the zebrafish myocardium and fin. Nat Commun. 2017;8:15151.
Article PubMed PubMed Central Google Scholar
Gupta V, Poss KD. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature. 2012;484(7395):47984.
Article CAS PubMed PubMed Central Google Scholar
Cui M, Atmanli A, Morales MG, Tan W, Chen K, Xiao X, et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat Commun. 2021;12(1):5270.
Article CAS PubMed PubMed Central Google Scholar
Kachanova O, Lobov A, Malashicheva A. The role of the Notch signaling pathway in recovery of cardiac function after myocardial infarction. Int J Mol Sci. 2022;23(20):12509.
Article CAS PubMed PubMed Central Google Scholar
Ma J, Gu Y, Liu J, Song J, Zhou T, Jiang M, et al. Functional screening of congenital heart disease risk loci identifies 5 genes essential for heart development in zebrafish. Cell Mol Life Sci. 2022;80(1):19.
Article PubMed Google Scholar
Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, et al. Hippo signaling impedes adult heart regeneration. Development. 2013;140(23):468390.
Article CAS PubMed PubMed Central Google Scholar
Leach JP, Heallen T, Zhang M, Rahmani M, Morikawa Y, Hill MC, et al. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature. 2017;550(7675):2604.
Article PubMed PubMed Central Google Scholar
Aharonov A, Shakked A, Umansky KB, Savidor A, Genzelinakh A, Kain D, et al. ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat Cell Biol. 2020;22(11):134656.
Article CAS PubMed Google Scholar
Fernndez-Ruiz I. ERBB2-YAP crosstalk mediates cardiac regeneration in mice. Nat Rev Cardiol. 2021;18(1):4.
Article PubMed Google Scholar
Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, Mcanally J, et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci USA. 2013;110(34):1383944.
Article CAS PubMed PubMed Central Google Scholar
Lin Z, von Gise A, Zhou P, Gu F, Ma Q, Jiang J, et al. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res. 2014;115(3):35463.
Article CAS PubMed PubMed Central Google Scholar
Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):37681.
Article CAS PubMed Google Scholar
Lesizza P, Prosdocimo G, Martinelli V, Sinagra G, Zacchigna S, Giacca M. Single-dose intracardiac injection of pro-regenerative microRNAs improves cardiac function after myocardial infarction. Circ Res. 2017;120(8):1298304.
Article CAS PubMed Google Scholar
Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I, et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature. 2019;569(7756):41822.
Article CAS PubMed PubMed Central Google Scholar
Tao Y, Zhang H, Huang S, Pei L, Feng M, Zhao X, et al. miR-199a-3p promotes cardiomyocyte proliferation by inhibiting Cd151 expression. Biochem Biophys Res Commun. 2019;516(1):2836.
Article CAS PubMed Google Scholar
Li Z, Song Y, Liu L, Hou N, An X, Zhan D, et al. miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ. 2017;24(7):120513.
Article CAS PubMed Google Scholar
Hashemi Gheinani A, Burkhard FC, Rehrauer H, Aquino Fournier C, Monastyrskaya K. microRNA miR-199a-5p regulates smooth muscle cell proliferation and morphology by targeting WNT2 signaling pathway. J Biol Chem. 2015;290(11):706786.
Article PubMed PubMed Central Google Scholar
Huang W, Feng Y, Liang J, Yu H, Wang C, Wang B, et al. Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. Nat Commun. 2018;9(1):700.
Article PubMed PubMed Central Google Scholar
Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA. 2013;110(1):18792.
Article CAS PubMed Google Scholar
Valussi M, Besser J, Wystub-Lis K, Zukunft S, Richter M, Kubin T, et al. Repression of Osmr and Fgfr1 by miR-1/133a prevents cardiomyocyte dedifferentiation and cell cycle entry in the adult heart. Sci Adv. 2021;7(42):eabi6648.
Huang S, Li X, Zheng H, Si X, Li B, Wei G, et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation. 2019;139(25):285776.
Article CAS PubMed PubMed Central Google Scholar
Wang X, Ha T, Liu L, Hu Y, Kao R, Kalbfleisch J, et al. TLR3 mediates repair and regeneration of damaged neonatal heart through glycolysis dependent YAP1 regulated miR-152 expression. Cell Death Differ. 2018;25(5):96682.
Article CAS PubMed PubMed Central Google Scholar
Yang YS, Liu MH, Yan ZW, Chen GQ, Huang Y. FAM122A is required for mesendodermal and cardiac differentiation of embryonic stem cells. Stem cells. 2023;sxad008. https://doi.org/10.1093/stmcls/sxad008.
Rigaud VOC, Hoy RC, Kurian J, Zarka C, Behanan M, Brosious I, et al. RNA-binding protein LIN28a regulates new myocyte formation in the heart through long noncoding RNA-H19. Circulation. 2023;147(4):32437.
Article CAS PubMed Google Scholar
Ye Z, Su Z, Xie S, Liu Y, Wang Y, Xu X, et al. Yap-lin28a axis targets let7-Wnt pathway to restore progenitors for initiating regeneration. Elife. 2020;9:e55771.
Article PubMed PubMed Central Google Scholar
Gamba L, Amin-Javaheri A, Kim J, Warburton D, Lien CL. Collagenolytic activity is associated with scar resolution in zebrafish hearts after cryoinjury. J Cardiovasc Dev Dis. 2017;4(1):2.
Article PubMed PubMed Central Google Scholar
Beauchemin M, Smith A, Yin VP. Dynamic microRNA-101a and Fosab expression controls zebrafish heart regeneration. Development. 2015;142(23):402637.
Read this article:
Regeneration of the heart: from molecular mechanisms to clinical ... - Military Medical Research