Stem Cell Grants for Spina Bifida and Diabetic Wound Treatments

(SACRAMENTO, Calif.) - The state stem cell agency, California Institute for Regenerative Medicine (CIRM),awarded a pair of grants totaling more than $7 million to UC Davis School of Medicine researchers who are working to develop stem cell therapies for spina bifida and chronic diabetic wounds. The funding is part of what the agency considers "the most promising" research leading up to human clinical trials using stem cells to treat disease and injury. Diana Farmer, professor and chair of surgery at UC Davis Medical Center, is developing a placental stem cell therapy for spina bifida, the common and devastating birth defect that causes lifelong paralysis as well as bladder and bowel incontinence. She and her team are working on a unique treatment that can be applied in utero - before a baby is born -- in order to reverse spinal cord damage. Roslyn Rivkah Isseroff, a UC Davis professor of dermatology, and Jan Nolta, professor of internal medicine and director of the university's Stem Cell Program, are developing a wound dressing containing stem cells that could be applied to chronic wounds and be a catalyst for rapid healing. This is Isseroff's second CIRM grant, and it will help move her research closer to having a product approved by the U.S. Food and Drug Administration that specifically targets diabetic foot ulcers, a condition affecting more than 6 million people in the country. The CIRM board, which met in Berkeley today, has high hopes for these types of research that the agency funded in this latest round of stem cell grants. "This investment will let us further test the early promise shown by these projects," said Jonathan Thomas, chair of CIRM's governing board. "Preclinical work is vital in examining the feasibility, potential effectiveness and safety of a therapy before we try it on people. These projects all showed compelling evidence that they could be tremendously beneficial to patients. We want to help them build on that earlier research and move the projects to the next level." The CIRM grants are designed to enable the UC Davis research teams to transition from preclinical research to preclinical development over the next 30 months to be able to meet the FDA's rigorous safety and efficacy standards for Investigative New Drugs. As the former surgeon-in-chief at UCSF Benioff Children's Hospital, Farmer helped pioneer fetal surgery techniques for treating spina bifida before birth. The condition, also known as myelomeningocele, is one of the most common and devastating birth defects worldwide, causing lifelong paralysis as well as bowel and bladder incontinence in newborns. Farmer has been investigating different stem cell types and the best way to deliver stem cell-based treatments in the womb for the past six years. She and her research colleagues recently discovered a placental therapy using stem cells that cures spina bifida in animal models. That discovery requires additional testing and FDA approval before the therapy can be used in humans. With the CIRM funding, Farmer and her team plan to optimize their stem cell product, validate its effectiveness, determine the optimal dose and confirm its preliminary safety in preparation for human clinical trials. Isseroff, who also serves as chief of dermatology and director of wound healing services for the VA Northern California Health Care System, has long been frustrated by the challenges of treating the chronic, non-healing wounds of diabetics. In 2010, she and Nolta received a CIRM grant to begin developing a bioengineered product for treating chronic diabetic wounds. Foot ulcers, in particular, affect about 25 percent of all diabetic patients and are responsible for most lower-limb amputations. Isseroff and her research team created a treatment using stem cells derived from bone marrow (mesenchymal stem cells) along with a FDA-approved scaffold to help regenerate dermal tissue and restart the healing process. Their studies found the technique to be highly effective for healing wounds in animal models. With this latest CIRM grant, Isseroff's team will refine their therapeutic technique by determining the safest dosage for regenerating tissue and testing their product in skin-wound models that closely resemble those in diabetic humans. Nolta also plans to create a Master Cell Bank of pure and effective human mesenchymal stem cells, and establish standard operating procedures for use in diabetic wound repair. The results of their efforts will enable UC Davis to move closer to FDA approval for human clinical trials in the next two and a half years. "These amazing research efforts are giant steps forward in turning stem cells into cures," said Nolta, who also directs the UC Davis Institute for Regenerative Cures in Sacramento. "This preclinical research is the most crucial, and often the toughest, stage before we move scientific discoveries from the laboratory bench to the patient's bedside. We are now poised as never before to make a big difference in the lives of people with spina bifida and non-healing diabetic wounds." For more information, visit UC Davis School of Medicine at http://medschool.ucdavis.edu.

More:
Stem Cell Grants for Spina Bifida and Diabetic Wound Treatments

Arizona Pain Stem Cell Institute Now Offering Stem Cell Therapy to Help Patients Avoid Hip and Knee Replacement

Phoenix, Arizona (PRWEB) March 30, 2015

Arizona Pain Specialists, are now offering stem cell therapy to help patients avoid hip and knee replacement. The outpatient treatments at Arizona Pain Stem Cell Institute have been exceptionally effective and are administered by Board Certified pain doctors at ten locations Valleywide. Call (602) 507-6550 for more information and scheduling.

Over the past few years, stem cell therapy for hip and knee arthritis has become mainstream. The treatment involves either bone marrow derived or amniotic derived stem cells, neither of which involve fetal tissue. The previous ethical concerns over fetal tissue and embryonic stem cells are not an issue with these treatments, as neither are involved.

The stem cell procedures are outpatient and exceptionally low risk. The stem cells, growth factors, and additional proteins in the treatments are essential for the regeneration and repair of damaged soft tissues such as tendons, ligaments and arthritic cartilage.

Although hip and knee replacement have shown exceptionally good resuts, they are not risk free procedures. They are also not meant to last forever and should be avoided until absolutely necessary.

The procedures are available throughout the Valley with Arizona Pain Specialists highly skilled, Board Certified pain management doctors in Phoenix, Scottsdale, Mesa, East Valley and West Valley. Simply call (602) 507-6550. Research studies are available as well.

See the article here:
Arizona Pain Stem Cell Institute Now Offering Stem Cell Therapy to Help Patients Avoid Hip and Knee Replacement

Research develops mini-lung structures

Stem cell research has long been seen as a new frontier for disease therapeutics. By coaxing stem cells to form 3D miniature lung structures, University researchers are helping explain why.

In a collaborative study, University researchers devised a system to generate self-organizing human lung organoids, or artificially-grown organisms. These organoids are 3D models that can be used to better understand lung diseases.

Jason Spence, the assistant professor of internal medicine and cell and developmental biology, who was a senior author of the study, said one of the key implications of these lungs is the controlled environment they offer for future research.

These mini lungs will allow us to study diseases in a controlled environment and to develop and test new drugs, he said.

Specifically, Spence said, scientists will be able to take skin samples from patients with a particular form of a lung disease, reprogram the cells into stem cells and then generate lung tissue for further study. He said by analyzing the disease in a controlled environment, researchers can gain insight into the progression of various diseases and then tailor drugs for treatment.

Rackham student Briana Dye was also a lead author of the study. She said the team manipulated numerous signaling pathways involved with cell growth and organ formation to make the miniature lungs.

First, Dye said the scientists used proteins called growth factors to differentiate embryonic stem cells into endoderm, the germ layer that gives rise to the lungs. Different growth factors were then used to cause the endoderm to become lung tissue.

We add specific growth factors, proteins that turn on pathways in the cells, that will then cause them to lift off the monolayer so that we have this 3D spherical tissue, she said.

Previous research has used stem cells in a similar manner to generate brain, intestine, stomach and liver tissue. Dye said one of the advantages of stem cell research is its direct path to studying human tissue.

We have worked with many animal models in the past, Dye said. Animal models present obstacles because they dont exactly behave the way human tissue and cells do. This is why stem cells are so promising.

Original post:
Research develops mini-lung structures

Stem Cell Therapy for Neuromuscular Diseases | InTechOpen

1. Introduction

Neuromuscular disease is a very broad term that encompasses many diseases and aliments that either directly, via intrinsic muscle pathology, or indirectly, via nerve pathology, impair the functioning of the muscles. Neuromuscular diseases affect the muscles and/or their nervous control and lead to problems with movement. Many are genetic; sometimes, an immune system disorder can cause them. As they have no cure, the aim of clinical treatment is to improve symptoms, increase mobility and lengthen life. Some of them affect the anterior horn cell, and are classified as acquired (e.g. poliomyelitis) and hereditary (e.g. spinal muscular atrophy) diseases. SMA is a genetic disease that attacks nerve cells, called motor neurons, in the spinal cord. As a consequence of the lost of the neurons, muscles weakness becomes to be evident, affecting walking, crawling, breathing, swallowing and head and neck control. Neuropathies affect the peripheral nerve and are divided into demyelinating (e.g. leucodystrophies) and axonal (e.g. porphyria) diseases. Charcot-Marie-Tooth (CMT) is the most frequent hereditary form among the neuropathies and its characterized by a wide range of symptoms so that CMT-1a is classified as demyelinating and CMT-2 as axonal (Marchesi & Pareyson, 2010). Defects in neuromuscular junctions cause infantile and non-infantile Botulism and Myasthenia Gravis (MG). MG is a antibody-mediated autoimmune disorder of the neuromuscular junction (NMJ) (Drachman, 1994; Meriggioli & Sanders, 2009). In most cases, it is caused by pathogenic autoantibodies directed towards the skeletal muscle acetylcholine receptor (AChR) (Patrick & Lindstrom, 1973) while in others, non-AChR components of the postsynaptic muscle endplate, such as the muscle-specific receptor tyrosine kinase (MUSK), might serve as targets for the autoimmune attack (Hoch et al., 2001). Although the precise origin of the autoimmune response in MG is not known, genetic predisposition and abnormalities of the thymus gland such as hyperplasia and neoplasia could have an important role in the onset of the disease (Berrih et al., 1984; Roxanis et al., 2001).

Several diseases affect muscles: they are classified as acquired (e.g. dermatomyositis and polymyositis) and hereditary (e.g. myotonic disorders and myopaties) forms. Among the myopaties, muscular dystrophies are characterized by the primary wasting of skeletal muscle, caused by mutations in the proteins that form the link between the cytoskeleton and the basal lamina (Cossu & Sampaolesi, 2007). Mutations in the dystrophin gene cause severe form of hereditary muscular diseases; the most common are Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). DMD patients suffer for complete lack of dystrophin that causes progressive degeneration, muscle wasting and death into the second/third decade of life. Beside, BMD patients show a very mild phenotype, often asymptomatic primarily due to the expression of shorter dystrophin mRNA transcripts that maintain the coding reading frame. DMD patients muscles show absence of dystrophin and presence of endomysial fibrosis, small fibers rounded and muscle fiber degeneration/regeneration. Untreated, boys with DMD become progressively weak during their childhood and stop ambulation at a mean age of 9 years, later with corticosteroid treatment (12/13 yrs). Proximal weakness affects symmetrically the lower (such as quadriceps and gluteus) before the upper extremities, with progression to the point of wheelchair dependence. Eventually distal lower and then upper limb weakness occurs. Weakness of neck flexors is often present at the beginning, and most patients with DMD have never been able to jump. Wrist and hand muscles are involved later, allowing the patients to keep their autonomy in transfers using a joystick to guide their wheelchair. Musculoskeletal contractures (ankle, knees and hips) and learning difficulties can complicate the clinical expression of the disease. Besides this weakness distribution in the same patient, a deep variability among patients does exist. They could express a mild phenotype, between Becker and Duchenne dystrophy, or a really severe form, with the loss of deambulation at 7-8 years. Confinement to a wheelchair is followed by the development of scoliosis, respiratory failure and cardiomyopathy. In 90% of people death is directly related to chronic respiratory insufficiency (Rideau et al., 1983). The identification and characterization of dystrophin gene led to the development of potential treatments for this disorder (Bertoni, 2008). Even if only corticosteroids were proven to be effective on DMD patient (Hyser and Mendell, 1988), different therapeutic approaches were attempted, as described in detail below (see section 7).

The identification and characterization of the genes whose mutations caused the most common neuromuscular diseases led to the development of potential treatments for those disorders. Gene therapy for neuromuscular disorders embraced several concepts, including replacing and repairing a defective gene or modifying or enhancing cellular performance, using gene that is not directly related to the underlying defect (Shavlakadze et al., 2004). As an example, the finding that DMD pathology was caused by mutations in the dystrophin gene allowed the rising of different therapeutic approaches including growth-modulating agents that increase muscle regeneration and delay muscle fibrosis (Tinsley et al., 1998), powerful antisense oligonucleotides with exon-skipping capacity (Mc Clorey et al., 2006), anti-inflammatory or second-messenger signal-modulating agents that affect immune responses (Biggar et al., 2006), agents designed to suppress stop codon mutations (Hamed, 2006). Viral and non-viral vectors were used to deliver the full-length - or restricted versions - of the dystrophin gene into stem cells; alternatively, specific antisense oligonucleotides were designed to mask the putative splicing sites of exons in the mutated region of the primary RNA transcript whose removal would re-establish a correct reading frame. In parallel, the biology of stem cells and their role in regeneration were the subject of intensive and extensive research in many laboratories around the world because of the promise of stem cells as therapeutic agents to regenerate tissues damaged by disease or injury (Fuchs and Segre, 2000; Weissman, 2000). This research constituted a significant part of the rapidly developing field of regenerative biology and medicine, and the combination of gene and cell therapy arose as one of the most suitable possibility to treat degenerative disorders. Several works were published in which stem cell were genetically modified by ex vivo introduction of corrective genes and then transplanted in donor dystrophic animal models.

Stem cells received much attention because of their potential use in cell-based therapies for human disease such as leukaemia (Owonikoko et al., 2007), Parkinsons disease (Singh et al., 2007), and neuromuscular disorders (Endo, 2007; Nowak and Davies, 2004). The main advantage of stem cells rather than the other cells of the body is that they can replenish their numbers for long periods through cell division and, they can produce a progeny that can differentiate into multiple cell lineages with specific functions (Bertoni, 2008). The candidate stem cell had to be easy to extract, maintaining the capacity of myogenic conversion when transplanted into the host muscle and also the survival and the subsequent migration from the site of injection to the compromise muscles of the body (Price et al., 2007). With the advent of more sensitive markers, stem cell populations suitable for clinical experiments were found to derive from multiple region of the body at various stage of development. Numerous studies showed that the regenerative capacity of stem cells resided in the environmental microniche and its regulation. This way, it could be important to better elucidate the molecular composition cytokines, growth factors, cell adhesion molecules and extracellular matrix molecules - and interactions of the different microniches that regulate stem cell development (Stocum, 2001).

Several groups published different works concerning adult stem cells such as muscle-derived stem cells (Qu-Petersen et al., 2002), mesoangioblasts (Cossu and Bianco, 2003), blood- (Gavina et al., 2006) and muscle (Benchaouir et al., 2007)-derived CD133+ stem cells. Although some of them are able to migrate through the vasculature (Benchaouir et al., 2007; Galvez et al., 2006; Gavina et al., 2006) and efforts were done to increase their migratory ability (Lafreniere et al., 2006; Torrente et al., 2003a), poor results were obtained.

Embryonic and adult stem cells differ significantly in regard to their differentiation potential and in vitro expansion capability. While adult stem cells constitute a reservoir for tissue regeneration throughout the adult life, they are tissue-specific and possess limited capacity to be expanded ex vivo. Embryonic Stem (ES) cells are derived from the inner cell mass of blastocyst embryos and, by definition, are capable of unlimited in vitro self-renewal and have the ability to differentiate into any cell type of the body (Darabi et al., 2008b). ES cells, together with recently identified iPS cells, are now broadly and extensively studied for their applications in clinical studies.

Embryonic stem cells are pluripotent cells derived from the early embryo that are characterized by the ability to proliferate over prolonged periods of culture remaining undifferentiated and maintaining a stable karyotype (Amit and Itskovitz-Eldor, 2002; Carpenter et al., 2003; Hoffman and Carpenter, 2005). They are capable of differentiating into cells present in all 3 embryonic germ layers, namely ectoderm, mesoderm, and endoderm, and are characterized by self-renewal, immortality, and pluripotency (Strulovici et al., 2007).

hESCs are derived by microsurgical removal of cells from the inner cell mass of a blastocyst stage embryo (Fig. 1). The ES cells can be also obtained from single blastomeres. This technique creates ES cells from a single blastomere directly removed from the embryo bypassing the ethical issue of embryo destruction (Klimanskaya et al., 2006). Although maintaining the viability of the embryo, it has to be determined whether embryonic stem cell lines derived from a single blastomere that does not compromise the embryo can be considered for clinical studies. Cell Nuclear Transfer (SCNT): Nuclear transfer, also referred to as nuclear cloning, denotes the introduction of a nucleus from an adult donor cell into an enucleated oocyte to generate a cloned embryo (Wilmut et al., 2002).

ESCs differentiation. Differentiation potentiality of human embryonic stem cell lines. Human embryonic stem cell pluripotency is evaluated by the ability of the cells to differentiate into different cell types.

See more here:
Stem Cell Therapy for Neuromuscular Diseases | InTechOpen

Akron Biotech of Boca Raton poised for growth

Claudia Zylberberg began her biotech firm in a one-room office in Boca Raton more than eight years ago.

Today Akron Biotech, which produces cell cultures and other raw materials for government and pharmaceutical company research, is moving to a 10,000-square-foot laboratory and manufacturing space. Akron also is collaborating on research, including with a noted scientist from Florida Atlantic University in Jupiter.

"I don't want to be just a manufacturer of products, but an innovator as well," Zylberberg said.

Akron Biotech was recently noted by Palm Beach County's Business Development Board as one of the county's longest-running biotech startups. And last year, Akron was named among 50 "Companies to Watch" in the state, by the economic development organization GrowFL.

With a doctorate in immunology and background in hematology, Zylberberg is passionate about the cell therapy industry. In the coming years, she expects that the field, called "regenerative medicine," will help reduce health care costs by giving alternatives to patients whose organs are failing.

If new cell therapies are approved, "we're not looking for an organ, but to fix an organ," she said.

Physicians in South Florida and elsewhere are already using patients' own stem cells for certain treatments, such as repairing knees. Other stem cells are being used in FDA-approved research on leukemia, bone marrow disease and other blood disorders. New types of stem cells, such as those from fat, are being explored.

Revenues increased 50 percent in 2014 from 2013, and Zylberberg expects them to double this year.

Akron Biotech was awarded a small business research grant in 2014 from the National Institutes of Health to develop a method to isolate stem cells from various tissues. The project is in collaboration with top researcher Gregg Fields, who chairs FAU's Department of Chemistry and Biochemistry and the director of the Center of Molecular Biology and Biotechnology. He recently was named a National Academy of Inventors Fellow.

"She's a very dynamic person. When she's serious about something, it will get done," said Fields, who added that's why he decided to work with Zylberberg on the project.

See original here:
Akron Biotech of Boca Raton poised for growth

Stem-cell therapy for dogs draws support, detractors

Deltona retiree Paul Jaynes was heartbroken when his 9-year-old Labrador, Cookie, suddenly stopped walking last year. The once-athletic dog struggled to stand and, if she moved at all, collapsed after a few steps.

He carried his 90-pound companion to his truck, drove her to the vet and braced himself for the bad news. Surely she couldn't live like this.

Instead, his veterinarian told him about a newly available procedure involving stem cells. In a single day, the vet said, they could remove the cells from Cookie's fatty tissues, process them and re-inject them into her joints. She could go home immediately.

"It was very dramatic," Jaynes says. "The day after surgery, she was standing. She was hesitant, but she was standing and walking a little. I thought: 'Are you kidding me?' Within a week, she was almost back to her old self."

That was last September, and six months later Cookie is still going strong, Jaynes says. While he has no doubts about the treatment, though, some veterinarians worry that marketing of stem-cell therapy for animals has gotten ahead of the scientific research needed to validate its use.

The results, while sometimes promising, are not universal.

"Most of what you hear is anecdotal 'Oh, I tried this, and it helped my dog,'" says Dr. Jeffrey Peck, a veterinary surgeon at Affiliated Veterinary Specialists, based in Maitland. "This has grown in its marketing exponentially greater than it has grown in evidence."

Much of his practice is in orthopedics typically, dogs with hip dysplasia or arthritis. He tried using stem-cell therapy with his patients in 2008 but dropped it after a dozen cases in which he saw no improvement.

"I don't refuse to do it if a client really wants to try, but I give them my disclaimer," he says. "I tell them: 'I don't think I'm going to hurt anything. But I doubt I'm going to help anything either.'"

At $1,400 to $3,000 for the procedure, most pet owners opt out, he says.

View original post here:
Stem-cell therapy for dogs draws support, detractors

Stem Cell Treatment Programme TV Show Ad Film From Vibes By Krishna Ksihore Brand House Hyderabad – Video


Stem Cell Treatment Programme TV Show Ad Film From Vibes By Krishna Ksihore Brand House Hyderabad
Ad Film Making Hyderabad, Ad Film Makers, Ad Film Production House in Hyderabad, Visakapatnam, Vijayawada, Andhra Pradesh, Telengana, Chennai, Bangalore, Tv Commercial Ads, Corporate ...

By: Brand House AdFilms

Read more:
Stem Cell Treatment Programme TV Show Ad Film From Vibes By Krishna Ksihore Brand House Hyderabad - Video

Sungduan: Growth factors

EVEN without surgery, one can now experience a dramatic improvement and even cure on health concerns such as diabetes, cancer, HIV, and cardiovascular diseases. This is through the stem cell technology and telomere science.

Dr. Marc Lavaro Jr., an expert on general & ocular oncology, general & ocular pharmacology, pediatric ophthalmic medicine, and Science of Epigenetics said these new technology are considered as breakthrough which repairs and rejuvenates the cells.

Lavaro, head of a molecular biology research in Gifu Prefecture, Japan and Osato Research Institute, Tokyo Japan stressed that stem cell is a kind of cell that can duplicate all kinds of cell which is why it can repair a damaged heart for instance.

In his book entitled 278+ Growth Factors which he is set to publish, he also mentioned that there are also certain organs which do not regenerate like the heart and brain but through stem cells it can revitalize.

Growth factors are stem cell stimulators that address medical conditions including diseases. Each growth factor is equivalent to 1 disease. For example, in a tumor kidney problem, stem cells produce growth factors to combat it.

Another technology is the telomere science under science of Epigenetics. Telomere is part of the chromosome and it protects it. It is responsible for the cell division and daily produces new cell to replace the dead cells.

Ang cell natin is designed to last forever but and pag-ikli ng telomere ang cause of sickness. Pero pwede na siyang marepair. Activator enzyme siya kaya reverse telomere rejuvenate cell, Lavaro explained.

The good news is the stem technology is now in the market and it comes in the form of liquid gel, capsule, and syrup. This is produced by Jeunesse , an exclusive patent pending stem cell technology advance technology, science of epigenetics, and stem cell science technology. It is also cheaper compared to the old stem technology wherein one has to pay for at least 700,000 to more than one million pesos per shot.

Jeunesse is a product of medical research conducted by Dr. Nathan Newman, the father of stem cell technology and world renowned for his cosmetic surgery and innovator of stem cell lift cutting edge cosmetic surgery, without cutting.

Dapat conscious tayo sa health natin at alamin ang tinatake natin if nagwowork talaga o hype lamang ng company, Lavaro added.

Excerpt from:
Sungduan: Growth factors