Boston Stem Cell Biotech Start-up Asymmetrex Will Present Essential Technologies for Stem Cell Medical Engineering at …

Boston, MA (PRWEB) March 18, 2015

In the vast flow of new scientific research, discoveries, and information, it is not uncommon for important scientific advances to go unappreciated, or even just unnoticed, for surprisingly long periods of time. The Boston stem cell medicine technology start-up company, Asymmetrex is working to make sure that its growing portfolio of adult tissue stem cell technology patents obtains wide notice, appreciation, and investment.

In late 2014, the company started a digital media campaign to achieve greater visibility for its patented technologies that address the major barriers to greater progress in stem cell medicine. These include technologies for identifying, counting, and mass-producing adult tissue stem cells. The two presentations scheduled for the 5th World Congress on Cell and Stem Cell Research in Chicago continue Asymmetrexs efforts to better inform medical, research, and industrial communities focused on advancing stem cell medicine of the companys vision for implementation of its unique technologies.

Asymmetrex holds patents for the only method described for routine production of natural human tissue stem cells that retain their normal function. The company also holds patents for biomarkers that can be used to count tissue stem cells for the first time. The companys most recently developed technology was invented with computer-simulation leader, AlphaSTAR Corporation. In partnership, the two companies created a first-of-its-kind method for monitoring adult tissue stem cell number and function for any human tissue that can be cultured. This advance is the basis for the two companies AlphaSTEM technology for detecting adult tissue stem cell-toxic drug candidates before conventional preclinical testing in animals or clinical trials. Asymmetrex and AlphaSTAR plan to market the new technology to pharmaceutical companies. The implementation of AlphaSTEM technology would accelerate drug development and reduce adverse drug events for volunteers and patients. At full capacity use, AlphaSTEM could reduce U.S. drug development costs by $4-5 billion each year.

About Asymmetrex (http://asymmetrex.com/)

Asymmetrex, LLC is a Massachusetts life sciences company with a focus on developing technologies to advance stem cell medicine. Asymmetrexs founder and director, James L. Sherley, M.D., Ph.D. is an internationally recognized expert on the unique properties of adult tissue stem cells. The companys patent portfolio contains biotechnologies that solve the two main technical problems production and quantification that have stood in the way of successful commercialization of human adult tissue stem cells for regenerative medicine and drug development. In addition, the portfolio includes novel technologies for isolating cancer stem cells and producing induced pluripotent stem cells for disease research purposes. Currently, Asymmetrexs focus is employing its technological advantages to develop facile methods for monitoring adult stem cell number and function in clinically important human tissues.

See the article here:
Boston Stem Cell Biotech Start-up Asymmetrex Will Present Essential Technologies for Stem Cell Medical Engineering at ...

A Single-Cell Breakthrough: newly developed technology dissects properties of single stem cells

The human gut is a remarkable thing. Every week the intestines regenerate a new lining, sloughing off the equivalent surface area of a studio apartment and refurbishing it with new cells. For decades, researchers have known that the party responsible for this extreme makeover were intestinal stem cells, but it wasn't until this year that Scott Magness, PhD, associate professor of medicine, cell biology and physiology, and biomedical engineering, figured out a way to isolate and grow thousands of these elusive cells in the laboratory at one time. This high throughput technological advance now promises to give scientists the ability to study stem cell biology and explore the origins of inflammatory bowel disease, intestinal cancers, and other gastrointestinal disorders.

But it didn't come easy.

One Step Forward . . .

When Magness and his team first began working with intestinal stem cells some years ago, they quickly found themselves behind the eight ball. Their first technique involved using a specific molecule or marker on the surface of stem cells to make sure they could distinguish stem cells from other intestinal cells. Then Magness's team would fish out only the stem cells from intestinal tissues and grow the cells in Petri dishes. But there was a problem. Even though all of the isolated cells had the same stem cell marker, only one out of every 100 could "self-renew" and differentiate into specialized cells like a typical stem cell should. (Stem cells spawn cells that have specialized functions necessary for any organ to work properly.)

"The question was: why didn't the 99 others behave like stem cells?" Magness said. "We thought it was probably because they're not all the same, just like everybody named Judy doesn't look the same. There are all kinds of differences, and we've been presuming that these cells are all the same based on this one name, this one molecular marker. That's been a problem. But the only way to solve it so we could study these cells was to look at intestinal stem cells at the single cell level, which had never been done before."

Magness is among a growing contingent of researchers who recognize that many of the biological processes underlying health and disease are driven by a tiny fraction of the 37 trillion cells that make up the human body. Individual cells can replenish aging tissues, develop drug resistance, and become vehicles for viral infections. And yet the effects of these singular actors are often missed in biological studies that focus on pooled populations of thousands of seemingly "identical" cells.

Distinguishing between the true intestinal stem cells and their cellular look-a-likes would require isolating tens of thousands of stem cells and tracking the behavior of each individual cell over time. But Magness had no idea how to accomplish that feat. Enter Nancy Allbritton, PhD, chair of the UNC/NCSU Joint Department of Biomedical Engineering. The two professors met one day to discuss Magness joining the biomedical engineering department as an adjunct faculty member. And they did discuss it. And Magness did join. But the meeting quickly turned into collaboration. One of Allbritton's areas of expertise is microfabrication -- the ability to squeeze large devices into very small footprints. During their meeting, Allbritton showed Magness her latest creation, a device smaller than a credit card dotted with 15,000 tiny wells for culturing cells.

"It was like a light bulb went off, and I realized I was looking at the answer to a billion of our problems," Magness said.

Micro Magic

Each microwell is as thick as a strand of hair. By placing individual stem cells into the microwells, Magness and postdoctoral fellow Adam Gracz, PhD, could watch the cells grow into fully developed tissue structures known as mini-guts. Each microwell could be stamped with a specific address, which would allow researchers to track stem cells that were behaving as expected and those that weren't.

Read the original post:
A Single-Cell Breakthrough: newly developed technology dissects properties of single stem cells

BrainStorm Cell Therapeutics to Present at 3rd Annual Regen Med Investor Day on March 25 in New York

HACKENSACK, N.J.and PETACH TIKVAH, Israel, March 18, 2015 /PRNewswire/ --BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leading developer of adult stem cell technologies for neurodegenerative diseases, announced today that CEO Tony Fiorino, MD, PhD, will present at the 3rd Annual Regen Med Investor Day to be held Wednesday, March 25, 2015 in New York City.

Organized by the Alliance for Regenerative Medicine (ARM) and co-hosted with Piper Jaffray, this one-day investor meeting provides institutional, strategic and venture investors with unique insight into the financing hypothesis for advanced therapies-based treatment and tools. The program includes clinical and commercial experts who are on-hand to address specific questions regarding the outlook for these products, as well as offer insight into how advanced therapies could impact the standard of care in key therapeutic areas. In addition to presentations by more than 30 leading companies from across the globe, the event includes dynamic, interactive panels featuring research analysts covering the space, key clinical opinion leaders and top company CEOs. These discussions will explore themes specific to cell and gene therapy such as commercialization, market access and pricing for breakthrough technologies, gene therapy delivery and upcoming milestones in the adoptive T-cell therapy space.

The following are specific details regarding BrainStorm's presentation:

Event:

ARM's Regen Med Investor Day

Date:

March 25, 2015

Time:

4:20 PM EST

Location:

More here:
BrainStorm Cell Therapeutics to Present at 3rd Annual Regen Med Investor Day on March 25 in New York

A single-cell breakthrough

9 hours ago by Marla Vacek Broadfoot A jelly fish-green fluorescent gene marks stem cells and other proliferating primitive cells of an intestine-like structure. The central lumen hollow space is stained red. Credit: Magness Lab

The human gut is a remarkable thing. Every week the intestines regenerate a new lining, sloughing off the equivalent surface area of a studio apartment and refurbishing it with new cells. For decades, researchers have known that the party responsible for this extreme makeover were intestinal stem cells, but it wasn't until this year that Scott Magness, PhD, associate professor of medicine, cell biology and physiology, and biomedical engineering, figured out a way to isolate and grow thousands of these elusive cells in the laboratory at one time. This high throughput technological advance now promises to give scientists the ability to study stem cell biology and explore the origins of inflammatory bowel disease, intestinal cancers, and other gastrointestinal disorders.

But it didn't come easy.

One step forward

When Magness and his team first began working with intestinal stem cells some years ago, they quickly found themselves behind the eight ball. Their first technique involved using a specific molecule or marker on the surface of stem cells to make sure they could distinguish stem cells from other intestinal cells.

Then Magness's team would fish out only the stem cells from intestinal tissues and grow the cells in Petri dishes. But there was a problem. Even though all of the isolated cells had the same stem cell marker, only one out of every 100 could "self-renew" and differentiate into specialized cells like a typical stem cell should. (Stem cells spawn cells that have specialized functions necessary for any organ to work properly.)

"The question was: why didn't the 99 others behave like stem cells?" Magness said. "We thought it was probably because they're not all the same, just like everybody named Judy doesn't look the same. There are all kinds of differences, and we've been presuming that these cells are all the same based on this one name, this one molecular marker. That's been a problem. But the only way to solve it so we could study these cells was to look at intestinal stem cells at the single cell level, which had never been done before."

Magness is among a growing contingent of researchers who recognize that many of the biological processes underlying health and disease are driven by a tiny fraction of the 37 trillion cells that make up the human body. Individual cells can replenish aging tissues, develop drug resistance, and become vehicles for viral infections. And yet the effects of these singular actors are often missed in biological studies that focus on pooled populations of thousands of seemingly "identical" cells.

Distinguishing between the true intestinal stem cells and their cellular look-a-likes would require isolating tens of thousands of stem cells and tracking the behavior of each individual cell over time. But Magness had no idea how to accomplish that feat. Enter Nancy Allbritton, PhD, chair of the UNC/NCSU Joint Department of Biomedical Engineering. The two professors met one day to discuss Magness joining the biomedical engineering department as an adjunct faculty member. And they did discuss it. And Magness did join. But the meeting quickly turned into collaboration.

One of Allbritton's areas of expertise is microfabrication the ability to squeeze large devices into very small footprints. During their meeting, Allbritton showed Magness her latest creation, a device smaller than a credit card dotted with 15,000 tiny wells for culturing cells.

Read the rest here:
A single-cell breakthrough

Beware stem cell therapy for lung disease

Clinics in other countries for some time have promised dramatic results in the treatment of lung disease, primarily emphysema, through the use of autologous stem cells obtained from the patient. The stem cells are extracted from adipose (fat) tissue, treated and then injected into the patient. The cells then supposedly go to work regenerating and replacing the damaged lung tissue.

Several of this type of clinic are now popping up in parts of the United States, mostly in California and Florida. Their advertisements are filled with testimonials from patients, extolling the virtues of the treatments. The treatments are quite expensive, and would be an absolute godsend for the 30 million Americans who suffer from some stage of Chronic Obstructive Pulmonary Disease (COPD). If they worked.

Trouble is, none of these clinics or their treatments are approved by the FDA, and the only proof of their effectiveness is anecdotal, coming from selected customers.

Anyone with a chronic, progressive disease, such as COPD, will usually find themselves in a situation of desperation, eager to embrace any promises of a cure. I have been there, and it is a terrible situation.

Sadly, further research shows that institutions that are working on stem cell therapy for lungs unanimously agree that the successful regeneration of human lung tissue is likely decades away. Dr. Hatch, a British researcher, states that he may be able to announce success in about 20 years. Boston University states that stem cell treatment for lungs may be available for our grandchildren or great-grandchildren.

Even the Center for Regenerative Medicine at Wake Forest, which has successfully built working bladders and other of the simpler internal organs, states that we are likely 20 years away from creating a lung.

There have always been those who would separate us from our money with promises of cures of everything from cancer to male pattern baldness. Please beware.

Jim Nelson is a former Glenwood Springs resident who works with regional and national cardiovascular and lung organizations.

See the original post:
Beware stem cell therapy for lung disease

Global Stem Cells Group to Participate in the 25th Argentine Congress of Aesthetic Medicine in Buenos Aires April 9-10 …

MIAMI (PRWEB) March 17, 2015

GlobalStemCellsGroup.com has announced plans to participate in the 25th annual Argentine Congress of Aesthetic Medicine April 9 and 10 2015. More than 1,000 physicians from around the world will descend on Buenos Aires for the conference to learn and share new findings in aesthetic medicine.

Following the congress, Global Stem Cells Group and Estanislao Janowski, M.D., a plastic surgeon specializing in stem cell application in aesthetic and cosmetic medicine will conduct an intensive, hands-on course on stem cell harvesting, isolation and re-integration, to be held April 11. Janowski, a GSCG faculty member and long-time collaborator is the owner and president of Bioplastica, an aesthetic surgical center featuring the latest stem cell applications in cosmetic and anti-aging medicine.

This will be the third year Global Stem Cells Group participates in the conference, hosted by the Argentina Society of Aesthetic Medicine (SOARME). A soon-to-be-named GSCG faculty member will also deliver a keynote speech to congress attendees.

The international event, which will be held at the Catholic University of Argentina in Buenos Aires, will feature acclaimed stem cell aesthetic practitioners from Argentina and the U.S. SOAME is a member of the Argentine Medical Association (A.M.A.) and of the International Union of Aesthetic Medicine (U.I.M.E.). SOAME has the scientific support of the John F. Kennedy University in Buenos Aires and a host of national and international scientific organizations.

For more information visit the Global Stem Cells Group website, email bnovas(at)regenestem(dot)com, or call 305-224-1858.

About the Global Stem Cells Group:

Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions.

With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.

See the original post here:
Global Stem Cells Group to Participate in the 25th Argentine Congress of Aesthetic Medicine in Buenos Aires April 9-10 ...

Stem Cell Therapy Now Being Offered for NonHealing Wounds at Telehealth's Three Regenerative Medicine Clinics

Orange, California (PRWEB) March 17, 2015

The top stem cell therapy clinics in California, Telehealth, are now offering treatment for nonhealing wounds at three locations. The stem cell therapy for wound healing is being offered by Board Certified doctors at three separate locations in Orange, La Jolla and Upland. Call (888) 828-4575 for more information and scheduling.

Patients with diabetes, neuropathy and autoimmune disorders often find it difficult to heal even minor wounds. This may lead to diabetic ulcers and infections in the soft tissue and/or bone. At times, even the most rigorous conventional wound care fails to heal wounds sufficiently.

At Telehealth, stem cell therapy for nonhealing wounds has been showing exceptional results. Wounds that had basically been unresponsive to traditional methods have displayed quick results with healing when the procedures are performed. The regenerative medicine treatments involve either bone marrow derived stem cells or amniotic derived stem cells. Additional, PRP therapy is included in the treatment at times when necessary.

Along with helping to heal difficult wounds, stem cell therapy is also available for degenerative arthritis, chronic tendonitis, rotator cuff tears, ligament injuries, migraines and much more. Treatments are offered in Orange, Upland and a new La Jolla location by Board Certified doctors with extensive experience.

Most treatments are partially covered by insurance, which helps considerably to keep cost down. Call (888) 828-4575 for more information and scheduling.

Read the original:
Stem Cell Therapy Now Being Offered for NonHealing Wounds at Telehealth's Three Regenerative Medicine Clinics

Beverly Hills Orthopedic Institute Now Offering Stem Cell Therapy for Nonoperative Shoulder Labral Tears

Beverly Hills, California (PRWEB) March 17, 2015

Beverly Hills Orthopedic Institute is now offering stem cell procedures for the nonoperative treatment of shoulder labral tears. The procedures are outpatient, low risk, and very effective at helping patients avoid the need for surgery. Call Beverly Hills Orthopedic Institute at (310) 247-0466 for more information and scheduling.

Injuries to the shoulder may involve rotator cuff tendonitis, tears or labral injury. Stem cell therapy is typically effective for all of these conditions, and Dr. Raj has been having significant success with labral tears. Conventional treatment for labral tears is often unsuccessful, as they typically do not have sufficient blood supply.

Treatment with regenerative medicine offers the potential to avoid surgery and heal the tissues. The stem cell therapy includes either bone marrow or amniotic derived treatment. Both of these are outpatient and very low risk. Small studies have shown the effectiveness of stem cell treatment for joint arthritis, tendonitis, tendon tears, cartilage defects and labral tears.

The treating physician, Dr. Raj, is a Double Board Certified orthopedic surgeon Beverly Hills trusts, and excels in treating all kinds of sports injuries and arthritic conditions. He also serves as a Medical Correspondent for ABC News, along with receiving numerous LA TOP DOC and Top Doctors Southern California Awards.

To receive the best stem cell therapy in Los Angeles and Beverly Hills, call the Institute today at (310) 247-0466.

Read more:
Beverly Hills Orthopedic Institute Now Offering Stem Cell Therapy for Nonoperative Shoulder Labral Tears