Stem Cells to Treat Blindness – Understanding Stem Cell …

Author: Ian Murnaghan BSc (hons), MSc - Updated: 18 August 2015 | Comment

For people who are blind, the thought of a treatment to restore their sight may seem like an impossible dream. But it may eventually become a reality after scientists last year were able to restore the eyesight of a blind person. The treatment works by replacing those cells in the eye know as retinal cells that have been damaged or worn out from diseases such as macular degeneration. For the elderly in particular, macular degeneration is a common concern as it can lead to enormous loss of vision in one or both eyes.

When macular degeneration strikes, it affects the area of the eye that is important for allowing us to see fine details. The disease may progress very slowly so that a person barely notices any changes at all. Or, it might progress rapidly, causing significant vision loss.

Interestingly enough, previous studies using stem cells had failed to restore sight. One reason for the problem relates to the choice of stem cells. In the most recent study, researchers used stem cells that were more mature than the ones previous researchers had used. The choice proved successful as the stem cells developed into photoreceptors and were able to join with the nerves that lead to the brain.

Researchers hope to see these kinds of transplants happening on a greater scale in approximately ten years. With many patients suffering from diseases in the eye that cause photoreceptors to die, this research offers a way to provide photoreceptor transplantation, helping to restore eyesight for many people around the world. The use of a patient's own cells also avoids the potential for immunological rejection, a threat that comes with other types of treatment.

You might also like...

Leave a Comment, Ask for Advice or Share Your Story...

avi - Your Question:

My daughter problem is optic nerve damages by birth she is 11 yrars. Kindly advise as per given details. in possible stem cell therapy.

Our Response:

ExploreStemCells - 19-Aug-15 @ 12:18 PM

avi - 18-Aug-15 @ 4:09 PM

Creative Animodel - 12-Aug-15 @ 10:02 AM

aman - Your Question:

My dougter has cojenital flicum fold in retina, can stem cell cure her vission

Our Response:

ExploreStemCells - 11-Aug-15 @ 10:16 AM

aman - 8-Aug-15 @ 6:45 PM

david and son - 7-Aug-15 @ 1:47 AM

There is no one doing this in the UK currently, as it is still very much at the research stage of development. You may find certain other countries advertising fee-paying stem cell treatments for specific conditions. However, please be aware these treatments are not backed or endorsed by scientific evidence.

ExploreStemCells - 5-Aug-15 @ 2:03 PM

Brittany - 4-Aug-15 @ 8:09 AM

Lon - 29-Jul-15 @ 5:20 PM

Ceris - 21-Jul-15 @ 8:26 PM

ExploreStemCells - 22-Jun-15 @ 11:09 AM

ask - 19-Jun-15 @ 8:08 AM

savy - 18-Jun-15 @ 6:50 AM

sujal - 7-Jun-15 @ 1:46 PM

ward - 20-May-15 @ 8:56 PM

ExploreStemCells - 14-May-15 @ 12:59 PM

erin - 12-May-15 @ 7:06 PM

nil - 28-Apr-15 @ 12:15 PM

kev - 20-Apr-15 @ 8:04 AM

Gori ga - 14-Apr-15 @ 4:21 PM

ExploreStemCells - 8-Apr-15 @ 2:55 PM

Maggi - 6-Apr-15 @ 3:08 PM

Diamond - 25-Mar-15 @ 4:26 PM

Thara - 16-Feb-15 @ 7:53 PM

Imran - 13-Feb-15 @ 7:24 PM

ExploreStemCells - 12-Feb-15 @ 11:46 AM

annu - 11-Feb-15 @ 3:10 PM

Munna - 18-Jan-15 @ 4:09 PM

ExploreStemCells - 14-Jan-15 @ 11:04 AM

rita - 13-Jan-15 @ 5:42 PM

Title:

(never shown)

Read more here:
Stem Cells to Treat Blindness - Understanding Stem Cell ...

Adult Stem Cells – Research – Stem Cell Biology and …

Researchers are expanding their understanding of identified adult stem cells, which include blood-forming, brain, skin and skeletal muscle stem cells, while working to isolate stem cells for the lung, liver, kidney, heart and other tissues. This work is providing the basis for ongoing preclinical and clinical trials of organ and tissue regeneration from healthy adult stem cells.

By identifying adult stem cells from other tissues such as lungs or liver, researchers at the institute are working to understand how those tissues develop and what goes wrong when those tissues become diseased. For example, having already identified adult stem cells in the brains of mice and humans, researchers can now use those stem cells to understand how cells of the developing brain differentiate into the many different cell types found in the adult brain. By working out the molecular mechanisms by which adult stem cells self-renew or differentiate, researchers may be able to understand what processes go awry in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.

The study of adult stem cells could also lead to insights into cancer cell biology. Recent studies indicate that cancers are continually replenished by a small population of cancer stem cells that are capable of self-renewal. By studying adult stem cells to learn more about the genes involved in self-renewal, it may be possible to identify new molecular targets for drug and immune therapies that destroy the self-renewing cancer stem cells.

Drawing on its increasing understanding of tissue or organ-specific stem cells , the institute is exploring the ability of these cells to replenish or repair damaged or congenitally abnormal tissues or organs. Tissue-specific stem cells may one day be used to replenish cells damaged by Parkinson's disease, Alzheimer's disease, multiple sclerosis or diabetes.

One example of tissue regeneration is in bone marrow transplants, where blood-forming stem cells regenerate the blood of transplant recipients who receive otherwise lethal doses of chemotherapy to destroy all the cancer cells in the body. Stanford was the first institution in the United States to use purified blood-forming stem cells rather than whole bone marrow transplants to regenerate the bone marrow in chemotherapy patients. By using purified stem cells rather than whole bone marrow taken from the patient before chemotherapy, doctors avoid re-injecting patients with their own cancer cells.

Isolating adult stem cells from a variety of tissues in addition to the blood and brain stem cells could also help in other areas of cancer treatment. Doctors could then give high doses of radiation to destroy tumors in tissues such as brain, lungs or liver, and inject tissue-specific stem cells to replace radiation-damaged cells.

The rest is here:
Adult Stem Cells - Research - Stem Cell Biology and ...

History of Stem Cell Research

Author: Ian Murnaghan BSc (hons), MSc - Updated: 6 July 2015 | Comment

Stem cells have an interesting history that has been somewhat tainted with debate and controversy. In the mid 1800s it was discovered that cells were basically the building blocks of life and that some cells had the ability to produce other cells.

Attempts were made to fertilise mammalian eggs outside of the human body and in the early 1900s, it was discovered that some cells had the ability to generate blood cells.

In 1968, the first bone marrow transplant was performed to successfully treat two siblings with severe combined immunodeficiency. Other key events in stem cell research include:

More recently, in 2005, scientists at Kingston University in England were purported to have found another category of stem cells. These were named cord blood embryonic-like stem cells, which originate in umbilical cord blood. It is suggested that these stem cells have the ability to differentiate into more cell types than adult stem cells, opening up greater possibilities for cell-based therapies. Then, in early 2007, researchers led by Dr. Anthony Atala claimed that a new type of stem cell had been isolated in amniotic fluid. This finding is particularly important because these stem cells could prove to be a viable alternative to the controversial use of embryonic stem cells.

Over the last few years, national policies and debate amongst the public as well as religious groups, government officials and scientists have led to various laws and procedures regarding stem cell harvesting, development and treatment for research or disease purposes. The goals of such policies are to safeguard the public from unethical stem cell research and use while still supporting new advancements in the field.

You might also like...

Leave a Comment, Ask for Advice or Share Your Story...

Jim - 6-Jul-15 @ 10:02 PM

Ramen Sarkar - 23-Jun-15 @ 9:46 AM

Ramen Sarkar - 18-Jun-15 @ 7:26 PM

tera baap - 17-May-15 @ 9:46 AM

almighty.king.jay - 25-Mar-15 @ 4:18 PM

Bobby - 1-Dec-14 @ 4:23 PM

Adil Ahmed 255 - 20-Nov-14 @ 10:48 AM

ExploreStemCells - 22-Oct-14 @ 2:18 PM

Yusuf Syed - 22-Oct-14 @ 1:30 PM

amaad - 22-Oct-14 @ 1:27 PM

dgdsfbgf - 22-Sep-14 @ 3:18 PM

coline - 9-Aug-14 @ 2:13 PM

Manoj Jain - 6-Jul-14 @ 9:35 AM

sri - 19-Mar-14 @ 7:13 PM

jimmy - 25-Feb-14 @ 3:19 PM

deedee - 24-Jan-14 @ 11:36 AM

arwa - 24-May-13 @ 4:39 PM

GINGERGIRL3 - 25-Nov-12 @ 1:04 AM

zeddiesty - 23-Oct-12 @ 4:40 AM

britishandproud - 29-May-12 @ 8:58 PM

VTP - 29-May-12 @ 7:01 PM

Biogirl - 12-Nov-11 @ 4:58 PM

Searcher - 5-May-11 @ 10:40 PM

Title:

(never shown)

See the rest here:
History of Stem Cell Research

Glossary [Stem Cell Information]

Adult stem cellSee somatic stem cell.

AstrocyteA type of supporting (glial) cell found in the nervous system.

BlastocoelThe fluid-filled cavity inside the blastocyst, an early, preimplantation stage of the developing embryo.

BlastocystApreimplantationembryo consisting of a sphere made up of an outer layer of cells (thetrophoblast), a fluid-filled cavity (theblastocoel), and a cluster of cells on the interior (theinner cell mass).

Bone marrow stromal cellsA population of cells found in bone marrow that are different from blood cells.

Bone marrow stromal stem cells (skeletal stem cells)A multipotent subset of bone marrow stromal cells able to form bone, cartilage, stromal cells that support blood formation, fat, and fibrous tissue.

Cell-based therapiesTreatment in which stem cells are induced to differentiate into the specific cell type required to repair damaged or destroyed cells or tissues.

Cell cultureGrowth of cells in vitro in an artificial medium for research or medical treatment.

Cell divisionMethod by which a single cell divides to create two cells. There are two main types of cell division depending on what happens to the chromosomes: mitosis and meiosis.

ChromosomeA structure consisting of DNA and regulatory proteins found in the nucleus of the cell. The DNA in the nucleus is usually divided up among several chromosomes.The number of chromosomes in the nucleus varies depending on the species of the organism. Humans have 46 chromosomes.

Clone (v) To generate identical copies of a region of a DNA molecule or to generate genetically identical copies of a cell, or organism; (n) The identical molecule, cell, or organism that results from the cloning process.

CloningSee Clone.

Cord blood stem cellsSee Umbilical cord blood stem cells.

Culture mediumThe liquid that covers cells in a culture dish and contains nutrients to nourish and support the cells. Culture medium may also include growth factors added to produce desired changes in the cells.

DifferentiationThe process whereby an unspecialized embryonic cell acquires the features of a specialized cell such as a heart, liver, or muscle cell. Differentiation is controlled by the interaction of a cell's genes with the physical and chemical conditions outside the cell, usually through signaling pathways involving proteins embedded in the cell surface.

Directed differentiationThe manipulation of stem cell culture conditions to induce differentiation into a particular cell type.

DNADeoxyribonucleic acid. DNA is the chemical name for the molecule that carries genetic instructions in all living things.

EctodermThe outermost germ layer of cells derived from the inner cell mass of the blastocyst; gives rise to the nervous system, sensory organs, skin, and related structures.

EmbryoIn humans, the developing organism from the time of fertilization until the end of the eighth week of gestation, when it is called a fetus.

Embryoid bodiesRounded collections of cells that arise when embryonic stem cells are cultured in suspension. Embryoid bodies contain cell types derived from all threegerm layers.

Embryonic germ cellsPluripotent stem cells that are derived from early germ cells (those that would become sperm and eggs). Embryonic germ cells (EG cells) are thought to have properties similar to embryonic stem cells.

Embryonic stem cellsPrimitive (undifferentiated) cells that are derived from preimplantation-stageembryos, are capable of dividing without differentiating for a prolonged period in culture, and are known to develop into cells and tissues of the three primary germ layers.

Embryonic stem cell lineEmbryonic stem cells, which have been cultured under in vitro conditions that allow proliferation without differentiation for months to years.

EndodermThe innermost layer of the cells derived from the inner cell mass of the blastocyst; it gives rise to lungs, other respiratory structures, and digestive organs, or generally "the gut."

EnucleatedHaving had its nucleus removed.

EpigeneticHaving to do with the process by which regulatory proteins can turn genes on or off in a way that can be passed on during cell division.

Feeder layerCells used in co-culture to maintain pluripotent stem cells. For human embryonic stem cell culture, typical feeder layers include mouse embryonic fibroblasts (MEFs) or human embryonic fibroblasts that have been treated to prevent them from dividing.

FertilizationThe joining of the male gamete (sperm) and the female gamete (egg).

FetusIn humans, the developing human from approximately eight weeks after conception until the time of its birth.

GameteAn egg (in the female) or sperm (in the male) cell. See also Somatic cell.

GastrulationThe process in which cells proliferate and migrate within the embryo to transform the inner cell mass of the blastocyst stage into an embryo containing all three primary germ layers.

GeneA functional unit of heredity that is a segment of DNA found on chromosomes in the nucleus of a cell. Genes direct the formation of an enzyme or other protein.

Germ layersAfter the blastocyst stage of embryonic development, the inner cell mass of the blastocyst goes through gastrulation, a period when the inner cell mass becomes organized into three distinct cell layers, called germ layers. The three layers are the ectoderm, the mesoderm, and the endoderm.

Hematopoietic stem cellA stem cell that gives rise to all red and white blood cells and platelets.

Human embryonic stem cell (hESC)A type of pluripotent stem cells derived from early stage human embryos, up to and including the blastocyststage, thatare capable of dividing without differentiating for a prolonged period in culture, and are known to develop into cells and tissues of the three primary germ layers.

Induced pluripotent stem cell (iPSC)A type of pluripotent stem cell, similar to an embryonic stem cell, formed by the introduction of certain embryonic genes into a somatic cell.

In vitroLatin for "in glass;" in a laboratory dish or test tube; an artificial environment.

In vitro fertilizationA technique that unites the egg and sperm in a laboratory instead of inside the female body.

Inner cell mass (ICM)The cluster of cells inside the blastocyst. These cells give rise to the embryo and ultimately the fetus. The ICM may be used to generate embryonic stem cells.

Long-term self-renewalThe ability of stem cells to replicate themselves by dividing into the same non-specialized cell type over long periods (many months to years) depending on the specific type of stem cell.

Mesenchymal stem cellsA term that is currently used to define non-blood adult stem cells from a variety of tissues, although it is not clear that mesenchymal stem cells from different tissues are the same.

MeiosisA specialized cell division in which a single diploid cell undergoes two nuclear divisions following a single round of DNA replication in order to produce four daughter cells that contain half the number of chromosomes as the diploid cell. Meiosis occurs during the formation of gametes, to ensure that fertilization produces an embryo carrying the normal number of chromosomes.

MesodermMiddle layer of a group of cells derived from the inner cell mass of the blastocyst; it gives rise to bone, muscle, connective tissue, kidneys, and related structures.

MicroenvironmentThe molecules and compounds such as nutrients and growth factors in the fluid surrounding a cell in an organism or in the laboratory, which play an important role in determining the characteristics of the cell.

MitosisThe type of cell division that allows a population of cells to increase its numbers or to maintain its numbers. The number of chromosomes remains the same in this type of cell division.

MultipotentHaving the ability to develop into more than one cell type of the body. See also pluripotent and totipotent.

Neural stem cellA stem cell found in adult neural tissue that can give rise to neurons and glial (supporting) cells. Examples of glial cells include astrocytes and oligodendrocytes.

NeuronsNerve cells, the principal functional units of the nervous system. A neuron consists of a cell body and its processesan axon and one or more dendrites. Neurons transmit information to other neurons or cells by releasing neurotransmitters at synapses.

OligodendrocyteA supporting cell that provides insulation to nerve cells by forming a myelin sheath (a fatty layer) around axons.

ParthenogenesisThe artificial activation of an egg in the absence of a sperm; the egg begins to divide as if it has been fertilized.

PassageIn cell culture, the process in which cells are disassociated, washed, and seeded into new culture vessels after a round of cell growth and proliferation. The number of passages a line of cultured cells has gone through is an indication of its age and expected stability.

PluripotentThe state of a single cell that is capable of differentiating into all tissues of an organism, but not alone capable of sustaining full organismal development.

Scientists demonstrate pluripotency by providing evidence of stable developmental potential, even after prolonged culture, to form derivatives of all three embryonic germ layers from the progeny of a single cell and to generate a teratoma after injection into an immunosuppressed mouse.

Polar bodyA polar body is a structure produced when an early egg cell, or oogonium, undergoes meiosis. In the first meiosis, the oogonium divides its chromosomes evenly between the two cells but divides its cytoplasm unequally. One cell retains most of the cytoplasm, while the other gets almost none, leaving it very small. This smaller cell is called the first polar body. The first polar body usually degenerates. The ovum, or larger cell, then divides again, producing a second polar body with half the amount of chromosomes but almost no cytoplasm. The second polar body splits off and remains adjacent to the large cell, or oocyte, until it (the second polar body) degenerates. Only one large functional oocyte, or egg, is produced at the end of meiosis.

PreimplantationWith regard to an embryo, preimplantation means that the embryo has not yet implanted in the wall of the uterus. Human embryonic stem cells are derived from preimplantation-stage embryos fertilized outside a woman's body (in vitro).

ProliferationExpansion of the number of cells by the continuous division of single cells into two identical daughter cells.

Regenerative medicineA field of medicine devoted to treatments in which stem cells are induced to differentiate into the specific cell type required to repair damaged or destroyed cell populations or tissues. (See also cell-based therapies).

Reproductive cloningThe process of using somatic cell nuclear transfer (SCNT) to produce a normal, full grown organism (e.g., animal) genetically identical to the organism (animal) that donated the somatic cell nucleus. In mammals, this would require implanting the resulting embryo in a uterus where it would undergo normal development to become a live independent being. The firstmammal to be created by reproductive cloning was Dolly the sheep, born at the Roslin Institute in Scotland in 1996. See also Somatic cell nuclear transfer (SCNT).

SignalsInternal and external factors that control changes in cell structure and function. They can be chemical or physical in nature.

Somatic cellAny body cell other than gametes (egg or sperm); sometimes referred to as "adult" cells. See also Gamete.

Somatic cell nuclear transfer (SCNT)A technique that combines an enucleated egg and the nucleus of a somatic cell to make an embryo. SCNT can be used for therapeutic or reproductive purposes, but the initial stage that combines an enucleated egg and a somatic cell nucleus is the same. See also therapeutic cloning and reproductive cloning.

Somatic (adult) stem cellA relatively rare undifferentiated cell found in many organs and differentiated tissues with a limited capacity for both self renewal (in the laboratory) and differentiation. Such cells vary in their differentiation capacity, but it is usually limited to cell types in the organ of origin. This is an active area of investigation.

Stem cellsCells with the ability to divide for indefinite periods in culture and to give rise to specialized cells.

Stromal cellsConnective tissue cells found in virtually every organ. In bone marrow, stromal cells support blood formation.

SubculturingTransferring cultured cells, with or without dilution, from one culture vessel to another.

Surface markersProteins on the outside surface of a cell that are unique to certain cell types and that can be visualized using antibodies or other detection methods.

TeratomaA multi-layered benign tumor that grows from pluripotent cells injected into mice with a dysfunctional immune system. Scientists test whether they have established a human embryonic stem cell (hESC) line by injecting putative stem cells into such mice and verifying that the resulting teratomas contain cells derived from all three embryonic germ layers.

Therapeutic cloningThe process of using somatic cell nuclear transfer (SCNT) to produce cells that exactly match a patient. By combining a patient's somatic cell nucleus and an enucleated egg, a scientist may harvest embryonic stem cells from the resulting embryo that can be used to generate tissues that match a patient's body. This means the tissues created are unlikely to be rejected by the patient's immune system. See also Somatic cell nuclear transfer (SCNT).

TotipotentThe state of a cell that is capable of giving rise to all types of differentiated cells found in an organism, as well as the supporting extra-embryonic structures of the placenta. A single totipotent cell could, by division in utero, reproduce the whole organism. (See also Pluripotent and Multipotent).

TransdifferentiationThe process by which stem cells from one tissue differentiate into cells of another tissue.

TrophoblastThe outer cell layer of the blastocyst. It is responsible for implantation and develops into the extraembryonic tissues, including the placenta, and controls the exchange of oxygen and metabolites between mother and embryo.

Umbilical cord blood stem cellsStem cells collected from the umbilical cord at birth that can produce all of the blood cells in the body (hematopoietic). Cord blood is currently used to treat patients who have undergone chemotherapy to destroy their bone marrow due to cancer or other blood-related disorders.

UndifferentiatedA cell that has not yet developed into a specialized cell type.

Excerpt from:
Glossary [Stem Cell Information]

Platelet-rich plasma – Wikipedia, the free encyclopedia

Platelet-rich plasma (Abbreviation: PRP) is blood plasma that has been enriched with platelets. As a concentrated source of autologous platelets, PRP contains (and releases through degranulation) several different growth factors and other cytokines that stimulate healing of bone and soft tissue.

PRP was first developed in the 1970s and first used in Italy in 1987 in an open heart surgery procedure. PRP therapy began gaining popularity in the mid 1990s. It has since been applied to many different medical fields such as cosmetic surgery, dentistry, sports medicine and pain management.[citation needed]

The efficacy of certain growth factors in healing various injuries and the concentrations of these growth factors found within PRP are the theoretical basis for the use of PRP in tissue repair.[1] The platelets collected in PRP are activated by the addition of thrombin and calcium chloride, which induces the release of the mentioned factors from alpha granules. The growth factors and other cytokines present in PRP include:[1][2]

There are, at present, two methods of PRP preparation approved by the U.S. Food and Drug Administration.[3] Both processes involve the collection of the patient's whole blood (that is anticoagulated with citrate dextrose) before undergoing two stages of centrifugation (TruPRP) (Harvest) designed to separate the PRP aliquot from platelet-poor plasma and red blood cells.[3] In humans, the typical baseline blood platelet count is approximately 200,000 per L; therapeutic PRP concentrates the platelets by roughly five-fold.[4] There is, however, broad variability in the production of PRP by various concentrating equipment and techniques.[5][6][7]

In humans, PRP has been investigated and used as a clinical tool for several types of medical treatments, including nerve injury,[2]tendinitis,[8][9]osteoarthritis,[10]cardiac muscle injury,[11] bone repair and regeneration,[12]plastic surgery,[13] and oral surgery.[14] PRP has also received attention in the popular media as a result of its use in treating sports injuries in professional athletes.[15][16][17][18]

PRP may be used as a treatment for hair regrowth caused by Androgenic Alopecia.[19][20] A 2013 review stated more evidence is needed to determine the effectiveness of PRP for hair regrowth.[21]

Results of basic science and preclinical trials have not yet been confirmed in large-scale controlled clinical trials. For example, clinical use of PRP for nerve injury and sports medicine has produced "promising" but "inconsistent" results in early trials.[2][22] A 2009 systematic review of the scientific literature stated that there are few controlled clinical trials that have adequately evaluated the safety and efficacy of PRP treatments and concluded that PRP is "a promising, but not proven, treatment option for joint, tendon, ligament, and muscle injuries".[22]

Proponents of PRP therapy argue that negative clinical results are associated with poor quality PRP produced by inadequate single spin devices. The fact that most gathering devices capture a percentage of a given thrombocyte count is a bias, since there is significant inter-individual variability in the platelet concentration of human plasma. More is not necessarily better in this case.[4] The variability in platelet concentrating techniques may alter platelet degranulation characteristics that could affect clinical outcomes.[2]

A 2010 Cochrane analysis found no evidence that PRP offered any benefit when used for sinus lifts during dental implant placement.[14]

A 2014 Cochrane analysis found very weak (very low quality) evidence for a decrease in pain in those treated with platlet-rich therapies (PRT) from musculoskeletal injuries in the short term (up to three months). However, pooled data did not show a difference in function in the short, medium or long term. There was weak evidence that suggested that adverse events (harms) occurred at comparable, low rates in people treated with PRT and people not treated with PRT.[23]

Platelet-rich plasma is used in horses for treatment of equine lameness. Uses include tendon and ligament injury, wounds, fractures, bone cysts, and osteoarthritis.

Some concern exists as to whether PRP treatments violate anti-doping rules, such as those maintained by the World Anti-Doping Agency.[1] It is not clear if local injections of PRP can have a systemic impact on circulating cytokine levels, in turn affecting doping tests; it is also not clear whether PRP treatments have systemic anabolic effects or affect performance.[1] In January 2011, the World Anti-Doping Agency removed intramuscular injections of PRP from its prohibitions after determining that there is a "lack of any current evidence concerning the use of these methods for purposes of performance enhancement".[24] In April 2014, Orioles first baseman Chris Davis, 28, underwent two PRP injections to speed the healing and recovery of an oblique injury. Left-hander Zach Britton had the procedure in his left shoulder in March 2012, according to the Baltimore Sun, and right-hander Dylan Bundy had the procedure last April before undergoing Tommy John surgery in June.

See the rest here:
Platelet-rich plasma - Wikipedia, the free encyclopedia

Platelet Rich Plasma (PRP) Therapy (Vampire Facelift)

Platelet Rich Plasma (PRP) Therapy Sub Menu Platelet Rich Plasma (PRP) Therapy background information

Platelet Rich Plasma or PRP therapy, also known as autologous rejuvenation therapy, is a revolutionary new treatment. It is often also referred to, by the media, as a Vampire Facelift or Dracula Therapy.

PRP therapy works on the basis that the bodys own natural healing powers may slow and even reverse the ageing process its a revolutionary repair system that places growth factors in the exact location where we want the skin to repair and rejuvenate itself.

Blood (a small amount) is taken from the patient during the treatment, then treated (in a centrifuge) to harvest the platelet rich plasma and re-injected into the desired area. The therapy is said to plump skin, fill out fine lines and wrinkles, and give an overall more radiant appearance.

Platelet Rich Plasma Therapy has been used for a number of years in urology, ophthalmology, dentistry, neurosurgery, orthopaedics and sports medicine, to treat muscle and ligament injuries, pain problems, skin lesions and more. Due to the success of Platelet Rich Plasma Therapy in medicine, the procedure was then developed into a cosmetic procedure.

Platelets contain a high content of growth factors proteins that help to heal injured tissue or damaged skin. Upon re-injection the platelets release their growth factors which trigger surrounding cells to proliferate, in turn stimulating repair, increasing volume and rejuvenating the skin.

If you are considering Platelet Rich Plasma therapy the following information will give you a basic understanding of the procedure. It can't answer all your questions, since a lot depends on the individual patient and the practitioner. Please ask a practitioner about anything you don't understand.

PRP therapy involves harvesting platelets from the patients own blood in order to inject them into problem skin areas, giving it the nicknames Vampire Facelift and Dracula Therapy. Before the procedure, a small amount of blood is taken from the patient and put into a centrifuge, where the blood is spun in order to separate the red blood cells from the platelet plasma. The platelet plasma, which is the component of the blood that is known for being highly effective in treating burns and skin injuries, is then injected into the chosen area, where it plumps up the skin, reducing fine lines and wrinkles.

When the platelet plasma is injected into the skin, the platelets release their growth factors. The growth factors stimulate other cells surrounding the injection site, plumping them up and causing them to increase in volume. The platelet plasma sends out signals to other cells in the body when it is injected, telling them to rush forward to the injection site. One cell that is stimulated during the process is the fibroblast cell, which is the cell type that creates collagen. Collagen is what gives skin a youthful appearance. As we age, collagen is produced less and less, causing wrinkles and fine lines in the skin, and therapies such as PRP therapy that stimulate collagen production can counteract this. Another cell stimulated during the process is the pre-adipocyte cell, which is a cell type that can convert into a fat cell, which is especially important in the face to fill out lines and to contour the face.

PRP therapy can be used on the face, particularly around the eyes, mouth and nose, the backs of the hands, and all over the body, more commonly the dcolletage and even the knees to give skin a more youthful and radiant appearance.

There are now many brands of Platelet Rich Plasma Therapy for use in cosmetic enhancement including Regen, Selphyl, GLOPRP, Angel Lift and Tropocells (also known by the brand MyCells in other countries outside of the UK), which all offer a different method or process for refining and creating the PRP product from the original blood source.

Platelet Rich Plasma Therapy can be used to treat numerous cosmetic problems, such as fine lines and wrinkles or crepey skin around the mouth and nose, crows feet around the eyes and mild drooping or sagging skin around the eyes or on the cheeks. PRP therapy can also be used to improve the appearance of dehydrated or mildly sagging skin on the backs of the hands, on the tops of the feet, elbows and knees. It can be used all over the body.

In terms of medical treatment rather than cosmetic treatment, PRP therapy can be used to treat a multitude of problems, including osteoarthritis and ligament and muscle injuries. It has been used widely in medicine for a number of years.

During your first visit to a clinic, you should explain what you expect from PRP Therapy and how you would like to look afterwards. Your practitioner should discuss any potential problems connected with the treatment based on your medical history.

The practitioner should take a medical history to make sure that there are no reasons why you shouldnt have the treatment. Then you will usually be asked to read detailed information and sign a consent form which means that you have understood what the treatment may do, along with any potential side effects. Photographs may also be taken by the practitioner for a before and after comparison of the treatment.

10 to 20 minutes before your procedure, your practitioner will draw 10-20ml of blood. This is done in a similar way to when you have blood taken for testing at the doctors office.

The blood will then be spun in a centrifuge to separate the platelet plasma from the red blood cells using one of the branded systems described.

Any makeup on the skin will be removed using a wipe, and antiseptic will be applied to the injection site. Depending on your practitioner, a topical local anaesthetic will then be applied to the skin of the injection site. The PRP will then be injected into the skin in the desired area using a very fine needle. Injections will be given multiple times in multiple locations in order to give an overall improvement to the area.

An ice pack may then be pressed onto the treated site to reduce any swelling. You will then be free to leave and go about your daily business. The whole procedure usually takes about 30 minutes.

It may take a few weeks for the results of the PRP therapy to become visible, but with two to three top-up treatments, you can expect the results of PRP therapy to last for up to one and a half years.

Recovery time is minimal with Platelet Rich Plasma Therapy, much like a visit to the doctor for a blood test. The actual procedure of reinjection of the PRP involves the use of topical anaesthetic, although not always depending on the patient and area being treated, rather than local or general anaesthetic, meaning that most patients feel comfortable returning to their normal activities straight after the treatment or within a short while.

There are few side effects associated with Platelet Rich Plasma Therapy. Immediately after the procedure, you can expect some bruising, swelling and redness at the injection sites. You may also experience some tenderness and pain at the injection sites. However, any side effects should dissipate within a few days following the procedure.

It is very important that you follow the advice of your physician following treatment. Post-treatment advice could include:

Most patients will be able to go straight back to their normal regime following treatment, but if you experience any tenderness or pain at the treatment site, you should take extra care when washing and caring for your skin in the days following the PRP therapy.

To undergo PRP therapy, you should be in general good health and you should have realistic expectations of the outcome. Most people are suitable candidates for PRP therapy, and it is recommended as a safe treatment for individuals who are unable to undergo more invasive procedures such as a full face lift, due to the risks associated with general anaesthetic (although it will not achieve the same results as a surgical face lift).

Individuals with platelet dysfunction syndrome, critical thrombocytopenia, hypofibrinogenaemia, haemodynamic instability, sepsis, acute & chronic infections and chronic liver pathology are not suitable candidates for PRP therapy.

Those undergoing anti-coagulant therapy are also not suitable candidates.

Only fully trained and qualified medical practitioners (nurses, doctors or cosmetic surgeons) should perform PRP therapy.

It is unlikely that anyone considering PRP Therapy for cosmetic indications would be able to access this free of charge on the National Health Service (NHS).

Platelet Rich Plasma Therapy costs between 350 and 500 per session, depending on the practitioner. Generally, you need two to three top-up sessions after your first treatment, so you could pay between 700 and 1500, depending on how many top-up sessions you have. Further maintenance may be required.

PRP therapy is a revolutionary new therapy that is a safe and alternative treatment to various other non-invasive cosmetic treatments such as botulinum toxins and dermal fillers. Its considered to be a natural treatment, as it uses the bodys own cells (blood plasma) rather than a synthetic substance.

Following PRP therapy, your skin will look more smooth, radiant and youthful.

There are very few risks associated with PRP therapy if it is administered by a fully trained physician.

Coming soon.

View post:
Platelet Rich Plasma (PRP) Therapy (Vampire Facelift)

The Stem Cell Center at Texas Heart Institute

Welcome

The Stem Cell Center Texas Heart Institute is dedicated to the study of adult stem cells and their role in treating diseases of the heart and the circulatory system. Through numerous clinical and preclinical studies, we have come to realize the potential of stem cells to help patients suffering from cardiovascular disease.We are actively enrolling patients in studies using stem cells for the treatment of heart failure, heart attacks, and peripheral vascular disease.

Whether you are a patient looking for information regarding our research, or a doctor hoping to learn more about stem cell therapy, we welcome you to the Stem Cell Center. Please visit our Clinical Trials page for more information about our current trials.

Emerson C. Perin, MD, PhD, FACC Director, Clinical Research for Cardiovascular Medicine Medical Director, Stem Cell Center McNair Scholar

You may contact us at:

E-mail: stemcell@texasheart.org Toll free: 1-866-924-STEM (7836) Phone: 832-355-9405 Fax: 832-355-9440

We are a network of physicians, scientists, and support staff dedicatedto studying stem cell therapy for treating heart disease. Thegoals of the Network are to complete research studies that will potentially lead to more effective treatments for patients with cardiovasculardisease, and to share knowledge quickly with the healthcare community.

Websitein Spanish (En espaol)

Read the original:
The Stem Cell Center at Texas Heart Institute

Why I’m sure human stem cell trial will be safe – New …

(Image: Natasha Little)

The new kind of stem cell announced yesterday may be the future of regenerative medicine, but Masayo Takahashis pilot safety study using a type of stem cell to treat age-related blindness is at the cutting edge

Later this year, you will make history when you begin the first ever human trial of induced pluripotent stem cells. Why is this such a big deal? Stem cells have enormous medical potential because they can become any other type of cell. If we can use them to replace old or damaged cells, this could have huge implications for treating degenerative diseases.

Stem cells can be harvested from embryos, but this is ethically controversial. Despite this, there are several trials of these embryonic stem cells under way. Their use often requires drugs to stop the immune system from rejecting them, which can cause complications for elderly patients. Induced pluripotent stem (iPS) cells offer an alternative. These are made from a patients own cells, removing the need for the immunosuppressant drugs. Plus there are no ethical issues.

How would treatment with iPS cells work? iPS cells are made by injecting several reprogramming genes into adult cells that have been removed from the body. This makes them rewind to an embryonic state. Then, we can make iPS cells differentiate into the cell type we need by injecting proteins that instruct embryonic stem cells to become liver, retina or any other type of cell. The idea is that these reprogrammed cells can then be inserted in the body to replace damaged cells. We are at least 20 years from any clinical treatments, but the potential is exciting.

Are there any potential pitfalls with iPS cell treatments? Yes, we have to be very careful because iPS cells multiply endlessly. This means that if any undifferentiated iPS cells were accidentally put into someone, they could cause tumours. Thats why this study is so important. It is not a clinical trial, but a six-subject pilot study to confirm the safety of putting cells derived from iPS cells into humans.

Who are the participants in the study? The six people all have age-related macular degeneration in their eyes. This weakens the vision in the central field, eventually leaving people with only peripheral vision. In the type of degeneration we are working with, this is caused by the deterioration of the retinal pigment epithelium (RPE) the layer of cells that clears away extra-cellular debris that lands on the retina.

We aim to replace the damaged section of the RPE with cells created from skin taken from the patients arm. The skin cells will be reprogrammed into iPS cells and then differentiated into RPE cells. It will take a year to grow enough RPE cells to introduce them to a damaged eye. Although I am excited to see if there is any improvement in sight, this study aims only to demonstrate the safety of RPE cells derived from IPS cells.

How confident are you that the pilot will be a success? Very confident. We have trialled this intervention on mice, rats and monkeys, and observed no tumours. I chose to work with RPE cells because of their characteristic brown pigment. This means we can avoid injecting tumour-causing iPS cells by selecting only the clumps of pure brown RPE cells. Of course, we do have to pick out around 50,000 RPE cells, so it can be a bit tough.

Read the original here:
Why I'm sure human stem cell trial will be safe - New ...

Arguments Against Embryonic Stem Cell Research – Stem …

An embryo is actually a human; it should be valued as highly as a human life.

The reasoning can be summed up by the fact that, once an egg is fertilized, unless inhibited, it will develop into a fully-developed adult. This opinion is often related to religious doctrines which assert that conception marks the beginning of human life or the presence of a soul.

Viability is another standard under which embryos and fetuses have been regarded as human lives. In the United States, the 1973 Supreme Court case of Roe v. Wade concluded that viability determined the permissibility of abortions performed for reasons other than the protection of the woman's health, defining viability as the point at which a fetus is "potentially able to live outside the mother's womb, albeit with artificial aid."

The point of viability was 24 to 28 weeks when the case was decided and has since moved to about 22 weeks due to advancement in medical technology.

If further technological advances allow a sperm and egg to be combined and fully developed completely outside of the womb, an embryo will be viable as soon as it is conceived, and under the viability standard, life will begin at conception.

Embryonic stem cells should be abandoned in favor of alternatives, such as those involving adult stem cells.

This argument is used by opponents of embryonic destruction as well as researchers specializing in adult stem cell research. It is often claimed by pro-life supporters that the use of adult stem cells from sources such as umbilical cord blood has consistently produced more promising results than the use of embryonic stem cells.

Furthermore, adult stem cell research may be able to make greater advances if less money and resources were channeled into embryonic stem cell research. Adult stem cells have already produced therapies, while embryonic stem cells have not.

Here is the original post:
Arguments Against Embryonic Stem Cell Research - Stem ...

STEM CELL THERAPY IN BANGKOK – Andrew Drummond

He is a gifted speaker and recently targeted audiences have included readers of the Pattaya People newspaper and today it seems the Pattaya Expats Club run by controversial Pattaya People Media CEO Niels Colov. But listeners should always be cautious when it comes to stell cell treatment, a speciality of Dr. Richard DeAndrea.

No stem cell treatments (except hematopoietic stem cell transplantation) have been given approval by the U.S. Federal Drug Aministration, which means that they have not been tested for safety or for efficacy.

Although Dr. DeAndrea appears to be a highly qualified doctor, controversy still rages worldwide over stem cell therapy. Research is still in progress but there seems little doubt that the discovery of stem cells and what they could be potentially used for will be of great benefit.

Indeed the The U.S. National Institutes of Health's Guidelines has stated:

Dr Richard DeAndrea, MD, ND, also recently addressed the American Academy of Anti-Aging Medicine (A4M) Conference.

A4M is not recognised by the American Medical Association and critics have accused the group of using misleading marketing to sell expensive and ineffective products. This is not something I am accusing Dr. DeAndrea of doing.

But GSCN in Bangkok, for whom Dr. DeAndrew works, is offering Stem Cell therapy as a cure for multiple conditons.

Recently CBS 60 Minutes exposed a doctor who offered stem cell therapy for cerebral palsy when there was no research justifying its use. The programme makers also exposed other sharks in the industry. Stems cell therapy is not yet the Holy Grail or elixir of life.

Stem cell therapy treatments have been offered in Bangkok at prices in the region of US$40,000 and Thailands retirement visa foreigners could be a prize market though perhaps the Pattaya Expat Club may not have that many potential clients with such an amount of money spare.

GLOBAL STEM CELL NETWORK COMPANY LIMITED 210/3 SOI NA THONG DIN DAENG, KHET DIN DAENG, BANGKOK founded 30/06/2552 2M baht registered capital. 2 Thai shareholders with 61% + 1 American shareholder with 39% Given the number of firms crammed in, this address is probably virtual offices or an accountant's office.

Read the original here:
STEM CELL THERAPY IN BANGKOK - Andrew Drummond