Haberlandt, G. in Plant Tissue Culture: 100 Years Since Gottlieb Haberlandt (eds Laimer, M. & Rcker, W.) 124 (Springer, 2003); https://doi.org/10.1007/978-3-7091-6040-4_1
Bidabadi, S. S. & Jain, S. M. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants 9, 702 (2020).
Article CAS PubMed PubMed Central Google Scholar
Thorpe, T. A. History of plant tissue culture. Mol. Biotechnol. 37, 169180 (2007).
Article CAS PubMed Google Scholar
Radhakrishnan, D. et al. Shoot regeneration: a journey from acquisition of competence to completion. Curr. Opin. Plant Biol. 41, 2331 (2018).
Article CAS PubMed Google Scholar
Shin, J., Bae, S. & Seo, P. J. De novo shoot organogenesis during plant regeneration. J. Exp. Bot. 71, 6372 (2019).
Article Google Scholar
Hayta, S. et al. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods 15, 121 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ikeuchi, M. et al. Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 70, 377406 (2019).
Article CAS PubMed Google Scholar
Hu, B. et al. Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms. Regeneration 4, 132139 (2017).
Article CAS PubMed PubMed Central Google Scholar
Atta, R. et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 57, 626644 (2009).
Article CAS PubMed Google Scholar
Sugimoto, K., Jiao, Y. & Meyerowitz, E. M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell 18, 463471 (2010).
Article CAS PubMed Google Scholar
Hu, X. & Xu, L. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiol. 172, 23632373 (2016).
Article CAS PubMed PubMed Central Google Scholar
Liu, J. et al. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture. Plant Cell Physiol. 59, 734743 (2018).
Article PubMed Google Scholar
Liu, J. et al. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26, 10811093 (2014).
Article CAS PubMed PubMed Central Google Scholar
Gordon, S. P. et al. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134, 35393548 (2007).
Article CAS PubMed Google Scholar
Meng, W. J. et al. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29, 13571372 (2017).
Article CAS PubMed PubMed Central Google Scholar
Kareem, A. et al. PLETHORA genes control regeneration by a two-step mechanism. Curr. Biol. 25, 10171030 (2015).
Article CAS PubMed PubMed Central Google Scholar
Liu, X., Zhu, K. & Xiao, J. Recent advances in understanding of the epigenetic regulation of plant regeneration. aBIOTECH https://doi.org/10.1007/s42994-022-00093-2 (2023).
He, C., Chen, X., Huang, H. & Xu, L. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet. 8, e1002911 (2012).
Article CAS PubMed PubMed Central Google Scholar
Lee, K., Park, O.-S. & Seo, P. J. Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation. Sci. Signal. 10, eaan0316 (2017).
Article PubMed Google Scholar
Lee, K. et al. Arabidopsis ATXR2 represses de novo shoot organogenesis in the transition from callus to shoot formation. Cell Rep. 37, 109980 (2021).
Article CAS PubMed Google Scholar
Lee, K., Park, O.-S., Choi, C. Y. & Seo, P. J. ARABIDOPSIS TRITHORAX 4 facilitates shoot identity establishment during the plant regeneration process. Plant Cell Physiol. 60, 826834 (2019).
Article CAS PubMed Google Scholar
Liu, H., Zhang, H., Dong, Y. X., Hao, Y. J. & Zhang, X. S. DNA METHYLTRANSFERASE1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis. New Phytol. 217, 219232 (2018).
Article CAS PubMed Google Scholar
Hiei, Y., Ishida, Y. & Komari, T. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front. Plant Sci. 5, 628 (2014).
Article PubMed PubMed Central Google Scholar
Ishida, Y., Tsunashima, M., Hiei, Y. & Komari, T. Wheat (Triticum aestivum L.) transformation using immature embryos. Methods Mol. Biol. 1223, 189198 (2015).
Article CAS PubMed Google Scholar
Zhang, W. et al. Regeneration capacity evaluation of some largely popularized wheat varieties in China. Acta Agron. Sin. 44, 208217 (2018).
Article Google Scholar
Wang, K., Liu, H., Du, L. & Ye, X. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol. J. 15, 614623 (2017).
Article CAS PubMed Google Scholar
Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 19982015 (2016).
Article CAS PubMed PubMed Central Google Scholar
Suo, J. et al. Identification of regulatory factors promoting embryogenic callus formation in barley through transcriptome analysis. BMC Plant Biol. 21, 145 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wang, K. et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants 8, 110117 (2022).
Article PubMed Google Scholar
Debernardi, J. M. et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 38, 12741279 (2020).
Article CAS PubMed PubMed Central Google Scholar
Qiu, F. et al. Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing. Sci. China Life Sci. 65, 731738 (2022).
Article CAS PubMed Google Scholar
Zhao, L. et al. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biol. 24, 7 (2023).
Article CAS PubMed PubMed Central Google Scholar
Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207220 (2019).
Article CAS PubMed Google Scholar
Wang, M. et al. An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. Plant Cell 33, 865881 (2021).
Article PubMed PubMed Central Google Scholar
Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811814 (2007).
Article CAS PubMed Google Scholar
Yu, J., Liu, W., Liu, J., Qin, P. & Xu, L. Auxin control of root organogenesis from callus in tissue culture. Front. Plant Sci. 8, 1385 (2017).
Article PubMed PubMed Central Google Scholar
Della Rovere, F. et al. Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of Arabidopsis. Ann. Bot. 112, 13951407 (2013).
Article PubMed PubMed Central Google Scholar
Wu, L. Y. et al. Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Dev. Cell 57, 526542 (2022).
Article CAS PubMed Google Scholar
Ikeuchi, M. et al. A gene regulatory network for cellular reprogramming in plant regeneration. Plant Cell Physiol. 59, 770782 (2018).
Article CAS PubMed Central Google Scholar
Shi, B. et al. Two-step regulation of a meristematic cell population acting in shoot branching in Arabidopsis. PLoS Genet. 12, e1006168 (2016).
Article PubMed PubMed Central Google Scholar
Hao, C. et al. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol. Plant 13, 17331751 (2020).
Article CAS PubMed Google Scholar
Bisht, A. et al. PAT1-type GRAS-domain proteins control regeneration by activating DOF3.4 to drive cell proliferation in Arabidopsis roots. Plant Cell https://doi.org/10.1093/plcell/koad028 (2023).
Fan, M., Xu, C., Xu, K. & Hu, Y. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 22, 11691180 (2012).
Article CAS PubMed PubMed Central Google Scholar
Schulze, S., Schfer, B. N., Parizotto, E. A., Voinnet, O. & Theres, K. LOST MERISTEMS genes regulate cell differentiation of central zone descendants in Arabidopsis shoot meristems. Plant J. 64, 668678 (2010).
Article CAS PubMed Google Scholar
Wang, F. X. et al. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev. Cell 54, 742757 (2020).
Article CAS PubMed Google Scholar
Xu, M., Du, Q., Tian, C., Wang, Y. & Jiao, Y. Stochastic gene expression drives mesophyll protoplast regeneration. Sci. Adv. 7, eabg8466 (2021).
Article CAS PubMed PubMed Central Google Scholar
Bie, X. M. et al. Trichostatin A and sodium butyrate promotes plant regeneration in common wheat. Plant Signal. Behav. 15, 1820681 (2020).
Article PubMed PubMed Central Google Scholar
Jiang, F. et al. Trichostatin A increases embryo and green plant regeneration in wheat. Plant Cell Rep. 36, 17011706 (2017).
Article CAS PubMed Google Scholar
Zhao, N. et al. Systematic analysis of differential H3K27me3 and H3K4me3 deposition in callus and seedling reveals the epigenetic regulatory mechanisms involved in callus formation in rice. Front. Genet. 11, 766 (2020).
Article CAS PubMed PubMed Central Google Scholar
Daimon, Y., Takabe, K. & Tasaka, M. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol. 44, 113121 (2003).
Article CAS PubMed Google Scholar
Zhai, N. & Xu, L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat. Plants 7, 14531460 (2021).
Article CAS PubMed Google Scholar
Liu, W. et al. Transcriptional landscapes of de novo root regeneration from detached Arabidopsis leaves revealed by time-lapse and single-cell RNA sequencing analyses. Plant Commun. 3, 100306 (2022).
The rest is here:
Uncovering the transcriptional regulatory network involved in ... - Nature.com