St. Olaf student awarded Harvard Stem Cell Institute internship

July 28, 2014

As part of her Harvard Stem Cell Institute internship, St. Olaf student Alexa Roemmich 15 is working to grow adult mouse inner ear stem cells in a laboratory dish something that has never been done before.

St. Olaf College student Alexa Roemmich 15 is one of 40 undergraduate students from around the world selected to participate in the 2014 Harvard Stem Cell Institute (HSCI) Internship Program, which provides participants with a challenging summer research experience in a cutting-edge stem cell science laboratory.

Roemmich is spending 10 weeks in the Massachusetts Eye and Ear Infirmary laboratory of faculty member Zheng-Yi Chen, known for his research on age-related and noise-induced hearing loss.

Roemmichs project this summer is to grow adult mouse inner ear stem cells in a laboratory dish something that has never been done before with the goal of persuading these cells to become the sound-converting cells that are lost in an aging or damaged ear.

Im working on a project that no one has succeeded at before, Roemmich says. Its very exciting. Im able to experience the scientific process in a very real way my results are unknown, and any new result is something that can be learned.

Ive had excellent opportunities at St. Olaf, and also from my summers at the University of North Dakota and the Mayo Clinic, that prepared me to design and carry out multi-week experiments, she adds. I cannot wait to continue my scientific journey in graduate school and beyond.

Over the course of the HSCI program, interns participate in a stem cell seminar series, a career pathways presentation, and a weekly stem cell companion course. They present their summer research findings, both orally and in poster format, at an end-of-program symposium.

This program represents an exciting opportunity for undergraduates to gain hands-on experience in stem cell research while working in an HSCI laboratory under the supervision of an experienced researcher, says HSCI Internship Program Co-Director M. William Lensch.

Go here to read the rest:
St. Olaf student awarded Harvard Stem Cell Institute internship

Stem Cell Advance May Increase Efficiency of Tissue Regeneration

Contact Information

Available for logged-in reporters only

Newswise A new stem-cell discovery might one day lead to a more streamlined process for obtaining stem cells, which in turn could be used in the development of replacement tissue for failing body parts, according to UC San Francisco scientists who reported the findings in the current edition of Cell.

The work builds on a strategy that involves reprogramming adult cells back to an embryonic state in which they again have the potential to become any type of cell.

The efficiency of this process may soon increase thanks to the scientists identification of biochemical pathways that can inhibit the necessary reprogramming of gene activity in adult human cells. Removing these barriers increased the efficiency of stem-cell production, the researchers found.

Our new work has important implications for both regenerative medicine and cancer research, said Miguel Ramalho-Santos, PhD, associate professor of obstetrics, gynecology and reproductive sciences and a member of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, who led the research, funded in part by a prestigious NIH Directors New Innovator Award.

The earlier discovery that it was possible to take specialized adult cells and reverse the developmental clock to strip the mature cells of their distinctive identities and characteristics and to make them immortal, reprogrammable cells that theoretically can be used to replace any tissue type led to a share of the Nobel Prize in Physiology or Medicine being awarded to UCSF, Gladstone Institutes and Kyoto University researcher Shinya Yamanaka, MD, in 2012.

These induced pluripotent stem (iPS) cells are regarded as an alternative experimental approach to ongoing efforts to develop tissue from stem cells obtained from early-stage human embryos. However despite the promise of iPS cells and the excitement surrounding iPS research, the percentage of adult cells successfully converted to iPS cells is typically low, and the resultant cells often retain traces of their earlier lives as specialized cells.

Researchers generate stem cells by forcing the activation within adult cells of pluripotency-inducing genes starting with the so-called Yamanaka factors a process that turns back the clock on cellular maturation.

Yet, as Ramalho-Santos notes, From the time of the discovery of iPS cells, it was appreciated that the specialized cells from which they are derived are not a blank slate. They express their own genes that may resist or counter reprogramming.

Read more here:
Stem Cell Advance May Increase Efficiency of Tissue Regeneration

Skinspirations Study Supports Medical Findings: Stem Cell Treatment Triggers Tissue Regeneration

Tampa Bay, FL (PRWEB) July 28, 2014

Nearly 53 million Americans today are suffering with arthritis, with the majority of them diagnosed with osteoarthritis. (1) Osteoarthritis is a degeneration of joint cartilage and its underlying bone, causing significant pain and stiffness. While osteoarthritis has no cure, stem cell therapy has been demonstrated to induce profound healing in many forms of arthritis, according to the Stem Cell Institute. (2) Dr. Cynthia Elliott of Skinspirations, a center for cosmetic enhancement devoted to non-surgical aesthetics and now also specializing in administering regenerative medicine by stem cell, has made use of these services in a recent case study, which resulted in improved health in one of their clients.

Stem cells are unique from other cells for the following reasons:

(a)They can renew themselves through cell division; and (b)Under certain conditions, they can become tissue or organ-specific cells.

Stem cells are revered for their ability to make replacement tissues, as it relates to regenerative therapy. (3) Medical scientists and researchers are discovering the seemingly endless possibilities of what stem cells can treat, including brain damage, bone repair, kidney disease, etc. (4) This treatment is starting to boom in the medical world as a viable procedure, but Skinspirations has already had these practices in place, establishing them as progressive practitioners in the field.

Skinspirations is specifically studying the Stromal Vascular Fraction (SVF)another term for stem cell treatmentand how it affects knees with severe arthritis. According to Dr. Elliott, Stromal Vascular Fraction can help to repair, replace and restore any damaged cells within the bodyDr. Elliott performed the stem cell procedure on her uncle after first treating other patients during her training, and he experienced the following results:

Case in Point:

Joe Elliott, a 63-year-old male, had severe arthritis in one knee. Doctors advised him to get a knee replacement, but Joe was hoping to avoid surgery for as long as possible. After talking to Dr. Elliott about the treatment, he drove to Skinspirations from Missouri to go forward with the stem cell procedure.

Dr. Elliott performed the treatment with the following steps:

(1)Numbed his abdomen with anesthesia; (2)Removed about 100 cc of fat; (3)Processed the fat to isolate the SVF; (4)Numbed the arthritic knee; and (5)Injected the pellet of SVF into the joint of his arthritic knee.

Go here to read the rest:
Skinspirations Study Supports Medical Findings: Stem Cell Treatment Triggers Tissue Regeneration

'She received the best care'

Kellie van Meurs, pictured with her husband Mark, died while undergoing stem cell treatment in Russia. Photo: Facebook

Supporters of a Brisbane mother of two who died while undergoing a controversial stem cell treatment in Russia say it did not cause her death, nor have others been discouraged from seeking it.

Kellie van Meurs suffered from a rare neurological disorder called Stiff Person Syndrome, which causes progressive rigidity of the body and chronic pain.

She travelled to Moscow in late June to undergo an autologous hematopoietic stem cell transplant (HSCT) under the care of Dr Denis Fedorenko from the National Pirogov Medical Surgical Centre.

Kellie van Meurs, pictured with family and supporters, died while undergoing stem cell treatment in Russia. Photo: Facebook

The transplant more commonly used for multiple sclerosis patients involves rebooting a patients immune system with their own stem cells after high-dose chemotherapy.

Advertisement

Ms van Meurs was Dr Fedorenkos first SPS patient, and her husband Mark said she died of a heart attack on July 19.

I do know that Rosemary [Kellie's aunt and carer in Moscow] felt she received the best possible care, especially from Dr Fedorenko, he said.

Given her level of constant pain and overlapping auto-neuronal problems I still don't think we had a better option.

Read the original post:
'She received the best care'

LifeCell setting up 30-cr public stem cell bank

Chennai, July 27:

LifeCell, Indias largest umbilical cord blood stem cell bank, is setting up a public stem cell bank at a cost of 30 crore.

LifeCells Managing Director, Mayur Abhaya, announced the plans for the public facility being set up by LifeCell Foundation, a non profit organisation, at a function to mark the storage of 100,000 units of cord blood at its private banking facility.

At the function, LifeCells brand ambassador Aishwarya Rai Bachchan said cord blood banking is a simple and precious gift parents can make for their childrens well being. Once people are aware of the potential of stem cells in treating ailments, the decision to opt for cord blood banking is a no brainer.

Abhaya said LifeCell has contributed 10 crore; and R Thyagarajan, Chairman, LifeCell and founder of the ShriramGroup; S Abhaya Kumar, Vice-Chairman; and another donor whose name has not been disclosed, have contributed 2.5 crore each. In the private bank, parents can store the umbilical cord blood and cord tissue collected at the time of childbirth which can be used if the child or siblings need the cells for treatment at a later stage in life, Abhaya said.

Stem cells can be used to treat over 80 disorders.

Parents pay to get the cord blood stored in the private bank.

A public cord blood bank works much like a blood bank where donors allow the cord blood to be collected for use by those needing stem cells for treatment.

The cord blood will be stored at LifeCells own internationally recognised facility in Chennai where there is adequate capacity, he said.

(This article was published on July 27, 2014)

Read more:
LifeCell setting up 30-cr public stem cell bank

'She received the best care': Qld Stem cell mum dies in Russia

Kellie van Meurs, pictured with her husband Mark, died while undergoing stem cell treatment in Russia. Photo: Facebook

Supporters of a Brisbane mother of two who died while undergoing a controversial stem cell treatment in Russia say it did not cause her death, nor have others been discouraged from seeking it.

Kellie van Meurs suffered from a rare neurological disorder called Stiff Person Syndrome, which causes progressive rigidity of the body and chronic pain.

She travelled to Moscow in late June to undergo an autologous hematopoietic stem cell transplant (HSCT) under the care of Dr Denis Fedorenko from the National Pirogov Medical Surgical Centre.

Kellie van Meurs, pictured with family and supporters, died while undergoing stem cell treatment in Russia. Photo: Facebook

The transplant more commonly used for multiple sclerosis patients involves rebooting a patients immune system with their own stem cells after high-dose chemotherapy.

Advertisement

Ms van Meurs was Dr Fedorenkos first SPS patient, and her husband Mark said she died of a heart attack on July 19.

I do know that Rosemary [Kellie's aunt and carer in Moscow] felt she received the best possible care, especially from Dr Fedorenko, he said.

Given her level of constant pain and overlapping auto-neuronal problems I still don't think we had a better option.

Read the original post:
'She received the best care': Qld Stem cell mum dies in Russia

Cell therapy for multiple sclerosis patients: Closer than ever?

Scientists at The New York Stem Cell Foundation (NYSCF) Research Institute are one step closer to creating a viable cell replacement therapy for multiple sclerosis from a patient's own cells.

For the first time, NYSCF scientists generated induced pluripotent stem (iPS) cells lines from skin samples of patients with primary progressive multiple sclerosis and further, they developed an accelerated protocol to induce these stem cells into becoming oligodendrocytes, the myelin-forming cells of the central nervous system implicated in multiple sclerosis and many other diseases.

Existing protocols for producing oligodendrocytes had taken almost half a year to produce, limiting the ability of researchers to conduct their research. This study has cut that time approximately in half, making the ability to utilize these cells in research much more feasible.

Stem cell lines and oligodendrocytes allow researchers to "turn back the clock" and observe how multiple sclerosis develops and progresses, potentially revealing the onset of the disease at a cellular level long before any symptoms are displayed. The improved protocol for deriving oligodendrocyte cells will also provide a platform for disease modeling, drug screening, and for replacing the damaged cells in the brain with healthy cells generated using this method.

"We are so close to finding new treatments and even cures for MS. The enhanced ability to derive the cells implicated in the disease will undoubtedly accelerate research for MS and many other diseases," said Susan L. Solomon, NYSCF Chief Executive Officer.

"We believe that this protocol will help the MS field and the larger scientific community to better understand human oligodendrocyte biology and the process of myelination. This is the first step towards very exciting studies: the ability to generate human oligodendrocytes in large amounts will serve as an unprecedented tool for developing remyelinating strategies and the study of patient-specific cells may shed light on intrinsic pathogenic mechanisms that lead to progressive MS." said Dr. Valentina Fossati, NYSCF -- Helmsley Investigator and senior author on the paper.

In multiple sclerosis, the protective covering of axons, called myelin, becomes damaged and lost. In this study, the scientists not only improved the protocol for making the myelin-forming cells but they showed that the oligodendrocytes derived from the skin of primary progressive patients are functional, and therefore able to form their own myelin when put into a mouse model. This is an initial step towards developing future autologous cell transplantation therapies in multiple sclerosis patients

This important advance opens up critical new avenues of research to study multiple sclerosis and other diseases. Oligodendrocytes are implicated in many different disorders, therefore this research not only moves multiple sclerosis research forward, it allows NYSCF and other scientists the ability to study all demyelinating and central nervous system disorders.

"Oligodendrocytes are increasingly recognized as having an absolutely essential role in the function of the normal nervous system, as well as in the setting of neurodegenerative diseases,such as multiple sclerosis. The new work from the NYSCF Research Institute will help to improve our understanding of these important cells. In addition, being able to generate large numbers of patient-specific oligodendrocytes will support both cell transplantation therapeutics for demyelinating diseases and the identification of new classes of drugs to treat such disorders," said Dr. Lee Rubin, NYSCF Scientific Advisor and Director of Translational Medicine at the Harvard Stem Cell Institute.

Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system, distinguished by recurrent episodes of demyelination and the consequent neurological symptoms. Primary progressive multiple sclerosis is the most severe form of multiple sclerosis, characterized by a steady neurological decline from the onset of the disease. Currently, there are no effective treatments or cures for primary progressive multiple sclerosis and treatments relies merely on symptom management.

Follow this link:
Cell therapy for multiple sclerosis patients: Closer than ever?

California stem cell agency head takes stand on 'personal ethics'

The California Institute for Regenerative Medicine has continued in damage-control mode since the state agencys former president, Alan Trounson, joined the board of directors at StemCells Inc. this month, just seven days after leaving the agency.

Newark-based StemCells has been awarded nearly $20 million in CIRM funding, as part of a long relationship that, in the wake of Trounson's departure, has raised concern about potential conflict of interest.

The agency's new president, C. Randal Mills, said he was taking a strong stand on personal ethics, signing an agreement not to accept a job with any company funded by CIRM for at least one year after leaving his position at the state agency.

"We take even the appearance of conflicts of interest very seriously," Mills said in a statement this month.

But a scientist whose grant proposal was turned down even though it received a higher rating than the StemCells proposal called the relationship between the state agency and the company interesting.

In my opinion, Mr. Trounson and the CIRM staff were clearly antagonistic to us and strongly supportive of StemCells, Lon S. Schneider, a scientist at USCs Keck School of Medicine, told the California Stem Cell Report ,a blog that follows news related to the stem cell agency.

And Times columnist Michael Hiltzik pointed out that the agency has hired its own law firm to conduct the investigation, rather than a completely independent party.

The unanswered question burning a hole through CIRM's credibility is whether StemCells Inc. got its money because its research was promising, or because it knew the right people, Hiltzik wrote.

The stem cell agency has also voted to cut $5 million from a $70-million effort to create a series of statewide stem cell clinics, according to the California Stem Cell Report. And even though the board has 29 members, only eight could vote because of conflicts of interest among the others, according to the report.

Following a thorough review it is my opinion that the $70-million price tag is not clearly justified in terms of the benefits it will deliver to the people of California, Mills wrote in a memo to the agency's board.

See the article here:
California stem cell agency head takes stand on 'personal ethics'

Tissue Collection Aids Search for Neurologic and Neuromuscular Disease Causes and Cures

Contact Information

Available for logged-in reporters only

Newswise LOS ANGELES (July 24, 2014) Like other major research centers studying genetic causes of uncommon and poorly understood nervous system disorders, Cedars-Sinai maintains a growing collection of DNA and tissue samples donated by patients.

What sets Cedars-Sinais Repository of Neurologic and Neuromuscular Disorders apart is its special emphasis on tissue collection part of its focus on creating future individualized treatments for patients.

One of our major priorities is to advance the concept of personalized medicine. The idea is to take DNA from a patient, look at the cells derived from their tissue, and try to understand why this particular person got this disease. Then we can determine which therapy or therapies would work for each individual by first testing their cells. Many centers look at the genetics; ours is dedicated to looking at the genetics and the patients tissues, combining the two to understand how to treat the disease, said Robert H. Baloh, MD, PhD, director of neuromuscular medicine in the Department of Neurology and director of the ALS Program for research and treatment of amyotrophic lateral sclerosis, or Lou Gehrigs disease.

This individualized treatment approach depends on collaborative efforts among doctors and researchers who treat and study individual diseases and scientists at the Cedars-Sinai Regenerative Medicine Institute, one of a very few hospital-based centers devoted to stem cell research. The teams work together to discover disease-generating molecular and cellular defects, make disease-in-a-dish models and begin to fashion personalized stem cell-based research interventions.

We know that nearly every disease has some genetic component some more than others so we collect DNA for research to identify those genetic elements. But weve also expanded our focus to include the collection of skin and blood samples that can be turned into specialized stem cells. Patients are usually very willing to donate tissue to try and help us understand the causes of their neurologic or neuromuscular disease, said Baloh, a member of the Brain Program at the Regenerative Medicine Institute.

Baloh and colleagues recently showed this approach is feasible, using skin biopsies from patients with ALS. With induced pluripotent stem cells, or iPSCs, they created ALS neurons in a lab dish. Then, inserting molecules made of small stretches of genetic material, they blocked the damaging effects of a defective gene. This provided proof of concept for a new therapeutic strategy an important step in moving research findings into clinical trials.

Baloh, the repositorys principal investigator, has a particular interest in ALS and other neuromuscular disorders, but DNA, tissue and data collection is conducted for Cedars-Sinai neuroscience researchers studying virtually any disease. And its holdings can have widespread influence: Repositories of genetic material enable scientists studying similar diseases at multiple research centers to access patient data in larger quantities than any single site could provide.

We work with many other research institutions across the country to share the samples themselves as well as de-identified information about the patients what disease they have, the severity of their disease, and similar disorder-related details. This improves our ability to find new gene abnormalities, because it cant always be done with just tens or even hundreds of patients. We may need thousands of patients, especially for very rare genetic forms of disease that have very subtle genetic effects. Therefore, we study our own patients in great detail, but we also share our resources more broadly, said Baloh, adding that genetic discoveries often have implications even for patients who dont have genetic forms of disease.

The rest is here:
Tissue Collection Aids Search for Neurologic and Neuromuscular Disease Causes and Cures