Global Stem Cells Group and Regenestem Announce Launch of Stem Cell Treatment Center in Cozumel, Mexico

Miami (PRWEB) August 10, 2014

Regenestem, a division of the Global Stem Cells Group, Inc., has announced the launch of a new stem cell treatment center in Cozumel, Mexico, offering the most advanced protocols and techniques in cellular medicine to patients from around the world.

A team of stem cell medical professionals led by Rafael Moguel, M.D., an advocate and pioneer in the use of stem cell therapies to treat a range of medical conditions, will provide cutting edge therapies and follow-up treatment under the Regenestem brand.

In June, Global Stem Cells Group opened the Regenestem Asia Clinic in Manila, Philippines, adding a new state-of-the-art regenerative medicine facility to the company's growing global presence that includes clinics in Miami, New York, Los Angeles, and Dubai. Regenestem Asia facility marks the first Regenestem brand clinic in the Philippines.

Regenestem provides stem cell treatments for a variety of diseases and conditions, including arthritis, autism, chronic obstructive pulmonary disease (COPD), diabetes, and multiple sclerosis at various facilities worldwide. Regenestem Mexico will have an international staff experienced in administering the leading cellular therapies available.

Regenestem Mexico is certified for the medical tourism market, and staff physicians are board-certified or board-eligible. Regenestem clinics provide services in more than 10 specialties, attracting patients from the United States and around the world.

The Global Stem Cells Group and Regenestem are committed to the highest of standards in service and technology, expert and compassionate care, and a philosophy of exceeding the expectations of their international patients.

For more information, visit the Regenestem website, email info(at)regenstem(dot)com, or call 305-224-1858.

About Regenestem:

Regenestem, a division of the Global Stem Cells Group, Inc., is an international medical practice association committed to researching and producing comprehensive stem cell treatments for patients worldwide. Having assembled a highly qualified staff of medical specialistsprofessionals trained in the latest cutting-edge techniques in cellular medicineRegenestem continues to be a leader in delivering the latest protocols in the adult stem cell arena.

Here is the original post:
Global Stem Cells Group and Regenestem Announce Launch of Stem Cell Treatment Center in Cozumel, Mexico

Lorna Tolentino reveals the secret to her youthful looks

Kasi kaka-quit ko lang ng smoking, Lorna Tolentino proudly announces.

The 52-year-old actress also adds, Mag-wa-one month na sa August 14.

Asked whether shes having a hard time adjusting her lifestyle, she says, Ay no, hindi naman talaga ako ganun Im not really talaga sobrang sobrang smoker.

Right now, Lorna is taking supplements such as vitamin B1, B complex, glutathione, and mangosteen and malunggay capsules.

Siyempre nung nag-50 ako, mas iniisip ko na mas tumagal pa.

Kasi siyempre, 'di ba, gone too soon si Rudy [Fernandez], kaya siyempre kailangan mas mahaba pa, lalo na because of my apo, yun ang nag-i-inspire sa akin, she confesses.

When asked whether shes ok with Lyla Victoria, Raphael's (Lorna's eldest son) daughter, entering showbiz, Lorna answers, Commercial kung meron, oo tatangapin ko.

Lorna enthusiastically talks about her two-year-old apo, whom she refers to as still being in her makulit stage, Shes ok, actually yung kanya intellectual [maturity] ano, something na pinapaano sa mga doctor, for four years old na.

She also complements Leana, Lylas mother, for teaching her grandchild, Talagang kinu-congratulate ko si Leana, because shes a teacher, talagang mas kaya niya i-guide.

STEM CELL THERAPY.Lorna Tolentino, who has undergone stem cell therapy, narrates how the procedure helped her health concerns.

Go here to read the rest:
Lorna Tolentino reveals the secret to her youthful looks

Stem cell treatment holds hope for better stroke recovery

A new first-of-its kind pilot study has revealed that stem cell treatment can significantly improve recovery from stroke in humans.

The therapy uses a type of cell called CD34+ cells, a set of stem cells in the bone marrow that give rise to blood cells and blood vessel lining cells. Rather than developing into brain cells themselves, the cells are thought to release chemicals that trigger the growth of new brain tissue and new blood vessels in the area damaged by stroke.

The patients were treated within seven days of a severe stroke, in contrast to several other stem cell trials, most of which have treated patients after six months or later. The Imperial researchers believe early treatment might improve the chances of a better recovery.

Dr Soma Banerjee, Consultant in Stroke Medicine at Imperial College Healthcare NHS Trust, said that the treatment appeared to be safe and that it's feasible to treat patients early when they might be more likely to benefit.

However, it's too early to draw definitive conclusions about the effectiveness of the therapy and more tests to work out the best dose and timescale for treatment before starting larger trials, she further added.

The study is published in the journal Stem Cells Translational Medicine.

(Posted on 09-08-2014)

Here is the original post:
Stem cell treatment holds hope for better stroke recovery

Stem cell hope for stroke victims

Brain damage caused by strokes could be repaired through the use of stem cells in a discovery that may revolutionise treatment, a study has suggested.

Researchers at Imperial College London found that injecting a patient's stem cells into their brain may be able to change the lives of the tens of thousands of people who suffer strokes each year.

Their results have been called "one of the most exciting recent developments in stroke research".

Doctors said the procedure could become routine in 10 years after larger trials are conducted to examine its effectiveness.

Researcher Dr Paul Bentley, from the college's Department of Medicine, said: "Currently, the main form of treatment is an unblocking of the blood vessel, and that only helps one-third of the patients who are treated and only 10 per cent are eligible anyway. So we said, 'What about the other 90 per cent?' "

The team targeted patients who had suffered severe strokes involving a clot in a blood vessel in the middle of the brain. Typically, there is a high mortality rate in these patients and those who survive are often severely disabled, unable to walk, talk, feed or dress themselves. The experimental procedure was carried out on five such patients, aged 40 to 70, all of whom showed improvement over the following six months, and three were living independently.

Dr Madina Kara, a neuroscientist at the Stroke Association, said: "This is one of the most exciting recent developments in stroke research. However, it's still early days in stem cell research, but the findings could lead to new treatments for stroke patients in the future.

"In the UK, someone has a stroke every three and a half minutes, and around 58 per cent of stroke survivors are left with a disability."

The experimental procedure involved harvesting the patient's own bone marrow, which was then sent to a specialist laboratory so specific stem cells, called CD34+, could be selected. The patient then has a wire inserted into the area of the brain damage. Once there, the stem cells are released and the wire retracted. During the trials the whole process took half a day, but it is hoped that with refinement it could be reduced.

It is thought the cells work in two ways: by growing into small blood vessels that allow the brain to grow new nerves and brain tissue surrounding them, and by releasing anti-inflammatory chemicals that encourage tissue repair.

Read the rest here:
Stem cell hope for stroke victims

Cell Separation Technologies Market Expected to Reach USD 3.3 Billion Globally in 2019: Transparency Market Research

ALBANY, New York, August 8, 2014 /PRNewswire/ --

According to a new market report published by Transparency Market Research "Cell Separation Technologies Market (Technology: Gradient Centrifugation, MACS and FACS; Application: Stem Cell Research, Immunology, Neuroscience and Cancer Research) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019", the global cell separation technologies market was valued at USD 1.7 billion in 2012 and is expected to grow at a CAGR of 9.7% from 2013 to 2019, to reach an estimated value of USD 3.3 billion in 2019.

Browse the full Cell Separation TechnologiesMarket Report at http://www.transparencymarketresearch.com/cell-separation-technologies.html

Cells play an important role in the field of microbiology, biotechnology and bioscience which have wide application in pharmaceuticals and healthcare industries. Taking into consideration the increasing demand for cell therapies to treat chronic diseases, research activities targeting cellular therapies have increased tremendously in the last decade. Growth in cell therapy oriented research has escalated demand for cell separation technologies worldwide.

Out of the various types of technologies available in the market, magnetic activated cell sorting (MACS) technology was the major technology segment in 2012, with market share of more than 42.5% in the global cell separation technologies market. Further, fluorescence activated cell sorting (FACS) technology is estimated to capture the market share of rest of the technology segments during the forecast period owing to increased adoption of fluorescence activated cell sorting technology into cell purity sensitive research areas. It is estimated that the global FACS market will reach USD 1,078.5 billion in 2019 growing at a CAGR of 13.9% from 2013 to 2019.

Stem cell research was the major application segment by revenue in the cell separation technologies market in the year 2012. Rising demand for cell therapy and predictable potential of stem cells in the chronic disease treatment have raised the stem cell research activities globally and thereby has resulted in swift growth of the overall cell separation technologies market.

Related & Recently Published Reports by Transparency Market Research

Geographically, North America was the market leader in the global cell separation technologies market in 2012 mainly owing to availability of research funds, highly developed research infrastructure and higher rates of adoption of newer technologies in the practice. Further, growth of the North American cell separation technologies market is driven by factors such as technological advancement, higher healthcare spending and availability of supportive economy to conduct research. In addition, Asia-Pacific is estimated to be a potential market due to rapidly developing healthcare infrastructure on the basis of rapidly increasing medical tourism industry in the Asian countries, mainly in India and Malaysia, increased government support for biotech research and development and large pool of patients suffering from chronic diseases. Some of the key participants operating in this market include BD Bioscience, EMD Millipore, Mitenyi Biotec GmbH, and STEMCELL Technologies and Life Technologies (Thermo Fisher Scientific, Inc.).

The global cell separation technologies market is segmented as follows:

Cell Separation Technologies Market, by Technology

Originally posted here:
Cell Separation Technologies Market Expected to Reach USD 3.3 Billion Globally in 2019: Transparency Market Research

Due to a radical new approach by stem cell bank BioEden future generations could be guaranteed a stem cell match

(PRWEB UK) 9 August 2014

Stem cell therapy and treatments continue to move on in finding cures for diseases that in the past were thought to be incurable. The success of stem cell treatment and therapy relies to a great extent on the ability for the patient to have a stem cell match. Although stem cell banking has been available for a number of years, the cost for many has been a barrier.

Specialist stem cell bank BioEden who operate in 21 countries have come up with a solution that brings this potentially life saving opportunity within an affordable range for the majority.

Their aim is to make stem cell therapy an affordable reality and hope that their new approach which includes a low monthly membership option will do just that.

As more and more people bank their children's stem cells for their future use, the problem of finding a stem cell match could become a thing of the past.

Read the original:
Due to a radical new approach by stem cell bank BioEden future generations could be guaranteed a stem cell match

Embryonic Stem Cell Research – Stem Cell Home Page

Embryonic Stem Cell Research Pros and Cons of Stem Cell Research Embryonic Stem Cell Research is a controversial topic throughout the world. There are many pros and cons of stem cell research. Many people believe that embryonic stem cells hold the key to developing therapeutic treatments for a wide variety of life destroying illnesses including Parkinson's disease, diabetes, cancer, spinal cord injuries, muscle damage, Purkinje cell degeneration, Duchenne's muscular dystrophy, heart disease, and vision and hearing loss. Even though stem cell therapy holds promise in helping millions of people enjoy better lives there is still great concern regarding the ethics of stem cell research. Stem cell debate issues are constantly in the news especially when treatments such as stem cell transplants or stem cell therapy are hot topics. Still, there are many people who decide to use the services of companies that specialize in areas such as banking their newborn's stem cell cord blood in the hopes that it could possibly help their child later on in life.

The following information is from the United States Government Fact Sheet on Embryonic Stem Cell Research. Their website (which also includes the history of stem cell reasearch) can be found at http://whitehouse.gov. For more information and additional resources, you'll find a variety of links included on this site.

Adult stem cells - - Adult stem cells are unspecialized, can renew themselves, and can become specialized to yield all of the cell types of the tissue from which they originate. Although scientists believe that some adult stem cells from one tissue can develop into cells of another tissue, no adult stem cell has been shown in culture to be pluripotent.

The potential of embryonic stem cell research - - Many scientists believe that embryonic stem cell research may eventually lead to therapies that could be used to treat diseases that afflict approximately 128 million Americans. Treatments may include replacing destroyed dopamine-secreting neurons in a Parkinson's patient's brain; transplanting insulin-producing pancreatic beta cells in diabetic patients; and infusing cardiac muscle cells in a heart damaged by myocardial infarction. Embryonic stem cells may also be used to understand basic biology and to evaluate the safety and efficacy of new medicines.

The creation of embryonic stem cells - - To create embryonic stem cells for research, a "stem cell line" must be created from the inner cell mass of a week-old embryo. If they are cultured properly, embryonic stem cells can grow and divide indefinitely. A stem cell line is a mass of cells descended from the original, sharing its genetic characteristics. Batches of cells can then be separated from the cell line and distributed to researchers.

The origin of embryonic stem cells - - Embryonic stem cells are derived from excess embryos created in the course of infertility treatment. As a result of standard in vitro fertilization practices, many excess human embryos are created. Participants in IVF treatment must ultimately decide the disposition of these excess embryos, and many individuals have donated their excess embryos for research purposes.

Existing stem cell lines. - - There are currently more than 60 existing different human embryonic stem cell lines that have been developed from excess embryos created for in vitro fertilization with the consent of the donors and without financial inducement. These existing lines are used in approximately one dozen laboratories around the world (in the United States, Australia, India, Israel, and Sweden).

Therapies from adult and embryonic stem cell research - - To date, adult stem cell research, which is federally-funded, has resulted in the development of a variety of therapeutic treatments for diseases. Although embryonic stem cell research has not yet produced similar results, many scientists believe embryonic stem cell research holds promise over time because of the capacity of embryonic stem cells to develop into any tissue in the human body.

Additional Resources:

NIH Stem Cell Information http://stemcells.nih.gov

More:
Embryonic Stem Cell Research - Stem Cell Home Page

Stem cell stroke therapy shows promise after first human trial

A pilot study undertaken by researchers from Imperial College Healthcare NHS Trust and Imperial College London has shown promise in rapid treatment of serious strokes. The study, the first of its kind published in the UK, treated patients using stem cells from bone marrow.

Imagine a perfectly ordinary beginning to your day, say burned toast, no matching pair of socks and the usual damp commute to work. Except at some point through the usual minutiae you suffer a massive stroke. If you dont die outright, you may soon afterwards. Even supposing you survive those first days or weeks, the chance of your life resuming its comforting tedium is impossibly remote. You may need assistance for the rest of your shortened life.

According to the Stroke Association, about 152,000 people suffer a stroke in the UK alone each year. However, the five patients treated in the recent Imperial College pilot study all showed improvements. According to doctors, four of those had suffered the most severe kind of stroke, which leaves only four percent of people alive or able to live independently six months after the event. All four of the patients were alive after six months.

A particular set of CD34+ stem cells was used, as they help with the production of blood cells and blood vessels lining cells. These same cells have been found to improve the effects of stroke in animals, and they assist in brain tissue and blood growth in the affected areas of the brain. The CD34+ cells were isolated from samples taken from patients bone marrow and then infused into the affected area via an artery that leads to the brain, using keyhole surgery.

The innovative stem cell treatment differs from others in one important way: patients are treated within seven days of their stroke, rather than six months hence. The stroke sufferers all recorded improvements in terms of clinical measures of disability, despite four of the five having suffered the most severe kind of stroke.

It's still early days for the research, and much more will need to be done to expand clinical trials, but eventually it is hoped that a drug may be developed that can be administered to stroke sufferers as soon as they are admitted to hospital. This could ameliorate longer term effects and allow for speedier recovery and a faster entry into therapy.

A paper detailing the research was published in journal Stem Cells Translational Medicine.

Source: Imperial College London

Link:
Stem cell stroke therapy shows promise after first human trial

Hope for stroke victims after radical stem cell treatment enables patients to move and talk again

5 stroke victims were treated with stem cells extracted from bone marrow Treatment triggers rapid regeneration of damaged brain cells Patients regained power of speech and use of their arms and legs More than 150,000 people have a stroke in England every year Treatment is at early stage and needs years of testing Imperial College London scientists says it shows 'great potential'

By Ben Spencer

Published: 09:25 EST, 8 August 2014 | Updated: 19:30 EST, 8 August 2014

146 shares

14

View comments

Five people who had suffered severe strokes (illustrated) regained the power of speech and mobility thanks to a radical new treatment

Stroke patients have shown remarkable signs of recovery after they were given a radical new treatment.

Five people who had suffered severe strokes regained the power of speech, use of their arms and legs and improved cognition after just six months, according to British research published today.

The three men and two women, aged between 45 and 75, were treated with stem cells extracted from their own bone marrow in the first experiment of its kind.

Go here to see the original:
Hope for stroke victims after radical stem cell treatment enables patients to move and talk again