Experts say a $15 million trial to explore stem cells from cord blood for treating autism is premature.
Cold comfort: Researchers are trying to find out whether stem cells taken from frozen cord blood can improve autism symptoms. Credit:Tbsdy lives via Wikimedia Commons
A team at Duke University in Durham, North Carolina, is set to launch a $40 million clinical trial to explore stem cells from umbilical cord blood as a treatment for autism. But experts caution that the trial is premature.
A $15 million grant from the Marcus Foundation, a philanthropic funding organization based in Atlanta, will bankroll the first two years of the five-year trial, which also plans to test stem cell therapy for stroke and cerebral palsy. The autism arm of the trial aims to enroll 390 children and adults.
Joanne Kurtzberg, the trials lead investigator, has extensive experience studying the effectiveness of cord blood transplants for treating various disorders, such as leukemia and sickle cell anemia. Most recently, she showed that cord blood transplants can improve the odds of survival for babies deprived of oxygen at birth. A randomized trial of the approach for this condition is underway.
To really sort out if [stem] cells can treat these children, we need to do randomized, controlled trials that are well designed and well controlled, and thats what we intend to do, says Kurtzberg, professor of pediatrics and pathology at Duke. We firmly believe we should be moving ahead in the clinic.
Early animal studies have shown that stem cells isolated from umbilical cord blood can stimulate cells in the spinal cord to regrow their myelin layers, and in doing so help restore connections with surrounding cells. Autism is thought to result from impaired connectivity in the brain. Because of this, some groups of children with the disorder may benefit from a stem cell transplant, Kurtzberg says.
But others are skeptical of the approach. Autism is a complex disorder with many possible causes. Also, its unclear how stem cells derived from cord blood can improve connections in the brain. Given these important caveats, its too soon to conduct a test of this scale and investment, some experts say.
Its probably premature to run large trials without evidence that they have a therapeutic effect that [we] understand, cautions Arnold Kriegstein, director of the Broad Center of Regenerative Medicine and Stem Cell Research at the University of California, San Francisco.
Pilot trials In June, Kurtzberg launched the first phase of the trial, with 20 children between 2 and 5 years of age. Her team plans to infuse the children with a single dose of their own cord blood cells, banked at birth and preserved by freezing.
Read more:
Large Study of Stem Cells for Autism Draws Criticism