New method to grow zebrafish embryonic stem cells

Date:

June 30, 2014

Source:

Mary Ann Liebert, Inc., Publishers

Summary:

Zebrafish, a model organism that plays an important role in biological research and the discovery and development of new drugs and cell-based therapies, can form embryonic stem cells (ESCs). For the first time, researchers report the ability to maintain zebrafish-derived ESCs for more than two years without the need to grow them on a feeder cell layer.

Zebrafish, a model organism that plays an important role in biological research and the discovery and development of new drugs and cell-based therapies, can form embryonic stem cells (ESCs). For the first time, researchers report the ability to maintain zebrafish-derived ESCs for more than two years without the need to grow them on a feeder cell layer, in a study published in Zebrafish, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.

Ho Sing Yee and coauthors from the Malaysian Ministry of Science, Technology and Innovation (Pulau Pinang), Universiti Sains Malaysia (Penang), and National University of Singapore describe the approach they used to be able to maintain zebrafish stem cells in culture and in an undifferentiated state for long periods of time. The ability to establish and grow the zebrafish ESCs without having a feeder layer of cells to support them simplifies their use and could expand their utility. In the article "Derivation and Long-Term Culture of an Embryonic Stem Cell-Like Line from Zebrafish Blastomeres Under Feeder-Free Condition," the authors show that the ESCs retain the morphology, properties, and ability to differentiate into a variety of cell types that is characteristic of ESCs, and were used to generate offspring after transmission through the germline.

"By addressing a major technical bottleneck in the field, this new culture system enables an array of exciting cellular and molecular genetic manipulations for the zebrafish," says Stephen Ekker, PhD, Editor-in-Chief of Zebrafish and Professor of Medicine at Mayo Clinic, Rochester, MN.

Story Source:

The rest is here:
New method to grow zebrafish embryonic stem cells

Global Stem Cells Group Subsidiary Regenestem Announces Grand Opening of State-of-the-Art Regenestem Asia Stem Cell …

Miami (PRWEB) July 01, 2014

Global Stem Cells Group announced the grand opening of Regenestem Asia in Manila, Philippines, adding a new state-of-the-art clinic to the international stem cell medicine company's growing worldwide presence. With clinics in Miami, New York, Los Angeles and Dubai, Regenestem Asia now offers the same comprehensive stem cell treatments and experienced medical staff that have fueled the company's worldwide growth.

The launch of Regenestem Asia is a collaborative effort between Global Stem Cells Group and Eric Yalung, M.D. of the Cosmetic Surgery Institute-Manila, Inc., a prominent plastic surgeon committed to taking stem cell medicine, research and practice in the Philippines to a world-class level. The first Regenestem brand clinic in the Philippines, Regenestem Asia is a 22,000 square foot facility with a focus on offering the most advanced protocols in cosmetic cellular medicine to patients from around the world.

Under Yalung's leadership as Regenestem Medical Director, patients will receive the latest and least-invasive techniques in Stem Cell medicine available. Yalung is joined by a team of talented stem cell specialists to provide world-class patient treatment and follow-up care under the Regenestem brand.

In addition to cosmetic treatments, Regenestem offers stem cell treatments for arthritis, autism, chronic obstructive pulmonary disease (COPD), diabetes and multiple sclerosis among many other medical conditions at various facilities worldwide.

As part of its commitment to maintaining the highest standards in service and technology, Regenestem Asia provides an international staff experienced in administering the leading cellular therapies available.

Like all Regenestem facilities, Regenestem Asia is certified for the medical tourism market, and staff physicians are board-certified or board-eligible. Regenestem clinics provide services in more than 10 specialties, attracting patients from the United States and around the world.

For more information, visit the Regenestem website, email bnovas(at)regenestem(dot)com or call 305-224-1858.

About Regenestem:

Regenestem is a division of the Global Stem Cells Group, Inc., is an international medical practice association committed to researching and producing comprehensive stem cell treatments for patients worldwide. Having assembled a highly qualified staff of medical specialists-professionals trained in the latest cutting-edge techniques in cellular medicine-Regenestem continues to be a leader in delivering the latest protocols in the adult stem cell arena.

Read the original here:
Global Stem Cells Group Subsidiary Regenestem Announces Grand Opening of State-of-the-Art Regenestem Asia Stem Cell ...

Research team pursues techniques to improve elusive stem cell therapy

Stem cell scientists had what first appeared to be an easy win for regenerative medicine when they discovered mesenchymal stem cells several decades ago. These cells, found in the bone marrow, can give rise to bone, fat, and muscle tissue, and have been used in hundreds of clinical trials for tissue repair. Unfortunately, the results of these trials have been underwhelming. One problem is that these stem cells don't stick around in the body long enough to benefit the patient.

But Harvard Stem Cell Institute (HSCI) scientists at Boston Children's Hospital aren't ready to give up. A research team led by Juan Melero-Martin, PhD, recently found that transplanting mesenchymal stem cells along with blood vessel-forming cells naturally found in circulation improves results. This co-transplantation keeps the mesenchymal stem cells alive longer in mice after engraftment, up to a few weeks compared to hours without co-transplantation. This improved survival gives the mesenchymal stem cells sufficient time to display their full regenerative potential, generating new bone or fat tissue in the recipient mouse body. The finding was published in the Proceedings of the National Academy of Sciences (PNAS).

"We are losing mesenchymal stem cells very rapidly when we transplant them into the body, in part, because we are not giving them what they need," said Melero-Martin, an HSCI affiliated faculty member and an assistant professor of surgery at Boston Children's Hospital, Harvard Medical School.

"In the body, these cells sit very close to the capillaries, constantly receiving signals from them, and even though this communication is broken when we isolate mesenchymal stem cells in a laboratory dish, they seem to be ok because we have learned how to feed them," he said. "But when you put the mesenchymal stem cells back into the body, there is a period of time when they will not have this proximity to capillary cells and they start to die; so including these blood vessel-forming cells from the very beginning of a transplantation made a major difference."

Melero-Martin's research has immediate translational implications, as current mesenchymal clinical trials don't follow a co-transplantation procedure. He is already collaborating with surgical colleagues at Boston Children's Hospital to see if his discovery can help improve fat and bone grafts. However, giving patients two different types of cells, as opposed to just one, would require more time and experiments to determine safety and efficacy. Melero-Martin is seeking to identify the specific signals mesenchymal stem cells receive from the blood vessel-forming cells in order to be able to mimic the signals without the cells themselves.

"Even though mesenchymal stem cells have been around for a while, I think there is still a lack of fundamental knowledge about communication between them and other cells in the body," he said. "My lab is interested in going even beyond what we found to try to understand whether these cell-cell signals are different in each tissue of the body, and to learn how to educate both blood vessel-forming and mesenchymal stem cells to co-ordinate tissue specific regenerative responses."

Other Harvard Stem Cell Institute researchers are studying mesenchymal stem cells as bioengineering tools to deliver therapeutics, which is possible because of the cell type's unique ability to not trigger an immune response. Jeffrey Karp, PhD, at Brigham and Women's Hospital has developed several methods to turn these cells into drug-delivery vehicles, so that after transplantation they can, for example, hone in on swollen tissue and secrete anti-inflammatory compounds. And Khalid Shah, PhD, at Massachusetts General Hospital has designed a gel that holds mesenchymal stem cells in place so that they can expose brain tumors to cancer-killing herpes viruses.

"A lot of these applications have no real direct link with mesenchymal stem cells' supposed progenitor cell function," Melero-Martin said. "In our study, we went back to the collective ambition to use these cells as a way to regenerate tissues and we are not in a position to say how that affects other uses that people are proposing."

Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.

More:
Research team pursues techniques to improve elusive stem cell therapy

Studies Test Effectiveness and Safety of Stem Cell Treatment for Urinary Incontinence

Durham, NC (PRWEB) July 01, 2014

Medication and minimally invasive surgery to implant a sling can provide relief for millions of people who suffer from stress urinary incontinence (SUI), but not everyone responds to these therapeutic methods. A new study in the current STEM CELLS Translational Medicine tests the safety and effectiveness of stem cells as an alternative SUI treatment.

SUI results when the pelvic floor muscles, which support the bladder and urethra, weaken to the point that the muscles are not able to prevent urine from flowing when pressure is placed on the abdomen, such as when the person laughs or coughs. It occurs most often in women, due to childbirth and pregnancy.

Tissue engineering offers an attractive method to regenerate sphincter muscle, explained the studys corresponding author, Kirsi Kuismanen, from the department of obstetrics and gynecology at Tampere University Hospital (TUH) in Finland. She and her TUH colleagues teamed up with researchers from the Adult Stem Cell Group of BioMediTech in Tampere and the University of Twente in the Netherlands on the study.

Previously, various different cell sources, such as skeletal muscle-derived stem cells (SkMSCs), mesenchymal stem cells derived from bone marrow (BMSCs) and adipose stem cells (ASCs), have been studied for treating urinary incontinence. The SkMSCs and BMSCs would be a potential alternative for incontinence therapy. However, when compared to ASCs, the major limitation of SkMSCs and BMSCs is the difficulty to obtain these cells in large quantities, Dr. Kuismanen said.

The study involved five SUI patients who either did not want a sling implant or had undergone implants but they proved unsuccessful. They were treated with ASCs combined with bovine collagen gel, which is a bulking agent, and saline.

Prior to the treatment, the ASCs were isolated from subcutaneous fat and expanded for three weeks in a laboratory. The mixture of ASCs and collagen was injected in the patients who were followed for three, six and 12 months after the injections. The primary end point was a cough test to measure the effect of the treatment. Validated questionnaires were used to determine the subjective cure rate.

After six months, one out of five patients displayed a negative cough test with full bladder. At one year, the cough test was negative with three patients; two were satisfied with the results and ended their treatment for SUI. Validated questionnaires showed some subjective improvement in all five patients.

This is the first study describing the use of autologous ASCs in combination with collagen gel for female SUI treatments, Dr. Kuismanen said. Thus far, the treatment with autologous ASCs has proven safe and well tolerated. However, the feasibility and efficacy of the treatment were not optimal so additional research is needed to develop SUI injection therapies.

New treatments are needed for this common condition that affects millions of women, said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. The current study, believed to be the first to evaluate adipose-derived stem cells in combination with collagen, adds to the body of knowledge about the safety and effectiveness of stem cell treatments for stress urinary incontinence.

See the rest here:
Studies Test Effectiveness and Safety of Stem Cell Treatment for Urinary Incontinence

Stem Cell Transplant Stops Sickle Cell in Potential Cure

A stem-cell transplant reversed sickle cell disease in adults, according to a study that offers a potential cure for the debilitating condition.

Half of those who had the transplant, which involved the patient and a sibling, also were able to stop taking immunosuppressant drugs without experiencing rejection or having the donor cells attack their body, research released today in the Journal of the American Medical Association showed. People undergoing stem-cell transplants usually must take immunosuppressants for the rest of their lives.

More than 90,000 people in the U.S. have sickle cell disease, a genetic disorder found mostly in people of African descent, according to the U.S. National Institutes of Health. The condition can cause severe pain, organ damage and stroke. Study author Matthew Hsieh said its too soon to say the researchers have found a cure as patients have been followed only for an average of 3 1/2 years, but he is optimistic.

Theyre sickle-cell free for now, Hsieh, a staff clinician at the National Institute of Diabetes and Digestive and Kidney Diseases and the National Heart, Lung, and Blood Institute in Bethesda, Maryland, said today in a telephone interview. We are cautiously optimistic they are cured.

Children with sickle cell can receive a transplant that combines chemotherapy with stem cells, he said. Adults though are usually considered too sick for that treatment.

For a lot of adults, the only option for them is a partial transplant like ours, he said.

The study included 30 patients ages 16 to 65 years who received a transplant that combined their own stem cells and those of a sibling. All the patients had a sibling who was a full match at the white blood cell level, something that occurs about 20 percent of the time, Hsieh said.

Sickle cell disease was reversed in 26 patients, or 87 percent. Fifteen patients discontinued immunosuppressants one year after their transplant and didnt experience rejection or have the donor cells attack their body, the study showed. Patients were enrolled from July 2004 to October 2013.

The research also found that following transplant, the patients use of narcotics for pain declined as did the rate of hospitalization. Lung function also improved, Hsieh said.

Allison King, who wrote an accompanying editorial, said future studies will need to examine if stem cells from partially matched siblings can be just as beneficial.

Follow this link:
Stem Cell Transplant Stops Sickle Cell in Potential Cure

News & Events

NIH trial success suggests a new treatment option for older, sicker patients

Half of patients in a trial have safely stopped immunosuppressant medication following a modified blood stem-cell transplant for severe sickle cell disease, according to a study in the July 1 issue of the Journal of the American Medical Association. The trial was conducted at the National Institutes of Healths Clinical Center in Bethesda, Maryland, by researchers from NIHs National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the National Heart, Lung, and Blood Institute.

The transplant done in the study reversed sickle cell disease in nearly all the patients. Despite having both donor stem-cells and their own cells in their blood, the patients stopped the immunosuppressant medication without experiencing rejection or graft-versus-host disease, in which donor cells attack the recipient. Both are common, serious side effects of transplants.

Blood drawn from a sickle cell patient. Source: NIH Molecular and Clinical Hematology Branch

Typically, stem-cell recipients must take immunosuppressants all their lives, said Matthew Hsieh, M.D., lead author on the paper and staff clinician at NIH. That the patients who discontinued this medication were able to do so safely points to the stability of the partial transplant regimen.

In sickle cell disease (SCD) sickle-shaped cells block blood flow. It can cause severe pain, organ damage and stroke. The only cure is a blood stem-cell, or bone marrow, transplant. The partial transplant performed in the study is much less toxic than the standard full transplant, which uses high doses of chemotherapy to kill all of the patients marrow before replacing it with donor marrow. Several patients in the study had less than half of their marrow replaced.

Immunosuppressant medication reduces immune system strength and can cause serious side effects such as infection and joint swelling. In this study, 15 of 30 adults stopped taking the medication under careful supervision one year after transplant and still had not experienced rejection or graft-versus-host disease at a median follow up of 3.4 years.

Side effects caused by immunosuppressants can endanger patients already weakened by years of organ damage from sickle cell disease, said John F. Tisdale, M.D., the papers senior author and a senior investigator at NIH. Not having to permanently rely on this medication, along with use of the relatively less-toxic partial stem-cell transplant, means that even older patients and those with severe sickle cell disease may be able to reverse their condition.

Read this article:
News & Events

Autologous stem cell treatment could be the road ahead

The treatment could edge out joint replacement procedures to a large extent.

Hyderabad, June 30:

A team of doctors from a city hospital have harvested stem cells of a person using bone marrow from the pelvis area to replace some dead tissues in the hip. By doing this, they saved the patient from undergoing a hip replacement.

The Apollo Health City team, headed by orthopaedic specialist Paripati Sharat Kumar, diagnosed a 39-year-old women suffering from Avascular Necrosis. Her condition would require undergoing a replacement of hips.

After assessing her condition, the team has decided to go for the autologous stem cell procedure (where donor and the receiver is the same person) to save both the hip joints.

The minimally invasive procedure involved taking bone marrow aspirate from the patients pelvis. Stem cells were harvested from the aspirate through a process that takes about 15 minutes. Stems cells were planted in the area of damage under fluoroscopy control following core decompression, Kumar said in a statement on Monday.

He feels that the autologous stem cell treatment could edge out joint replacement procedures to a large extent in the days to come. The scope of this procedure in orthopaedics and sports medicine is enormous. This could be extended to indications including osteoarthritis of knee, shoulder, hip, elbows, ankle and spine, he said.

(This article was published on June 30, 2014)

Originally posted here:
Autologous stem cell treatment could be the road ahead

Beverly Hills Orthopedic Institute Expands to Offering Three Stem Cell Procedure Options

Beverly Hills, California (PRWEB) June 30, 2014

The top regenerative medicine practice in Los Angeles at Beverly Hills Orthopedic Institute is now offering three options for stem cell procedures. The procedures work well for treatment of degenerative joint arthritis, tendonitis and ligament injuries. For more information and scheduling call (310) 438-5343.

Stem cell therapy has become mainstream for the treatment of all types of musculoskeletal conditions, and Dr. Raj at Beverly Hills Orthopedic Institute has been at the forefront of the therapy. Several options for the treatment are now being offered which include bone marrow derived stem cell procedures and platelet rich plasma therapy.

Recently, Dr. Raj has begun offered amniotic derived stem cell procedures. The material is obtained from consenting donors after scheduled c-sections, with an FDA regulated laboratory processing the material. Amniotic fluid has an incredible concentration of stem cells along with growth factors and hyaluronic acid.

As a Double Board Certified orthopedic doctor and one of LAs top orthopedists, Dr. Raj said, Amniotic stem cell therapy has been an amazing procedure for my patients. What were seeing here is the ability to delay or avoid the need for joint replacement, with intense pain relief in the joints being treated.

He added, Athletes who have the treatment for soft tissue injuries are seeing faster healing of the injuries and the ability to get back to high level competition quicker too.

All of the regenerative medicine procedures are offered as an outpatient, with an extremely low risk profile. For the bone marrow procedures, the stem cells are harvested from the hip area in a short procedure, and the cells are concentrated with immediate injection into the area of treatment.

At Beverly Hills Orthopedic Institute, patients are seen from all over Southern California. For more information and scheduling, call (310) 438-5343.

Read the rest here:
Beverly Hills Orthopedic Institute Expands to Offering Three Stem Cell Procedure Options

R3 Stem Cell Clinics Expand to Southern California, Now Offering Procedures in Beverly Hills

Los Angeles, California (PRWEB) June 30, 2014

R3 Stem Cell has expanded to Southern California, and is now offering procedures in Beverly Hills to patients. The company has partnered with Beverly Hills Orthopedic Institute to now offer three different types of stem cell procedures to patients for all types of degenerative arthritis, tendonitis and ligament injuries. For more information and patient scheduling, call (310) 438-5343.

R3 Stem Cell works with medical practices nationwide to offer stem cell therapy for all types of musculoskeletal conditions. The three types of procedures offered are bone marrow derived stem cell therapy, amniotic derived stem cell therapy and platelet rich plasma therapy.

Said R3 CEO Bob Maguire, Patients are now benefiting from stem cell procedures by delaying or avoiding the need for joint replacement due to the amazing pain relief and regeneration possible with the procedures. We are very excited to be expanding into Southern California to help more patients and have the opportunity to work with a highly respected physician like Dr. Raj.

The R3 Stem Cell partnership with Beverly Hills Orthopedic Institute brings the stem cell therapy to patients with treatment from Dr. Raj. As a Double Board Certified orthopedic doctor and a WebMD medical expert, Dr. Raj has pioneered the clinical use of stem cell therapy for patients.

Treatment is offered for athletes, grandparents, weekend warriors, manual laborers, students, essentially the whole spectrum of individuals who can benefit from regeneration of soft tissue or bony injury. This includes degenerative arthritis, rotator cuff injury, plantar fasciitis, Achilles or knee tendonitis, tennis elbow and additional indications such as chronic wounds from diabetes.

Dr. Raj stated The partnership with R3 Stem Cell is great because of the stem cell procedure options I now have available for patients along with the research protocols. It will only improve patient outcomes dramatically.

R3 Stem Cell works with medical practices nationwide on instituting regenerative medicine into the practice. Several procedure options are included such as bone marrow, amniotic and PRP therapy. In addition, research protocols and education come with the partnership.

For individuals interested in obtaining stem cell therapy for any type of arthritis, tendonitis, or ligament injury in the Los Angeles or Beverly Hills area, simply call (310) 438-5343.

See the original post:
R3 Stem Cell Clinics Expand to Southern California, Now Offering Procedures in Beverly Hills

Her own stem cells saved her from hip replacement

Apollo Health City team did autologous stem cell procedure to save both the hip joints

Hyderabad, June 30:

A team of doctors from a city hospital have harvested stem cells of a person using bone morrow from the pelvis area to replace some dead tissues in the hip. In this process, they saved the patient from undergoing a hip replacement.

The Apollo Health City team, headed by orthopaedic specialist Paripati Sharat Kumar, diagnosed a 39-year-old woman to be suffering from Avascular Necrosis, making her writhe with pain in her two hip joints. Her condition would require undergoing a replacement of hips.

After assessing her condition, the team has decided to go for autologous stem cell procedure (where donor and the receiver is the same person) to save both the hip joints.

The minimally invasive procedure involved taking bone marrow aspirate from the patients pelvis. Stem cells were harvested from the aspirate, through a process that takes about 15 minutes. Stems cells were planted in the area of damage under fluoroscopy control following core decompression, Sharat Kumar said here in a statementon Monday.

He felt that autologous stem cell treatments could edge out joint replacement procedures to a large extent in days to come. The scope of this procedure in orthopaedics and sports medicine is enormous. This could be extended to indications include osteoarthritis of knee, shoulder, hip, elbows, ankle and spine, he said.

(This article was published on June 30, 2014)

Link:
Her own stem cells saved her from hip replacement