FAQs [Stem Cell Information] – National Institutes of Health
Why are doctors and scientists so excited about human embryonic stem cells? Stem cells have potential in many different areas of health and medical research. To start with, studying stem cells will help us to understand how they transform into the dazzling array of specialized cells that make us what we are. Some of the most serious medical conditions, such as cancer and birth defects, are due to problems that occur somewhere in this process. A better understanding of normal cell development will allow us to understand and perhaps correct the errors that cause these medical conditions.
Another potential application of stem cells is making cells and tissues for medical therapies. Today, donated organs and tissues are often used to replace those that are diseased or destroyed. Unfortunately, the number of people needing a transplant far exceeds the number of organs available for transplantation. Pluripotent stem cells offer the possibility of a renewable source of replacement cells and tissues to treat a myriad of diseases, conditions, and disabilities including Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injury, burns, heart disease, diabetes, and arthritis.
What will be the best type of stem cell to use for therapy? Pluripotent stem cells, while having great therapeutic potential, face formidable technical challenges. First, scientists must learn how to control their development into all the different types of cells in the body. Second, the cells now available for research are likely to be rejected by a patient's immune system. Another serious consideration is that the idea of using stem cells from human embryos or human fetal tissue troubles many people on ethical grounds.
Until recently, there was little evidence that multipotent adult stem cells could change course and provide the flexibility that researchers need in order to address all the medical diseases and disorders they would like to. New findings in animals, however, suggest that even after a stem cell has begun to specialize, it may be more flexible than previously thought.
There are currently several limitations to using traditional adult stem cells. Although many different kinds of multipotent stem cells have been identified, adult stem cells that could give rise to all cell and tissue types have not yet been found. Adult stem cells are often present in only minute quantities and can therefore be difficult to isolate and purify. There is also evidence that they may not have the same capacity to multiply as embryonic stem cells do. Finally, adult stem cells may contain more DNA abnormalitiescaused by sunlight, toxins, and errors in making more DNA copies during the course of a lifetime. These potential weaknesses might limit the usefulness of adult stem cells.
It is now possible to reprogram adult somatic cells to become like embryonic stem cells (induced pluripotent stem cells, iPSCs) through the introduction of embryonic genes. Thus, a source of cells can be generated that are specific to the donor, thereby increasing the chance of compatibility if such cells were to be used for tissue regeneration. However, like embryonic stem cells, determination of the methods by which iPSCs can be completely and reproducibly committed to appropriate cell lineages is still under investigation. Since they are derived from adult cells, iPSCs may also suffer DNA abnormalities, as described in the previous paragraph.
Link:
FAQs [Stem Cell Information] - National Institutes of Health