Cloned embryos yield stem cells for diabetes
And now there are three: in the wake of announcements from laboratories in Oregon and California that they had created human embryos by cloning cells of living people, a lab in New York announced on Monday that it had done that and more.
In addition to cloning the cells of a woman with diabetes, producing embryos and stem cells that are her perfect genetic matches, scientists got the stem cells to differentiate into cells able to secrete insulin.
That raised hopes for realizing a long-held dream of stem cell research, namely, creating patient-specific replacement cells for people with diabetes, Parkinson's disease, heart failure and other devastating conditions. But it also suggested that what the Catholic Church and other right-to-life advocates have long warned of - scientists creating human embryos to order - could be imminent.
The trio of successes "increases the likelihood that human embryos will be produced to generate therapy for a specific individual," said bioethicist Insoo Hyun of Case Western Reserve University School of Medicine in Cleveland. And "the creation of more human embryos for scientific experiments is certain."
The accelerating progress in embryonic stem cell research began last May. Scientists, led by Shoukhrat Mitalipov of Oregon Health & Science University, reported they had created healthy, early-stage human embryos - hollow balls of about 150 cells - by fusing ova with cells from a fetus, in one experiment, and an infant in another.
Earlier this month, scientists at the CHA Stem Cell Institute in Seoul, South Korea, announced they had managed the same feat with skin cells from two adult men.
In each case, scientists used a version of the technique that created the sheep Dolly in 1996, the first clone of an adult mammal. Called somatic cell nuclear transfer (SCNT), the recipe calls for removing the nuclear DNA from an ovum, fusing it with a cell from a living person, and stimulating each ovum to begin dividing and multiplying. The resulting embryo includes stem cells that can differentiate into any human cell type.
While that sounds simple enough, immense technical hurdles kept scientists from achieving human SCNT over more than a decade of attempts. Now that they have a reliable recipe, including the right nutrients to sustain the eggs and the right timing to start it dividing, they have "a reproducible, reliable way to create patient-specific stem cells" via cloning, said Dr. Robert Lanza, chief scientific officer of Advanced Cell Technology and co-author of the CHA paper.
INCURABLE DISEASE
Read more from the original source:
Cloned embryos yield stem cells for diabetes