Stem Cell Therapy for Pets in Summit County Colorado Proves to Be a Success for Local Dog Suffering from Pain

Poway, California (PRWEB) March 21, 2014

Ruby, a 10 year old Border Collie mix from Breckenridge, Colorado, has found relief from the pain of arthritis with stem cell therapy by Vet-Stem, Inc. Rubys owners came to Jamie Gaynor, DVM at Frisco Animal Hospital for a second opinion after being told Ruby would need a total hip replacement to relieve her constant pain and discomfort. Her quality of life had diminished so rapidly they feared losing her.

Dr. Gaynor began performing stem cell therapy by Vet-Stem for pets in 2006, in Colorado Springs. Paralleling his specialties in pain management, he has now helped well over one hundred pets in the state of Colorado, and ones that traveled just to have his expertise. His credentials and experience made Dr. Gaynor the perfect fit for helping Rubys worsening bilateral hip arthritis despite aggressive drug therapy. Ruby would become Dr. Gaynors first stem cell therapy case at Frisco Animal Hospital; Summit Countys first and oldest animal hospital.

Ruby was in constant pain and discomfort. She had to be carried up stairs and could not go on car rides; her second favorite thing to do. Her quality of life was diminishing rapidly, and we thought we were losing her, explained Rubys owners.

Rubys stem cell procedure consisted of a small fatty tissue collection, which was sent overnight to Vet-Stems lab in California for processing. Once Rubys fat was processed, and stem cells were extracted, fresh doses of her stem cells were sent overnight back to Dr. Gaynor in injectable doses. Within 48hrs of collecting a fat sample from Ruby, Dr. Gaynor was able to inject stem cells into each of her arthritic, painful hips, making Ruby his first stem cell therapy case in Summit County.

Dr. Gaynor and Rubys owners were both pleased with the successful outcome of the procedure, and had the opportunity to share during her 30 day recheck. Ruby is back! She has regained her playfulness, sassy, bossy, collie attitude. She has resumed going for car rides and can stand up and stabilize herself. She jumps out of the car without hesitation. She ascends and descends the stairs like she used to, her owners remarked about Rubys physical performance.

Her entire disposition and expressions are so animated and relaxed. I forgot how she used to smile, hold her ears up, and have endless energy. She is definitely out of pain, and her mobility is at 80%! The best part is, that she continues to heal and get stronger each week. This procedure is hands down the most effective, least traumatic therapy available, especially for the older dog, Rubys owners expressed.

About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

Read the original:
Stem Cell Therapy for Pets in Summit County Colorado Proves to Be a Success for Local Dog Suffering from Pain

Cipla bets big on cell therapy

In India, stem cell biz may touch $8 b by 2015

Mumbai, March 21:

Stem cells are set to be a major branch of medical treatment, says Cipla Chairman YK Hamied. Regenerative medicine, or cell therapy, is a rapidly emerging area of biomedical research and would be an ideal supplement for existing medical treatments, he added.

Cell therapy refers to treatments that are founded on the concept of producing new cells to replace malfunctioning or damaged cells as a vehicle to treat disease and injury.

We have a research unit in Malaysia that is conducting research on stem cells, Hamied said while speaking about Stempeutics Research with which it has an alliance. The Manipal Group-promoted Stempeutics is developing stem cell-based medicinal products with facilities in Kuala Lumpur (Malaysia) and Bangalore.

We are partners in the Bangalore company, he said. The enormous potential of stem cells in the treatment of chronic and several incurable diseases is boosting the overall stem cells therapy market, he added.

Poised to reach an estimated $88.3 billion by 2015, the global stem cells market has been growing at a compounded annual growth rate of 14.8 per cent, driven by the increasing demand of stem cell therapy.

In India, the stem cell business is expected to touch $8 billion (48,880 crore today) by 2015. With three phase II clinical trials in progress in India for critical limb Ischemia (meaning restriction in blood supply to tissues), osteoarthritis and liver cirrhosis Stempeutics aims to bring the first product into the Indian and Malaysian markets by 2015.

Under the alliance, Cipla has invested over 50 crore in Stempeutics, with a focus on research of stem cell-based products, and has done something similar in China, where it has streamlined its investments towards its core business. The drug-maker recently exited a significant part of its investment in its Chinese partner Desano Holdings.

Despite the lack of legislation and awareness, besides quality and ethical issues that have deterred growth of the stem cell therapy business in India, the country remains the top priority for the Mumbai-based drug-maker, the Cipla Chairman told Business Line.

Go here to read the rest:
Cipla bets big on cell therapy

Joseph Purita, M.D. and Maritza Novas, R.N., M.S.N. of Global Stem Cells Group, Inc. and Bioheart CSO Kristin Comella …

Miami (PRWEB) March 20, 2014

Joseph Purita, M.D. and Maritza Novas, R.N., M.S.N. of Global Stem Cells Group Inc., and Bioheart, Inc. Chief Scientific Officer Kristin Comella will be featured speakers at the 31st American Association of Orthopedic Medicine Annual Conference (AAOM) Conference and Scientific Seminar in Clearwater Beach, Florida April 9-12, 2014. Co-sponsored by the American Board of Quality Assurance and Utilization Review Physicians, Inc. (ABQAURP), the conference, titled Sports, Spine and Beyond: Latest Advances in Regenerative Orthopedic Medicine, will focus on the newest breakthroughs in the field of orthopedic medicine.

Purita, Novas and Comella will present the latest advances in stem cell therapies in sports medicine, regenerative orthopedic medicine and interventional pain medicine, including techniques for extracting stem cells from adipose tissue to use in patient treatments. Purita is a pioneer in the use of stem cells in orthopedics and founder of the Institute of Regenerative and Molecular Orthopedics in Boca Raton, Florida. Novas is a lead trainer and part of the research and development team for Stem Cell Training, a Global Stem Cells Group subsidiary.

Comella has more than 15 years experience in cell culturing and developing stem cell therapies for degenerative diseases and experience in corporate entities, with expertise in regenerative medicine, training and education, research, product development and senior management.

The conference will explore advances in other non-traditional treatments in sports and regenerative orthopedic medicine including manual medicine, nutrition, bioidentical hormone replacement therapy, musculoskeletal ultrasound and more. The goal of the AAOM Conference is to bring sports medicine physicians, PM&R specialists (physiatrists), family medicine physicians, orthopedic surgeons, neurologists and interventional pain physiciansincluding anesthesiologists and osteopathic pain physiciansthe latest state-of-the-art techniques and technologies to help treat their patients performance-related pain and injuries, overuse syndromes and chronic pain.

For more information on the 31st AAOM Annual Conference and Scientific Seminar, visit the AAOM website.

About the Global Stem Cells Group:

Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions. With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.

To learn more about Global Stem Cells Group, Inc.s companies and for investor information, visit the Global Stem Cells Group website, email bnovas(at)regenestem(dot)com, or call 305-224-1858.

Read this article:
Joseph Purita, M.D. and Maritza Novas, R.N., M.S.N. of Global Stem Cells Group, Inc. and Bioheart CSO Kristin Comella ...

Stem cell study finds source of earliest blood cells during development

PUBLIC RELEASE DATE:

20-Mar-2014

Contact: Matthew Inlay minlay@uci.edu 949-824-8226 University of California - Irvine

Irvine, Calif., March 20, 2014 Hematopoietic stem cells are now routinely used to treat patients with cancers and other disorders of the blood and immune systems, but researchers knew little about the progenitor cells that give rise to them during embryonic development.

In a study published April 8 in Stem Cell Reports, Matthew Inlay of the Sue & Bill Gross Stem Cell Research Center and Stanford University colleagues created novel cell assays that identified the earliest arising HSC precursors based on their ability to generate all major blood cell types (red blood cells, platelets and immune cells).

This discovery of very early differentiating blood cells, Inlay said, may be very beneficial for the creation of HSC lines for clinical treatments.

"The hope is that by defining a set of markers that will allow us to make purer, cleaner populations of these precursor cells, we'll be able to reveal the key molecular events that lead to the emergence of the first HSCs in development. This could give us a step-by-step guide for creating these cells in a dish from pluripotent stem cell lines" added Inlay, who is an assistant professor of molecular biology & biochemistry at UC Irvine and conducted the study while a postdoctoral researcher in the Irving Weissman lab in the Institute for Stem Cell Biology and Regenerative Medicine at Stanford University.

###

The work was performed in collaboration with Thomas Serwold, now an assistant professor in the Joslin Diabetes Center at Harvard Medical School.

The research reported in this article was supported by the National Institutes of Health (grants 5 T32 AI07290, R01HL058770, R01CA86085 and U01HL09999), the California Institute for Stem Cell Research (grants T1-00001, RT2-02060 to I.L.W.), the Harvard Stem Cell Institute, the Siebel Stem Cell Institute, the Thomas and Stacey Siebel Foundation, and the Virginia and D.K. Ludwig Fund for Cancer Research.

Go here to see the original:
Stem cell study finds source of earliest blood cells during development

Stem Cell Training, Inc. and Bioheart, Inc. Complete First U.S.-based Stem Cell Training Course

Miami (PRWEB) March 21, 2014

Stem Cell Training, Inc., a division of the Global Stem Cells Group, and Bioheart, Inc. have announced the successful completion of their first joint stem cell training course held in the U.S.

Titled Adipose Derived Harvesting, Isolation and Re-integration Training Course, for the advancement of stem cell procedures, the two companies hosted 14 students in Miami for the training, conducted by Bioheart CSO Kristin Comella.

The two-day, hands-on intensive training course was developed for physicians and high-level practitioners to learn techniques in harvesting and reintegrating stem cells derived from adipose (fat) tissue and bone marrow. The objective of the training is to bridge the gap between bench science in the laboratory and the doctors office by teaching effective in office regenerative medicine techniques.

Comella, Chief Scientific Officer for Bioheart, has more than 15 years experience in cell culturing and developing stem cell therapies for degenerative diseases, and experience in corporate entities, with expertise in regenerative medicine, training and education, research, product development and senior management.

The two companies will conduct 12 stem cell training courses in the U.S. during 2014. For more information, visit the Stem Cell Training, Inc. website, email info(at)stemcelltraining(dot)net, or call 305-224-1858.

About Stem Cell Training, Inc.:

Stem Cell Training, Inc. is a multi-dimensional company offering coursework and training in 35 cities worldwide. Coursework offered focuses on minimally invasive techniques for harvesting stem cells from adipose tissue, bone marrow and platelet-rich plasma. By equipping physicians with these techniques, the goal is to enable them to return to their practices, better able to apply these techniques in patient treatments.

The companys training courses are designed to make the best use of stem cell technology available to treat various diseases in a manner that is accessible to everyone. Stem Cell Training, Inc.s mission is to introduce the promising world of cellular medicine to everyone who can benefit from its application, and to provide high quality, effective and efficient training that complies with the highest medical standards to physicians worldwide.

About the Global Stem Cells Group:

Read more here:
Stem Cell Training, Inc. and Bioheart, Inc. Complete First U.S.-based Stem Cell Training Course

Irvine Stem Cell Treatment Center: Public Seminar

Irvine, CA (PRWEB) March 21, 2014

The Irvine Stem Cell Treatment Center, PC, located in Irvine, CA, announces a free public seminar on the use of stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief.

The seminar will be held on March 23, 2014 at 2:00pm PSTat 3500 Barranca Parkway, Suite 315, Irvine, CA 92606.

At the Irvine Stem Cell Treatment Center, utilizing investigational protocols, adult adipose derived stem cells (ADSCs) can be deployed to improve patients quality of life with a number of degenerative conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (also called stromal vascular fraction (SVF)). Adipose tissue is exceptionally abundant in ADSCs. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.

ADSCs are the body's natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys damaged cells. The Irvine Stem Cell Treatment Center only uses autologous stem cells from a person's own fat no embryonic stem cells are used. Our current areas of study include: Heart Failure, Emphysema, COPD, Asthma, Parkinsons Disease, Stroke, Multiple Sclerosis, and orthopedic joint injections. For more information, or if someone thinks they may be a candidate for one of the stem cell protocols offered by Irvine Stem Cell Treatment Center, they may contact Dr. Gionis directly at (949) 679-3889, or see a complete list of the Centers study areas at: http://www.StemCellsUSA.net.

About Irvine Stem Cell Treatment Center: The Irvine Stem Cell Treatment Center is an affiliate of the Cell Surgical Network (CSN). We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Irvine Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Research Protections; and the study is registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information contact: Info(at)StemCellsUSA(dot)net or visit our website: http://www.StemCellsUSA.net.

Follow this link:
Irvine Stem Cell Treatment Center: Public Seminar

Stem cell combination therapy improves traumatic brain injury outcomes

Traumatic brain injuries (TBI), sustained by close to 2 million Americans annually, including military personnel, are debilitating and devastating for patients and their families. Regardless of severity, those with TBI can suffer a range of motor, behavioral, intellectual and cognitive disabilities over the short or long term. Sadly, clinical treatments for TBI are few and largely ineffective.

In an effort to find an effective therapy, neuroscientists at the Center of Excellence for Aging and Brain Repair, Department of Neurosurgery in the USF Health Morsani College of Medicine, University of South Florida, have conducted several preclinical studies aimed at finding combination therapies to improve TBI outcomes.

In their study of several different therapies -- alone and in combination -- applied to laboratory rats modeled with TBI, USF researchers found that a combination of human umbilical cord blood cells (hUBCs) and granulocyte colony stimulating factor (G-CSF), a growth factor, was more therapeutic than either administered alone, or each with saline, or saline alone.

The study appeared in a recent issue of PLoS ONE.

"Chronic TBI is typically associated with major secondary molecular injuries, including chronic neuroinflammation, which not only contribute to the death of neuronal cells in the central nervous system, but also impede any natural repair mechanism," said study lead author Cesar V. Borlongan, PhD, professor of neurosurgery and director of USF's Center of Excellence for Aging and Brain Repair. "In our study, we used hUBCs and G-CSF alone and in combination. In previous studies, hUBCs have been shown to suppress inflammation, and G-CSF is currently being investigated as a potential therapeutic agent for patients with stroke or Alzheimer's disease."

Their stand-alone effects have a therapeutic potential for TBI, based on results from previous studies. For example, G-CSF has shown an ability to mobilize stem cells from bone marrow and then infiltrate injured tissues, promoting self-repair of neural cells, while hUBCs have been shown to suppress inflammation and promote cell growth.

The involvement of the immune system in the central nervous system to either stimulate repair or enhance molecular damage has been recognized as key to the progression of many neurological disorders, including TBI, as well as in neurodegenerative diseases such as Parkinson's disease, multiple sclerosis and some autoimmune diseases, the researchers report. Increased expression of MHCII positive cells -- cell members that secrete a family of molecules mediating interactions between the immune system's white blood cells -- has been directly linked to neurodegeneration and cognitive decline in TBI.

"Our results showed that the combined therapy of hUBCs and G-CSF significantly reduced the TBI-induced loss of neuronal cells in the hippocampus," said Borlongan. "Therapy with hUBCs and G-CSF alone or in combination produced beneficial results in animals with experimental TBI. G-CSF alone produced only short-lived benefits, while hUBCs alone afforded more robust and stable improvements. However, their combination offered the best motor improvement in the laboratory animals."

"This outcome may indicate that the stem cells had more widespread biological action than the drug therapy," said Paul R. Sanberg, distinguished professor at USF and principal investigator of the Department of Defense funded project. "Regardless, their combination had an apparent synergistic effect and resulted in the most effective amelioration of TBI-induced behavioral deficits."

The researchers concluded that additional studies of this combination therapy are warranted in order to better understand their modes of action. While this research focused on motor improvements, they suggested that future combination therapy research should also include analysis of cognitive improvement in the laboratory animals modeled with TBI.

See more here:
Stem cell combination therapy improves traumatic brain injury outcomes

The Repair Stem Cells Institute Invites Participation in a Unique Study of a Stem Cell Treatment for Type 2 Diabetes

Dallas, TX (PRWEB) March 20, 2014

The Repair Stem Cells Institute (RSCI) -- http://www.repairstemcells.org -- is pleased to announce that it will assist interested patients to take part in a patient-sponsored research study based in the United States for the treatment of Type2 Diabetes with adult stem cells. The study, which meets current FDA guidelines, will be conducted during April 2014.

The study is being conducted by the U.S. based company Bioheart which has assembled teams of doctors and specialists specially trained in stem cell treatments. Based on previous treatment of Type 2 diabetes with autologous (the patients own) stem cells, it is estimated that two-thirds of participants will experience a significant quality of life improvement and symptoms reduction.

Type 2 diabetes makes up about 90% of cases of diabetes. Rates of type 2 diabetes have increased markedly since 1960. Today there are approximately 50 million people suffering from the disease compared to 15 million in 1985.

In a recent interview, RSCI founder and Chairman Don Margolis stated, With stem cell treatment rapidly coming to the forefront of 21st Century medicine, we are pleased that Type 2 Diabetes is among the many chronic conditions that are treatable with adult stem cells rather than potentially risky surgery, dangerous transplants, and toxic drugs.

Eligibility

Patients suffering from Type 2 diabetes who are cancer-free can apply to participate.

What will happen?

The 4-part procedure will be done in a participating doctors office as a point-of-care out-patient.

1.Adipose Harvest: During a 3 to 5 hour visit to the doctors office, a mini-liposuction on your stomach will extract a small amount of tummy fat containing tens of millions of adipose stem cells. 2.Laboratory Processing: The extracted stem cells will be isolated, analyzed, cleaned and concentrated. 3.Stem Cell Implantation: Up to 60 million stem cells will be transplanted intravenously, usually into your arm. Because these are the patients own cells, the risk of rejection is non-existent. 4.Postoperative Care: Normally, patients can leave shortly after implantation. RSCI will check on your progress monthly by telephone for the first year after stem cells.

View original post here:
The Repair Stem Cells Institute Invites Participation in a Unique Study of a Stem Cell Treatment for Type 2 Diabetes

Fundraiser Saturday for Billerica preschool director

BILLERICA -- The community is again stepping up to the plate for a Billerica preschool director undergoing stem-cell treatment.

The Learning Experience, an early-learning academy, is hosting "Melodies for Melody," a fundraiser from 1-4 p.m. on Saturday in Concord. The fundraiser for Melody Lee will feature live entertainment and games for children.

The event is free and open to the community.

" 'Melodies for Melody' means a great deal to the TLE family," said David Hawthorne, TLE Concord's Center Operating Partner. "Beyond the importance of raising funds for Melody, this event also serves as an opportunity to show the children at TLE a real-life example of the importance of philanthropy and the impact that it can have in the lives of others."

The fundraiser will bring together neighboring communities to raise awareness and donations for Lee, who is undergoing a full stem-cell replacement as part of treatment for Systemic Scleroderma, a debilitating, painful autoimmune disease that has become life-threatening. The disease leads to thickening of the skin caused by collagen accumulation, creating an excess buildup of scar tissue that affects the skin and internal organs.

The Concord center and TLE centers nationwide will be raising money throughout March in an effort to raise the $150,000 needed for Lee's stem-cell replacement.

At the "Melodies for Melody" event Saturday, at 130A Baker Ave. Extension in Concord, there will be various entertainers, including Delaney Carlson: Bagpiper March with Bubbles the Elephant; and Ed Morgan, Music Man Toddler Show. There will also be crafts, an auction and raffle with Bubbles the Elephant, and a singalong to end the day.

In addition, throughout March, Concord TLE will raise money by singing "Melodies for Melody." Anyone who wishes to donate at least $1 to Lee's cause can have a TLE staff member sing a melody of the donator's choosing.

To make a donation online for Lee, visit http://www.helphopelive.org and search for "Melody Lee."

Along with engaging in philanthropic activities, TLE prepares children academically and socially through innovative scholastic and enrichment programs such as L.E.A.P. curriculum, a proprietary approach to learning which has 90 percent of TLE children graduating preschool reading at a kindergarten or greater level.

Read this article:
Fundraiser Saturday for Billerica preschool director

Stem cells created from a drop of blood: DIY finger-prick technique opens door for extensive stem cell banking

Scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) have developed a method to generate human induced pluripotent stem cells (hiPSCs) from a single drop of finger-pricked blood. The method also enables donors to collect their own blood samples, which they can then send to a laboratory for further processing. The easy access to blood samples using the new technique could potentially boost the recruitment of greater numbers and diversities of donors, and could lead to the establishment of large-scale hiPSC banks.

By genetic reprogramming, matured human cells, usually blood cells, can be transformed into hiPSCs. As hiPSCs exhibit properties remarkably similar to human embryonic stem cells, they are invaluable resources for basic research, drug discovery and cell therapy. In countries like Japan, USA and UK, a number of hiPSC bank initiatives have sprung up to make hiPSCs available for stem cell research and medical studies.

Current sample collection for reprogramming into hiPSCs include invasive measures such as collecting cells from the bone marrow or skin, which may put off many potential donors. Although hiPSCs may also be generated from blood cells, large quantities of blood are usually required. In the paper published online on the Stem Cell Translational Medicine journal, scientists at IMCB showed for the first time that single-drop volumes of blood are sufficient for reprogramming into hiPSCs. The finger-prick technique is the world's first to use only a drop of finger-pricked blood to yield hiPSCs with high efficiency. A patent has been filed for the innovation.

The accessibility of the new technique is further enhanced with a DIY sample collection approach. Donors may collect their own finger-pricked blood, which they can then store and send it to a laboratory for reprogramming. The blood sample remains stable for 48 hours and can be expanded for 12 days in culture, which therefore extends the finger-prick technique to a wide range of geographical regions for recruitment of donors with varied ethnicities, genotypes and diseases.

By integrating it with the hiPSC bank initiatives, the finger-prick technique paves the way for establishing diverse and fully characterised hiPSC banking for stem cell research. The potential access to a wide range of hiPSCs could also replace the use of embryonic stem cells, which are less accessible. It could also facilitate the set-up of a small hiPSC bank in Singapore to study targeted local diseases.

Dr Loh Yuin Han Jonathan, Principal Investigator at IMCB and lead scientist for the finger-prick hiPSC technique, said, "It all began when we wondered if we could reduce the volume of blood used for reprogramming. We then tested if donors could collect their own blood sample in a normal room environment and store it. Our finger-prick technique, in fact, utilised less than a drop of finger-pricked blood. The remaining blood could even be used for DNA sequencing and other blood tests."

Dr Stuart Alexander Cook, Senior Consultant at the National Heart Centre Singapore and co-author of the paper, said "We were able to differentiate the hiPSCs reprogrammed from Jonathan's finger-prick technique, into functional heart cells. This is a well-designed, applicable technique that can unlock unrealized potential of biobanks around the world for hiPSC studies at a scale that was previously not possible."

Prof Hong Wanjin, Executive Director at IMCB, said "Research on hiPSCs is now highly sought-after, given its potential to be used as a model for studying human diseases and for regenerative medicine. Translational research and technology innovations are constantly encouraged at IMCB and this new technique is very timely. We hope to eventually help the scientific community gain greater accessibility to hiPSCs for stem cell research through this innovation."

Story Source:

The above story is based on materials provided by A*STAR. Note: Materials may be edited for content and length.

View original post here:
Stem cells created from a drop of blood: DIY finger-prick technique opens door for extensive stem cell banking