Has The Holy Grail Been Found In Stem Cell Medicine?

Last week, the scientific world was intrigued by a study in Nature magazine showing that an acidic environment turned adult mouse cells into "pluripotent" stem cells. The researchers called these new pluripotent cells "stimulus-triggered acquisition of pluripotency cells" (STAP). This could have rather game changing consequences in the stem cell field. Notice I said could! This is no doubt a tremendous scientific feat. However we still do not know what road blocks might arise in using these cells. First of all these cells were grown from mice. To take poetic justice from a familiar phrase "what happens in Vegas stays in Vegas" well sometimes what happens in mice sometimes stays in mice. Clinical translation from one species does not always relate to another species. One need look no further than cancer drugs. Sometimes we find some tremendously successful cancer drugs in an animal trial only to find that it has little or no effect on human tissue. I have some specific questions on these cells that I will mention later in this blog.

The simplicity of producing these cells is when a batch of cells was exposed to a "sub-lethal" acidic environment, with a pH of 5.7, for 30 minutes. I am more convinced than ever than stress will trigger many different reactions in cells. This seems to be a prevailing thread in the stem cell field. Stress will make a cell change its characteristics. The cell can become much more powerful accomplishing repair. In one of my blogs from a few months ago I talked about MUSE cells. MUSE cells are called Multilinage Stress Enduring Cells derived from adipose tissue. These are pluripotent like stem cells derived from adipose tissue. They have an uncanny ability to survive. You will remember that MUSE cells were produced when fat tissue was subjected to harsh environments. It sort of sounds familiar. If we substitute the word STAP cell for a MUSE cell we find strikingly similar aspects of these cells. We start seeing a similar pattern. Some type of stress seems to be a a precipitating event in producing these cells.

To investigate whether the STAP cells could occur in mammals some studies were performed by Vacanti, Obokata and their group. They used mice that were bred to carry a gene that glows green in the presence of Oct-4, a protein that is only found in pluripotent cells. The team took a blood sample from the spleen of these mice when they were one week old, isolated white blood cells called lymphocytes, and exposed them to various strong but fleeting physical and chemical stresses. The team then tried to grow the cells in the lab. Not much happened at first some cells died, and the rest still looked like white blood cells. But on the second day, a number of cells began to glow green, meaning they were producing Oct-4. By day 7, two-thirds of the surviving cells showed this pluripotent marker, together with other genetic markers of pluripotency many of which are also seen in embryonic stem cells. The researchers don't know whether the reprogramming they are seeing is initiated by the low pH or by some other type of stress, such as chemical changes happening further down the line. What we may be doing is turning on genes that were previously turned off. The process of genes being turned off is called gene silencing. As we age many of our genes become silenced. Silenced genes can cause disease. We know that young people have many genes that are turned on and thus they seem as a group to avoid disease. As we age these genes become silenced and disease rears its ugly head.

It might just be that the creation of STAP cells is tapping into a fundamental body-repair process of life. I have suspected for some time now that repair depends upon the severity of the injury. If you injure cells significantly enough, so that they almost die, than certain genes may get switched on or off. This may result in a change in the cell's overall controls, meaning all genes have the potential to be switched on again. This may be the essence of life. We may have stumbled onto the master switch of life. This could happen in all tissue in the body under different circumstances.

There are some reports that these cells are totipotent. A pluripotential stem cell can form almost any kind of tissue. Pluripotent cells, such as embryonic stem cells, can form any cell in an embryo but not a placenta. Totipotent cells, however, can form any cell in an embryo and a placenta. These totipotent stem cells have the ability to creat life. The only cells known to be naturally totipotent are in embryos that have only undergone the first couple of cell divisions immediately after fertilization. This may end up in a Pandora's box. Might humanity go down the slippery slope of cloning a human being. I think this is a place most of humanity does not and should not want to go.

The potential for these cells is great. Some of the questions I have about these cells is for instance what about their telomeres. We have taken an adult cell and reprogramed it but what about its telomeres? Would we have the short telomere length that we would expect it a typical mature cell or would the telomeres lengthen? We know that pluripotent and higher stem cells make telomerase. Telomerase is the enzyme that restores the ends of the DNA strains. Every time a cell reproduces it loses a little snippet of DNA. Once the DNA strand approaches a certain critical level the cell becomes programed to die in a process called apotheosis. Telomerase restores the telomere end. Could we potentially use these STAP cells to not only repair damaged cells but maybe reverse aging. It seems that the more we know the less we know.

Thanks Dr. P

Follow this link:
Has The Holy Grail Been Found In Stem Cell Medicine?

DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine Offers Autologous Stem Cell Therapy for Men …

Sarasota, FL (PRWEB) March 12, 2014

Erectile dysfunction (ED) is the most commonly studied disorder when it comes to male sexual dysfunction. It is estimated that 18 million men in the US alone suffer from erectile dysfunction and that it appears to be affecting 1 in 4 males under age 40 according to a study published in The Journal of Sexual Medicine.

While the emphasis of treatments for ED focuses on relieving the symptoms, they only provide a temporary solution rather than a cure or reversing the cause.

The DaSilva Institute is excited to announce the recruitment of males suffering from ED, in an IRB study, which will look at the safety, and efficacy of autologous, adipose derived stem cells (ADSCs) in regenerating the causes of ED.

The evidence shows that ADSCs reverses the pathophysiological changes leading to ED, rather than treating the symptoms of ED. Not only is the data in the literature compelling, but our own, in-house, results on our patients have been phenomenal, states Dr. DaSilva.

The many underlying causes for ED that are being investigated range from those secondary to aging, to injury of the cavernous nerve secondary to injury, surgery and/or radiation of the prostate, to diabetic ED and Peyronies Disease to name a few. According to Dr. DaSilva, the possibilities for ADSCs in reversing ED are limitless.

Currently, there is an expansive and growing body of evidence in the medical literature strongly indicating that ADSCs might be a potential cure for ED, rather than merely symptom relief, which is indicative of the increasing interest in ADSC-regenerative options for sexual medicine over the past decade. The DaSilva Institutes goal is to take this from pre-clinical studies to the clinical world offering it to all males that suffer from intractable ED under an IRB approved protocol.

More information about Dr. DaSilva and the DaSilva Institute Guy DaSilva, MD is currently the medical director of the DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine, located in Sarasota, Florida. Dr. DaSilvas enthusiasm for using autologous stem cells in regenerative medicine comes from his early days as a pathologist in New York City back in 1987 and later as a fellow in hematology in1990 following his residency in internal medicine.

He later brought his expertise in molecular and cellular medicine to the University of Kansas Medical Center where he served as chief of Hematology & Hematopathology. He later became the CEO and medical director of HemePath Institute, a diagnostic leader in diagnosing the most difficult cases of leukemia and lymphomas. Most recently, Dr. DaSilva teamed up with one of the most influential stem cell scientist in the world to bring the highest quality and viability of the harvested stem cells, bar none, to the DaSilva Institute.

Dr. DaSilva is board certified and fellowship trained in Anti-Aging and Regenerative Medicine. For more information about Dr. DaSilva or the DaSilva Institute go to http://www.dasilvainstitute.com.

Read more from the original source:
DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine Offers Autologous Stem Cell Therapy for Men ...

Advances in Stem Cell, Organ Printing, Tissue Engineering Changing Healthcare, Saving Lives

Contact Information

Available for logged-in reporters only

Newswise COLUMBUS, Ohio -- Imagine a world where malfunctioning organs are replaced by new ones made from your own tissues, where infected wounds are cured with a signal from your smartphone, where doctors find the perfect medicine for whatever ails you simply by studying your stem cells.

Its a world thats inching closer to reality because of the work of some of the nations top scientists, many of whom will gather March 13-15 at The Ohio State University for the 7th Annual Translational to Clinical (T2C) Regenerative Medicine Conference to discuss their recent successes and challenges in coaxing the body to heal itself in extraordinary ways.

Regenerative medicine will change the way you and I experience sickness, health and healthcare, said Chandan Sen, director of the Center for Regenerative Medicine and Cell Based Therapies at Ohio States Wexner Medical Center. Because the field is so new, we as researchers are also changing the way we work to be synergistic not competitive, so patients are able to access the benefits more quickly.

And the benefits are desperately needed, says keynote speaker Dr. Anthony Atala, director of the Wake Forest Institute for Regenerative Medicine at Wake Forest Baptist Medical Center.

From chronic diseases such as kidney failure that costs billions of dollars each year to the medical needs of our aging population and the significant injuries sustained by military troops in Afghanistan, developing new treatment paradigms is essential, said Atala, who was selected to lead the $75 million Armed Forces Institute of Regenerative Medicine (AFIRM), a consortium of 30 academic and industry partners in applying regenerative medicine techniques to battlefield injuries.

In theory, every tissue in the body has the ability to regenerate and heal itself. Its good to come to this meeting and exchange ideas that will enable us to harness that remarkable ability.

Other speakers include Elaine Fuchs, Howard Hughes Medical Institute investigator and Rebecca C. Lancefield Professor at Rockefeller University in New York, who has advanced multiple areas of stem cell research through her work in skin cells and genetics; and Dr. Michael Longaker, director of the Hagey Laboratory for Stem Cell Biology for Pediatric Regenerative Medicine at Stanford University. Longaker is considered one of the nations experts in using a combination of stem cell- and bioengineering-based technologies for craniofacial reconstruction.

Several Ohio State College of Medicine and Wexner Medical Center clinician-scientists are also sharing research updates during pre-conference lectures and the meeting:

View original post here:
Advances in Stem Cell, Organ Printing, Tissue Engineering Changing Healthcare, Saving Lives

Miami Stem Cell Treatment Center: What The Stem Cell Procedure Entails and An Invitation To MSCTC Public Seminar; Meet …

Boca Raton, Florida (PRWEB) March 12, 2014

The Miami Stem Cell Treatment Center, PC, located in Miami, Ft. Lauderdale, and Boca Raton, Florida, offers a free public seminar on the use of stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief, and, Dr. Nia Smyrniotis, Medical Director. The next upcoming seminar will be held on March 16th at the Comfort Suites Weston, 2201 N. Commerce Parkway, Weston, Florida 33326, at 2pm.

Regenerative Medicine: Our Procedure The Miami Stem Cell Treatment Center uses Autologous Adult Adipose Stem Cells to provide care for patients suffering from chronic conditions that may benefit from adult stem cell-based regenerative medicine.

The Miami Stem Cell Treatment Center follows the regenerative medicine procedures developed by the California Stem Cell Treatment Centers (CSCTC) and Cell Surgical Network (CSN) which involves the initial screening, examination and evaluation of every potential candidate for stem cell investigational therapy by one of our physicians. Once a patient is deemed to be an appropriate candidate, the procedure itself is performed by our Surgeon-in-Chief, who is assisted by a team of experienced surgical team members and surgical technicians. The entire process from start to finish takes less than two hours. It is relatively painless, and recovery time is minimal.

In recent times, the bone marrow has been a source for stem cells. Taking bone marrow, however, is a painful procedure. Fat, however, contains many times more stem cells than bone marrow and is much easier and safer to harvest.

For many disease types such as cardiac pathology, adipose derived cells appear to be showing superiority to bone marrow derived cells. This may be related to the well documented fact that chronic disease causes bone marrow suppression. Fat derived cells are a natural choice for our investigational work considering their easy and rapid availability in extremely high numbers.

With our current technology, we can harvest your own fat cells, digest the fat cells and separate out the stem cells. The most significant advantage of using your fat as a source for the stem cells, is that the procedure can be done in the office in only a few hours, as the stem cells can be ready for injection after only 60 minutes of processing with our state of the art equipment. Your stem cells do NOT need to be sent out for processing and there is no need for you to travel outside of the U.S. to have them injected.

Indeed, adipose tissue is an abundant source of mesenchymal stem cells, which have shown promise in the field of regenerative medicine. Furthermore, these cells can be readily harvested in large numbers with low donor-site morbidity. During the past decade, numerous studies have provided pre-clinical data on the safety and efficacy of adipose-derived stem cells, supporting the use of these cells in clinical applications. Various clinical trials have shown the regenerative capability of adipose-derived stem cells in numerous fields of medicine. In addition, a great deal of knowledge concerning the harvesting, characterization, and culture of adipose-derived stem cells has been reported.

Our current areas of study include: Heart Failure, Emphysema, COPD, Asthma, Parkinsons Disease, Stroke, Multiple Sclerosis, and orthopedic joint injections. . The investigational protocols utilized by the Miami Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Research Protections; and the study is registered with http://www.Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information contact: Miami(at)MiamiStemCellsUSA(dot)com or visit our website: http://www.MiamiStemCellsUSA.com.

See more here:
Miami Stem Cell Treatment Center: What The Stem Cell Procedure Entails and An Invitation To MSCTC Public Seminar; Meet ...

Riken Considers Retracting Two Stem-Cell Studies

Research that outlined a simpler, quicker way of making stem cells may be retracted after one of the scientists involved expressed doubts about the basis for the experiments.

Japans Riken research center is investigating two studies published in the journal Nature in January and is considering options including retracting them, the government-funded organization said in a statement on its website today. Riken will give a briefing on the probe March 14.

Teruhiko Wakayama, who worked on the research at the University of Yamanashi in Japan, said in an interview with public broadcaster NHK yesterday that he was no longer sure of the premise of the data he used to establish the experiments and that the studies should be withdrawn for review. The comments underscore the pressure researchers face amid Japans push into stem-cell science following Shinya Yamanakas 2012 Nobel Prize.

Its a disappointment for the community when such high profile papers may possibly be retracted, said Nissim Benvenisty, director of the stem-cell unit at the Hebrew University in Jerusalem, in an interview. Its reassuring that the investigators in this institute are themselves taking the initiative to look into what might have gone wrong.

The studies found that ordinary cells taken from newborn mice could be transformed into stem cells, the versatile building blocks of the body, without adding genes. Researchers led by Haruko Obokata at the Riken Center for Developmental Biology shocked the cells with a dose of sublethal stress such as mechanical force to trigger a transformation.

The study surprised me when it came out because it contradicted the common sense that we have acquired so far in the field, Benvenisty said. At the same time, this is the beauty of the scientific world, that editors allow publications of papers that contradict common sense to allow novel data to be discussed and understood.

Obokata worked with Wakayama and institutions including Charles Vacantis laboratory at Brigham and Womens Hospital, Harvard Medical School.

Rikens media relations department couldnt immediately be reached. An e-mail to Obokata wasnt immediately answered.

Im not sure what Riken will decide to do, Wakayama said in an e-mail responding to a request for comments.

Japans Prime Minister Shinzo Abe aims to cement the countrys leadership in the field of research and has pushed through bills that fast-track regulatory approval for cell-based products and set new research guidelines. Last year, Japans Health Ministry cleared the way for the worlds first clinical trial with stem cells made using a separate technique fromYamanaka, the Nobel Prize winner from Kyoto University.

Read more from the original source:
Riken Considers Retracting Two Stem-Cell Studies

New stem cell center conducting clinical trials

TOPEKA, Kan. (AP) - A new center at the University of Kansas Medical Center that focuses on stem cell research is conducting clinical trials only eight months after it opened.

Officials with the Midwest Stem Cell Therapy Center briefed a Kansas Senate committee on the clinics work since it was established last year.

Dr. Buddhadeb Dawn, the centers director, detailed clinical trials for the Senate Ways and Means Committee. He says the trials will help patients and make the state a leader in stem cell treatments.

The Lawrence Journal-World reports (http://bit.ly/1enOsv8 ) the center works on adult stem cell, cord blood and related stem cell research. It is prohibited from using embryonic stem cells or cells taken from aborted fetal tissue.

___

Information from: Lawrence (Kan.) Journal-World, http://www.ljworld.com

See more here:
New stem cell center conducting clinical trials

Stem Cell Researcher Suggests Recalling His Own Study

By Maggie Fox

One of the worlds leading stem cell experts has suggested withdrawing a study that made global headlines last January, saying he has questions about some of the images and data in it.

The Japanese team, led by Teruhiko Wakayama, reported that they had created powerful stem cells by doing little more than soaking ordinary cells in an acid solution.

The report, published in the journal Nature, impressed other stem cell researchers and opened the possibility of an easy approach to regenerative medicine. But Japanese television quotes Wakayama as saying he wants to take a closer look.

"When conducting the experiment, I believed it was absolutely right, Reuters news agency quotes Wakayama as telling the television station NHK.

"But now that many mistakes have emerged, I think it is best to withdraw the research paper once and, using correct data and correct pictures, to prove once again the paper is right," he said.

"If it turns out to be wrong, we would need to make it clear why a thing like this happened."

But Charles Vacanti of Harvard Medical School and Brigham and Women's Hospital in Boston, who helped work on the study, said he disagreed. "Some mistakes were made, but they don't affect the conclusions," the Wall Street Journal quoted him as saying.

"Based on the information I have, I see no reason why these papers should be retracted."

Stem cell researchers may be more sensitive than other scientists. In 2006, Seoul National University fired Hwang Woo-Suk after the journal Science retracted two papers he wrote claiming to have cloned human embryos and extracted stem cells from them.

View post:
Stem Cell Researcher Suggests Recalling His Own Study

Loss of antioxidant protein Nrf2 represses regeneration of muscle lost to aging

PUBLIC RELEASE DATE:

8-Mar-2014

Contact: Phil Sahm phil.sahm@hsc.utah.edu 801-581-2517 University of Utah Health Sciences

(SALT LAKE CITY)Good news for lifelong exercisers: Along with its salutary effects on the heart, weight, and other facets of health, physical activity also helps to regenerate muscle mass, which tends to diminish as people age.

In a study published in the journal Free Radical Biology and Medicine, researchers from the University of Utah and other institutions found that aged mice lacking Nrf2 that underwent two weeks of endurance exercise stress on treadmills showed poor stem cell regeneration, which is likely to hinder the recovery of lost muscle mass. Nrf2 is protein that regulates the production of antioxidants in the body.

"Physical activity is the key to everything," says Raj Soorappan, Ph.D., assistant research professor of medicine at the University of Utah and senior author on the study. "After this study, we believe that moderate exercise could be one of the key ways to induce stem cells to regenerate especially during senescence."

Sarcopenia age-related loss of skeletal muscle mass occurs naturally and begins in most people around age 30. Fortunately, to help stem this tide, the body produces antioxidants, which are molecules that help maintain muscle mass through the regeneration of stem cells that become muscle cells.

For reasons not yet entirely known, as people age, their bodies produce fewer antioxidants. This can result in oxidative stress, a condition in which the level of molecules called free radicals rogue electrons that travel through the body triggering chemical reactions that damage proteins and cells exceeds that of antioxidants. When this happens, stem cell regeneration and, consequently, formation of muscle cells doesn't keep up with muscle mass loss.

Nrf2 is a protein and transcription factor that turns on and off the genes that produce antioxidants. To test the role of Nrf2 in regeneration of skeletal muscle during aging, Soorappan tested two groups of mice that were 23 months or older the murine equivalent of senior citizens. In one group of mice the gene that codes for Nrf2 had been knocked out while the other group of mice was able to produce the protein. Each group underwent endurance training to create a profound oxidative stress setting.

Typically, regeneration, maintenance and repair of adult skeletal muscle damage due to aging and/or chronic stress states require activation of satellite cells (stem cells). In the group that couldn't produce Nrf2, endurance exercise stress on the treadmills affected stem cell protein expression and limited skeletal muscle regenerative capacity.

Follow this link:
Loss of antioxidant protein Nrf2 represses regeneration of muscle lost to aging

Okyanos CEO Matt Feshbach Announces Appointment of Institutes Marketing Executive Erika Rosenthal to International …

Freeport, The Bahamas (PRWEB) March 10, 2014

Matt Feshbach, CEO of Okyanos Heart Institute whose mission it is to bring a new standard of care and better quality of life to patients with coronary artery disease using cardiac stem cell therapy has announced the appointment of Okyanos senior vice president of marketing, Erika Rosenthal, to the International Stem Cell Society (STEMSO) Advisory Board. She will advise the trade organization in a communications capacity to benefit the membership and the mission.

STEMSO is a member-based, international, non-profit 501(c) 6 trade association which promotes the interests of organizational members of the global, adult stem cell healthcare community. STEMSO provides information, education, resources, advocacy and public awareness for the advancement of adult stem cell research and therapy. The organization recently hosted a global regenerative medicine conference in Freeport, The Bahamas, entitled, Bridging the Gap: Research to Point of Care which brought together experts in adult stem cell therapy and regulations to discuss commercialization of therapies for chronic disease in a safe, ethical, and compliant manner.

STEMSO is an important organization to the field of stem cell therapy and research, said Feshbach. Communications and healthcare are both fields in which Erika excels, and so I am pleased to see her lend her expertise for an important cause. I look forward to the Okyanos Heart Institute executive team continuing with such efforts for the greater good of medicine.

Rosenthal was a 2008 recipient of the National Association of Women Business Owners Business Woman of the Year award, and was recognized in Business Leader Magazine as a Woman Extraordinaire, for her business accomplishments and contributions to the non-profit community. She is a former faculty member of the University of California where she taught Marketing and Hospitality Management.

It is indeed an honor to work with STEMSO to advance their cause to help advance adult stem cell research and therapy worldwide, and to bring together leading researchers, physicians, regulators and scientists to set standards for ethical and responsible delivery of therapies as they become available to the public worldwide, said Rosenthal. It is an exciting time in medicine, and STEMSO is greatly needed to bring collaboration and guidance between this impressive member group of thought leaders.

STEMSO is pleased to have Erika Rosenthal participate on STEMSOs Advisory Board, said Douglas Hammond, president of STEMSO. Non-profit trade associations are only as strong as their member participation and leadership allows. If other members or prospective organizational members were to support STEMSO as Okyanos Heart Institute and Erika Rosenthal, there would be no limit to STEMSOs impact in the Regenerative Medicine Industry.

About Okyanos Heart Institute: (Oh key AH nos) Based in Freeport, The Bahamas, Okyanos Heart Institutes mission is to bring a new standard of care and a better quality of life to patients with coronary artery disease using cardiac stem cell therapy. Okyanos adheres to U.S. surgical center standards and is led by Chief Medical Officer Howard T. Walpole Jr., M.D., M.B.A., F.A.C.C., F.S.C.A.I. Okyanos Treatment utilizes a unique blend of stem and regenerative cells derived from ones own adipose (fat) tissue. The cells, when placed into the heart via a minimally-invasive procedure, can stimulate the growth of new blood vessels, a process known as angiogenesis. Angiogenesis facilitates blood flow in the heart, which supports intake and use of oxygen (as demonstrated in rigorous clinical trials such as the PRECISE trial). The literary name Okyanos, the Greek god of rivers, symbolizes restoration of blood flow.

END

Read more:
Okyanos CEO Matt Feshbach Announces Appointment of Institutes Marketing Executive Erika Rosenthal to International ...