Cell Therapy – Cancer

Other common name(s): cellular therapy, fresh cell therapy, live cell therapy, glandular therapy, xenotransplant therapy

Scientific/medical name(s): none

In cell therapy, processed tissue from the organs, embryos, or fetuses of animals such as sheep or cows is injected into patients. Cell therapy is promoted as an alternative form of cancer treatment.

Available scientific evidence does not support claims that cell therapy is effective in treating cancer or any other disease. Serious side effects can result from cell therapy. It may in fact be lethalseveral deaths have been reported. It is important to distinguish between this alternative method involving animal cells and mainstream cancer treatments that use human cells, such as bone marrow transplantation.

In cell therapy, live or freeze-dried cells or pieces of cells from the healthy organs, fetuses, or embryos of animals such as sheep or cows are injected into patients. This is supposed to repair cellular damage and heal sick or failing organs. Cell therapy is promoted as an alternative therapy for cancer, arthritis, heart disease, Down syndrome, and Parkinson disease.

Cell therapy is also marketed to counter the effects of aging, reverse degenerative diseases, improve general health, increase vitality and stamina, and enhance sexual function. Some practitioners have proposed using cell therapy to treat AIDS patients.

The theory behind cell therapy is that the healthy animal cells injected into the body can find their way to weak or damaged organs of the same type and stimulate the body's own healing process. The choice of the type of cells to use depends on which organ is having the problem. For instance, a patient with a diseased liver may receive injections of animal liver cells. Most cell therapists today use cells taken from taken from the tissue of animal embryos.

Supporters assert that after the cells are injected into the body, they are transported directly to where they are most needed. They claim that embryonic and fetal animal tissue contains therapeutic agents that can repair damage and stimulate the immune system, thereby helping cells in the body heal.

The alternative treatment cell therapy is very different from some forms of proven therapy that use live human cells. Bone marrow transplants infuse blood stem cellsfrom the patient or a carefully matched donorafter the patients own bone marrow cells have been destroyed. Studies have shown that bone marrow transplants are effective in helping to treat several types of cancer. In another accepted procedure, damaged knee cartilage can be repaired by taking cartilage cells from the patient's knee, carefully growing them in the laboratory, and then injecting them back into the joint. Approaches involving transplants of other types of human stem cells are being studied as a possible way to replace damaged nerve or heart muscle cells, but these approaches are still experimental.

First, healthy live cells are harvested from the organs of juvenile or adult live animals, animal embryos, or animal fetuses. These cells may be taken from the brain, pituitary gland, thyroid gland, thymus gland, liver, kidney, pancreas, spleen, heart, ovaries, testicles, or even from whole embryos. Patients might receive one or several types of animal cells. Some cell therapists inject fresh cells into their patients. Others freeze them first, which kills the cells, and they may filter out some of the cell components. Frozen cell extracts have a longer "shelf life" and can be screened for disease. Fresh cells cannot be screened. A course of cell therapy to address a specific disease might require several injections over a short period of time, whereas cell therapy designed to treat the effects of aging and "increase vitality" may involve injections received over many months.

See more here:
Cell Therapy - Cancer

Groundbreaking Stem Cell Clinical Trial

Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell Clinical Trial for Heart Failure Patients

The first patient has been treated as part of The ATHENA Trial, which derives stem cells from the patientsown adipose (fat) tissue and injects extracted cells into damaged parts of the heart.

TAMPA, Florida (December 20, 2013) Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute announced the first patient, a 59 year old Clearwater man, has been treated as part of the ATHENA clinical trial. The trial, sponsored by San Diego-based Cytori Therapeutics, derives stem cells from the patients own fat tissue and injects extracted cells into damaged parts of the heart. The ATHENA trial is a treatment for chronic heart failure due to coronary heart disease. Dr. Charles Lambert, Medical Director of Florida Hospital Pepin Heart Institute, is leading the way for the first U.S. FDA approved clinical trial using adipose-derived regenerative cells, known as ADRCs, in chronic heart failure patients. I am pleased to report that all procedures went well. The patient is doing well, he was released and is recovering at home. We look forward to following his progress over the coming months, said Dr. Charles Lambert. Heart failure (HF) can occur when the muscles of the heart become weakened and cannot pump blood sufficiently throughout the body. The injury is most often caused by inadequate blood flow to the heart resulting from chronic or acute cardiovascular disease, including heart attacks. The ATHENA clinical trial procedure is a three step process. First, the trial involves the collection of fat from the patients body by liposuction. Then the fat sample is filtered through a machine that extracts out the stem cells. Finally, the stem cells are injected into the damaged part of the patients heart. During this first case at Florida Hospital Pepin Heart Institute, Dr. Paul Smith performed the liposuction to obtain the fat sample, a team at the Dr. Kiran C. Patel Research Institute isolated stem cells from the fat sample and then Dr. Charles Lambert performed the cell therapy by direct injection into the patients heart. Pepin Heart and Dr. Kiran C. Patel Research Institute is exploring and conducting leading-edge research to develop break-through treatments long before they are even available in other facilities. Stem cells have the unique ability to develop into many different cell types, and in many tissues serve as an internal repair system, dividing essentially without limit to replenish other cells, said Dr. Lambert.

The Pepin Heart Institute has a history of cardiovascular stem cell research as part of the NIH sponsored Cardiac Cell Therapy Research Network (CCTRN) as well as other active cell therapy trials. The trial is a double blind, randomized, placebo controlled study designed to study the use of a patients own Adipose-Derived Regenerative Cells (ADRCs) to treat chronic heart failure from coronary heart disease in patients who are on maximal therapy and still have heart failure symptoms. All trial participants undergo a minor liposuction procedure to remove fat (adipose) tissue. Following the liposuction, trial participants may have their tissue processed with Cytoris proprietary Celution System to separate and concentrate cells, and prepare them for therapeutic use. Trial participants will then have either their own cells or a placebo injected back into their damaged heart tissue. To test whether ADRCs will improve heart function, several measurements will be made, including peak oxygen consumption (VO2max), which measures how much physical exercise (gentle walking on a treadmill) a patient can perform, blood flow to the heart (perfusion), the amount of blood in the left ventricle at the end of contraction and relaxation (end-systolic and end-diastolic volumes), and the fraction of blood that is pumped during each contraction (ejection fraction). After the injection procedure, patients are seen in the clinic for follow-up visits over the first 12 months; they are then contacted by phone once a year for up to five years after the procedure.

There are approximately 5.1 million Americans currently living with heart failure, according to the American Heart Association. Chronic heart failure due to coronary heart disease is a severe, debilitating condition caused by restriction of blood flow to the heart muscle, reducing the hearts oxygen supply and limiting its pumping function. Individuals interested in participating in the ATHENA clinical research trial or learning more can visit http://www.theathenatrial.com or call Brian Nordgren, Florida Hospital Pepin Heart Institute Physician Assistant & Stem Cell Program Lead at (813) 615-7527.

About Florida Hospital Tampa Florida Hospital Tampa is a not-for-profit 475-bed tertiary hospital specializing in cardiovascular medicine, neuroscience, orthopaedics, womens services, pediatrics, oncology, endocrinology, bariatrics, wound healing, sleep medicine and general surgery including minimally invasive and robotic-assisted procedures. Also located at Florida Hospital Tampa is the renowned Florida Hospital Pepin Heart Institute, a recognized leader in cardiovascular disease prevention, diagnosis, treatment and leading-edge research. Part of the Adventist Health System, Florida Hospital is a leading health network comprised of 22 hospitals throughout the state. For more information, visit http://www.FHTampa.org.

About Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute Florida Hospital Pepin Heart Institute is a free-standing cardiovascular institute providing comprehensive cardiovascular care with over 76,000 angioplasty procedures and 11,000 open-heart surgeries in the Tampa Bay region. Leading the way with the first accredited chest pain emergency room in Tampa Bay, the institute is among an elite few in the state of Florida chosen to perform the ground breaking Transcatheter Aortic Valve Replacement (TAVR) procedure. It is also a HeartCaring designated provider and a Larry King Cardiac Foundation Hospital. Florida Hospital Pepin Heart Institute and the Dr. Kiran C. Patel Research Institute, affiliated with the University of South Florida (USF), are exploring and conducting leading-edge research to develop break-through treatments long before they are available in most other hospitals. To learn more, visit http://www.FHPepin.org.

ends

Scoop Media

Read the original here:
Groundbreaking Stem Cell Clinical Trial

Researcher sending stem cells into space to observe rate of growth

A drawback for the use of stem cells in medical treatment is their limited supply due to slow rate of growth in conventional laboratories. Dr Abba Zubair of the Cell Therapy Laboratory at Mayo Clinic in Florida believes this problem could be overcome and stem cell generation sped up by conducting the process in space. He will now have the opportunity to put his hypothesis to the test, courtesy of a US$30,000 grant that will see Zubair send human stem cells to the International Space Station (ISS) to observe whether they do in fact grow at a greater rate than on terra firma.

According to the Mayo Clinic, experiments conducted on Earth using microgravity (replication of gravitational field about 250 miles (402.3 km) from Earths surface) have shown that these conditions are more conducive to stem cell growth than conventional laboratories.

On Earth, we face many challenges in trying to grow enough stem cells to treat patients, says Zubair. It now takes a month to generate enough cells for a few patients. A clinical grade laboratory in space could provide the answer we have all been seeking for regenerative medicine.

In his laboratory in Florida, Zubair currently grows cells that induce the regeneration of neurons and blood vessels in sufferers of hemorrhagic strokes. He believes that if these cells were generated in space instead, their population would increase rapidly, allowing for treatment of a wide variety of conditions.

If you have a ready supply of these cells, you can treat almost any condition, and theoretically regenerate entire organs using a scaffold, says Zubair.

The next step for Zubair is to work with engineers at the University of Colorado to build a specialized cell bioreactor, which they hope will be taken to the ISS within a year to begin the experiment.

Dr. Zubair outlines his plans in the video below.

Source: Mayo Clinic

Read more here:
Researcher sending stem cells into space to observe rate of growth

Mayo cell therapy researcher plans to grow stem cells in space, where he thinks they will grow faster than on Earth

Abba Zubair, medical and scientific director of the Cell Therapy Laboratory at the Mayo Clinic in Jacksonville, wants to test the feasibility of growing stem cells in outer space, cells that could be used to generate new tissue and even new organs in human beings.

There are reasons to believe that stem cells, which are hard to grow in the great quantity they are needed on Earth, will grow much more rapidly in the microgravity environment in space, Zubair thinks. Now the Center for the Advancement in Science in Space has given Zubair a $300,000 grant to test that by placing stem cells in a specialized cell bioreactor in the International Space Station.

It now takes a month to generate enough cells for a few patients, Zubair said. A clinical laboratory in space could provide the answer we all have been seeking for regenerative medicine. ... If you have a ready supply of these cells, you can treat almost any condition and can theoretically regenerate entire organs using a scaffold. Additionally, they dont need to come from individual patients. Anyone can use them without rejection.

The stem cells he plans to grow in space will be stem cells that can induce regeneration of neurons and blood vessels in patients who have suffered hemorrhagic strokes caused by blood clots.

I have a special personal interest in stroke, Zubair said. Thats what killed my mom years ago. I really would like to conquer and treat stroke.

The first step in growing stem cells in space is happening at the University of Colorado where engineers are building the cell bioreactor Zubair will use on the space station. Within a year, Zubair hopes to transport the bioreactor and stem cells to the space station, perhaps aboard a flight by SpaceX, a company expected to begin commercial flights to the space station soon.

Once the bioreactor and stem cells are aboard the space station, it will take about a month to grow them, Zubair said. The results will then be analyzed by the astronauts on the space station and by researches back in Zubairs Jacksonville laboratories.

We will be trying to determine if our notion that stem cells grow faster in microgravity is true, Zubair said. We also want to know how feasible it is to produce clinical grade cells in space that can be used in humans.

Hes optimistic his study will show that growing stem cells in space is a viable way to create stem cells in quantity.

Were quite excited, he said. I really think the future is full of promise. We just have to take the opportunity to make that a reality.

See more here:
Mayo cell therapy researcher plans to grow stem cells in space, where he thinks they will grow faster than on Earth

HEXIM1 regulatory protein induces human pluripotent stem cells to adopt more specialized cell fate

5 hours ago Human pluripotent stem cells, such as human embryonic stem cells (above), can differentiate into specific cell types under appropriate conditions; the HEXIM1 protein helps with this differentiation. Credit: DAJ/amana images/Thinkstock

A lot of optimism and promise surrounds the use of human pluripotent stem cells (hPSCs)for applications in regenerative medicine and drug discovery. However, technical challenges still hamper the culturing and differentiation of these cells, which include the cell types known as human embryonic stem cells (hESCs) and their reprogrammed equivalents, induced pluripotent stem cells (iPSCs).

A team of A*STAR scientists has now discovered a regulatory protein that helps to coax human pluripotent stem cells to form more specialized types of cells. "Our finding could help to develop a new protocol to induce differentiation of human pluripotent stem cells," says Sheng-Hao Chao from the A*STAR Bioprocessing Technology Institute (BTI) in Singapore, who led the study.

Chao and his co-workers at the BTI's Expression Engineering Group have been studying a protein called hexamethylene bisacetamide-inducible protein 1 (HEXIM1) for many years. HEXIM1 is known to inhibit a protein complex called positive transcription elongation factor b (P-TEFb), which is involved in gene expression. Chao's team previously linked HEXIM1 with a specific pathway involved in cancer development. This led the researchers to suspect an additional role for HEXIM1 in regulating stem cells.

Chao's group teamed up with Andre Choo and his colleagues in the Stem Cell Group at the BTI to further explore this possibility. They first treated hESCs with a differentiation-inducing compound called LY294002 and saw a marked increase in HEXIM1 levels compared to untreated cells.

Further tests showed that HEXIM1 played a role in driving cellular differentiation. For example, the hESCs differentiated when the researchers incubated the cells with hexamethylene bisacetamide (HMBA), a HEXIM1 inducing reagent, or when they generated and cultured a cell line with elevated expression of HEXIM1. The researchers rule out P-TEFb inhibition as an explanation for the effect, however, because in another experiment, hESCs treated with flavopiridola drug that blocks P-TEFb activityremained in a pluripotent state.

"We discovered a novel function of HEXIM1 in regulating the early-stage differentiation of human pluripotent stem cells through a P-TEFb-independent pathway," says Chao. More work is still needed to investigate in detail the molecular mechanism by which HEXIM1 drives hPSC differentiation.

Eventually, HEXIM1 could become a useful tool in generating new tissues for cell-replacement therapies. "In combination with other transcription factors or chemicals, it is possible that HEXIM1 and its inducing reagent HMBA could be utilized to direct the differentiation of human pluripotent stem cellsinto specific cell types," Chao says.

Explore further: Scientists engineer human stem cells

More information: Ding, V., Lew, Q. J., Chu, K. L., Natarajan, S., Rajasegaran, V. et al. "HEXIM1 induces differentiation of human pluripotent stem cells." PLoS ONE 8, e72823 (2013). dx.doi.org/10.1371/journal.pone.0072823

Read the original:
HEXIM1 regulatory protein induces human pluripotent stem cells to adopt more specialized cell fate

Stem Cell Therapy – Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner – NSPC – Video


Stem Cell Therapy - Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner - NSPC
How to know if the cause of your back or neck pain is Facet Syndrome. Discover how biologic regenerative treatments are able to pick up where traditional tre...

By: StemCell Arts

Link:
Stem Cell Therapy - Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner - NSPC - Video

Foetal stem cell treatment sees success in fighting brittle bone disease Channel NewsAsia – Video


Foetal stem cell treatment sees success in fighting brittle bone disease Channel NewsAsia
A team of experts from Singapore #39;s National University Hospital (NUH) has made a clinical breakthrough in their work on foetal stem cell treatment, after suc...

By: News

More here:
Foetal stem cell treatment sees success in fighting brittle bone disease Channel NewsAsia - Video

Stem Cell Therapy by Vet-Stem, a Surprising Alternative to Hip Surgery for a New Jersey Chocolate Labrador Retriever

Poway, CA (PRWEB) December 19, 2013

Amazing Grace Hamiltons banked stem cells from Vet-Stem, Inc. have recently helped her avoid hip surgery for the second time. Gracie is now nearly 12 years old and her owners noticed her activities had dramatically slowed in the last year. They turned to banked stem cells that Gracie had stored with Vet-Stem, Inc. in Poway, California to help with the discomfort and pain of arthritis that was slowing her down.

When Gracies owners brought her to Garden State Veterinary Specialists in Tinton Falls, New Jersey in October of this year the x-rays showed a severely deteriorated right hip. Dr. Thomas Scavelli and Dr. Michael Hoelzler were very concerned and recommended hip replacement. Gracies owners wanted to try stem cell therapy first, since it had given them such positive results five years before.

We needed to give the stem cells a try before going to the more invasive surgical approach, Mrs. Hamilton said. At the time of the procedure Dr. Hoelzler told me that Gracies hips were the worst he had seen, but in just a couple of days after the stem cell therapy we began to see a difference. Just shy of two weeks after the procedure I took her back to Dr. Hoelzler and he was very impressed. She was walking comfortably.

At three years Gracie had been diagnosed with hip dysplasia. By six years of age she had slowed to the point of great concern as her owners described it. The pain caused by arthritis from the hip dysplasia was beginning to interfere with her life.

Gracie was no longer running and jumping, and certain activities had become difficult (like climbing onto my husbands sailboat). She also had a noticeable limp, Mrs. Hamilton remembered the signs of pain and discomfort that prompted Gracies first stem cell therapy five years before.

Gracie was brought to Dr. Scavelli in 2008 with painful symptoms, and stem cell therapy for pets was the latest, cutting edge treatment. Gracies owners understood that without stem cell therapy Gracie would have faced hip surgery at the time.

We are grateful for stem cell therapy which has restored Gracies ability to enjoy her morning walks again, Mrs. Hamilton shared, She enjoys wrestling with us and playing with her toys. She looks forward to visiting her friends, and prances around like a puppy. Gracie is a happy dog and we are happy owners because she does not appear to be in pain anymore!

About Vet-Stem, Inc.

Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

Read the original:
Stem Cell Therapy by Vet-Stem, a Surprising Alternative to Hip Surgery for a New Jersey Chocolate Labrador Retriever

UC Davis Institute for Regenerative Cures – UC Davis Health System

For patients and families suffering from chronic disease or injury, the promise of stem cell therapies offers great hope. UC Davis is a leader in advancing that promising goal. It has brought together physicians, research scientists, biomedical engineers and a range of other experts and collaborative partners to establish the UC Davis Institute for Regenerative Cures, a facility supported by the California Institute for Regenerative Medicine.

The new $62 million institute is located on the universitys Sacramento campus, where collaborative, team-oriented science is working to advance breakthrough discoveries and bring stem cell therapies and cures to patients everywhere. It benefits from being on a campus near a nationally-designated cancer center, a renowned neurodevelopmental institute, state-of-the-art imaging and biophotonics programs, and an academic medical center that is at the forefront of advanced patient care. The UC Davis School of Veterinary Medicine and the California National Primate Research Center, both of which are in nearby Davis, also offer unique research benefits for UC Davis scientists.

The institutes facilities include primary laboratories, a shared-vector core, microscopy and cell sorters, space for academic, postdoctoral and administrative offices, along with conference rooms and a proposed lecture hall.

The institute also is home to one of the largest, most advanced, academic Good Manufacturing Practice (GMP) facilities in the nation. With approximately 7,000 square feet of space, this GMP laboratory contains a suite of six specially designed rooms that enable researchers to safely process cellular and gene therapies for clinical trials. The facility is used by both UC Davis researchers and stem cell investigators from throughout the state and beyond.

Institute Goals

The UC Davis stem cell program brings together resources from across the university to ensure that bench research the work done in laboratories can be translated successfully into clinical treatments.

With an ability to repair damaged tissue and develop into specialized cells and organs, stem cells will have a major impact in medicine and health care. Research into stem and progenitor cell therapies is in full motion throughout the university. Scientists are exploring and testing different techniques and approaches in laboratories so that new and safe therapies are available to patients. This translation of basic scientific discoveries into novel therapies and clinical practices is a hallmark of research at UC Davis

Disease Teams

See more here:
UC Davis Institute for Regenerative Cures - UC Davis Health System

Adult Stem Cells Found to Suppress Cancer While Dormant

Contact Information

Available for logged-in reporters only

Newswise Researchers at UCLAs Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have discovered a mechanism in adult stem cells by which the cells suppress their ability to initiate cancer during their dormant phase, an understanding that could be exploited for better cancer prevention strategies. The study was led by Andrew White, post-doctoral fellow, and William Lowry, associate professor of molecular, cell and developmental biology in the life sciences and the Maria Rowena Ross Term Chair in Cell Biology.

The study was published online ahead of print in Nature Cell Biology on December 15, 2013.

Hair follicle stem cells (HFSC), the tissue-specific adult stem cells that generate the hair follicles, are also the cells of origin for cutaneous squamous cell carcinoma (SCC), a common skin cancer. These HFSCs cycle between periods of activation, during which they can grow, and quiescence, when they remain dormant.

Using mouse models, White and Lowry applied known cancer-causing genes (oncogenes) to HFSCs and found that during cell quiescence, the cells could not be made to initiate SCC. Once the HFSC were in their active period, they began growing cancer.

We found that this tumor suppression via adult stem cell quiescence was mediated by Pten, a gene important in regulating the cells response to signaling pathways, White said, therefore, stem cell quiescence is a novel form of tumor suppression in hair follicle stem cells, and Pten must be present for the suppression to work.

Understanding cancer suppression through quiescence could better inform preventative strategies in patients susceptible to SCC, such as organ transplant patients, or those taking the drug vemurafenib for melanoma, another type of skin cancer. This study also may reveal parallels between SCC and other cancers in which stem cells have a quiescent phase. This research was supported by the California Institute of Regenerative Medicine (CIRM), University of California Cancer Research Coordinating Committee (CRCC) and National institutes of Health (NIH).

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLAs Jonsson Comprehensive Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu.

View post:
Adult Stem Cells Found to Suppress Cancer While Dormant