Human stem cells converted to functional lung cells

PUBLIC RELEASE DATE:

1-Dec-2013

Contact: Karin Eskenazi ket2116@cumc.columbia.edu 212-342-0508 Columbia University Medical Center

NEW YORK, NY For the first time, scientists have succeeded in transforming human stem cells into functional lung and airway cells. The advance, reported by Columbia University Medical Center (CUMC) researchers, has significant potential for modeling lung disease, screening drugs, studying human lung development, and, ultimately, generating lung tissue for transplantation. The study was published today in the journal Nature Biotechnology.

"Researchers have had relative success in turning human stem cells into heart cells, pancreatic beta cells, intestinal cells, liver cells, and nerve cells, raising all sorts of possibilities for regenerative medicine," said study leader Hans-Willem Snoeck, MD, PhD, professor of medicine (in microbiology & immunology) and affiliated with the Columbia Center for Translational Immunology and the Columbia Stem Cell Initiative. "Now, we are finally able to make lung and airway cells. This is important because lung transplants have a particularly poor prognosis. Although any clinical application is still many years away, we can begin thinking about making autologous lung transplantsthat is, transplants that use a patient's own skin cells to generate functional lung tissue."

The research builds on Dr. Snoeck's 2011 discovery of a set of chemical factors that can turn human embryonic stem (ES) cells or human induced pluripotent stem (iPS) cells into anterior foregut endodermprecursors of lung and airway cells. (Human iPS cells closely resemble human ES cells but are generated from skin cells, by coaxing them into taking a developmental step backwards. Human iPS cells can then be stimulated to differentiate into specialized cellsoffering researchers an alternative to human ES cells.)

In the current study, Dr. Snoeck and his colleagues found new factors that can complete the transformation of human ES or iPS cells into functional lung epithelial cells (cells that cover the lung surface). The resultant cells were found to express markers of at least six types of lung and airway epithelial cells, particularly markers of type 2 alveolar epithelial cells. Type 2 cells are important because they produce surfactant, a substance critical to maintain the lung alveoli, where gas exchange takes place; they also participate in repair of the lung after injury and damage.

The findings have implications for the study of a number of lung diseases, including idiopathic pulmonary fibrosis (IPF), in which type 2 alveolar epithelial cells are thought to play a central role. "No one knows what causes the disease, and there's no way to treat it," says Dr. Snoeck. "Using this technology, researchers will finally be able to create laboratory models of IPF, study the disease at the molecular level, and screen drugs for possible treatments or cures."

"In the longer term, we hope to use this technology to make an autologous lung graft," Dr. Snoeck said. "This would entail taking a lung from a donor; removing all the lung cells, leaving only the lung scaffold; and seeding the scaffold with new lung cells derived from the patient. In this way, rejection problems could be avoided." Dr. Snoeck is investigating this approach in collaboration with researchers in the Columbia University Department of Biomedical Engineering.

"I am excited about this collaboration with Hans Snoeck, integrating stem cell science with bioengineering in the search for new treatments for lung disease," said Gordana Vunjak-Novakovic, co-author of the paper and Mikati Foundation Professor of Biomedical Engineering at Columbia's Engineering School and professor of medical sciences at Columbia University College of Physicians and Surgeons.

Read the rest here:
Human stem cells converted to functional lung cells

Cell Medicine – Cognizant Communication Corporation

Aims & Scope

The importance of translatingoriginal, peer-reviewed research and review articles on the subject of cell therapy and its application to human diseases to societyhas led to the formation ofthe journalCell Medicine. To ensure high-quality contributions from all areas of transplantation, the same rigorous peer review will be applied to articles published in Cell Medicine. Articles may deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, and stem cells, among others. Basic clinical studies and immunological research papers may also be featured if they have a translational interest. To provide complete coverage of this revolutionary field, Cell Medicine will report on relevant technological advances and their potential for translational medicine. Cell Medicine will be a purely online Open Access journal. There will therefore be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow your work to be disseminated to a wider audience and also entitle you to a free PDF, as well as prepublication of an unedited version of your manuscript.

Cell Medicine features:

Original Contributions: Peer-reviewed, high-quality research investigations that represent new and significant contributions to science. Review Articles: Reviews of major areas in cellular transplantation. These may be of any length and are peer reviewed. Brief Communications: Timely and brief peer-reviewed studies. Letters to the Editor: Readers' comments on journal articles and other matters of interest to transplant researchers. Announcements and News: Notices of upcoming meetings, conferences, seminars, and other events of interest to those in the field.

Submission Requirements: From the beginning of November 2009, authors are requested to submit the original manuscript (and revised manuscript if needed) via our ManuscriptCentral websiteat http://mc.manuscriptcentral.com/cogcom-ct.

Please include a cover letter, specifying your intent to submit to Cell Medicine, as well as containing the name, address, telephone, and fax number, and electronic mail address of the author responsible for correspondence. Follow the General Form guidelines below to prepare the manuscript, figures, and tables.

At the time of submission you will be asked to confirm that you will pay the relatively inexpensive open access fees ($900 for less than 5 pages, $1800 for 5-12 pages and +$75 for each additional page) when billed. In addition, there are sections for detailing any conflicts of interest and financial support and that you (as corresponding/submitting author) have the permission of the other authors to submit the manuscript. You will be given the option of which section of the editorial office to submit to. Here you would select Cell Medicine.

There will also be a $105 submission fee.

On receipt of your manuscript, it will be checked to ensure that it is correctly formatted.

When the manuscript is accepted for publication, the author(s) will be required to provide two hard copies of the manuscript, two high-quality copies of all artwork, and a CD or disk (no zip disks) (see Final Accepted Manuscript/Disk below). Information on where to mail the final hard copy, figures, and CD/disk will be provided in an acceptance letter. Manuscripts are accepted for consideration with the understanding that they have not been published elsewhere except in abstract form and are not concurrently under review elsewhere.

View post:
Cell Medicine - Cognizant Communication Corporation

Embryonic stem cell – Wikipedia, the free encyclopedia

Embryonic stem cells (ES cells) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage embryo.[1] Human embryos reach the blastocyst stage 45 days post fertilization, at which time they consist of 50150 cells. Isolating the embryoblast or inner cell mass (ICM) results in destruction of the fertilized human embryo, which raises ethical issues. Those issues include whether or not human lives at the embryonic stage should be granted the moral status of other human beings.[2][3]

Human ES cells measure approximately 14m while mouse ES cells are closer to 8m.[4]

Embryonic stem cells are distinguished by two distinctive properties:

ES cells are pluripotent, that is, they are able to differentiate into all derivatives of the three primary germ layers: ectoderm, endoderm, and mesoderm. These include each of the more than 220 cell types in the adult body. Pluripotency distinguishes embryonic stem cells from adult stem cells found in adults; while embryonic stem cells can generate all cell types in the body, adult stem cells are multipotent and can produce only a limited number of cell types.

Additionally, under defined conditions, embryonic stem cells are capable of propagating themselves indefinitely. This allows embryonic stem cells to be employed as useful tools for both research and regenerative medicine, because they can produce limitless numbers of themselves for continued research or clinical use.

Because of their plasticity and potentially unlimited capacity for self-renewal, ES cell therapies have been proposed for regenerative medicine and tissue replacement after injury or disease. Diseases that could potentially be treated by pluripotent stem cells include a number of blood and immune-system related genetic diseases, cancers, and disorders; juvenile diabetes; Parkinson's; blindness and spinal cord injuries. Besides the ethical concerns of stem cell therapy (see stem cell controversy), there is a technical problem of graft-versus-host disease associated with allogeneic stem cell transplantation. However, these problems associated with histocompatibility may be solved using autologous donor adult stem cells, therapeutic cloning, stem cell banks or more recently by reprogramming of somatic cells with defined factors (e.g. induced pluripotent stem cells). Other potential uses of embryonic stem cells include investigation of early human development, study of genetic disease and as in vitro systems for toxicology testing.

According to a 2002 article in PNAS, "Human embryonic stem cells have the potential to differentiate into various cell types, and, thus, may be useful as a source of cells for transplantation or tissue engineering."[6]

Current research focuses on differentiating ES into a variety of cell types for eventual use as cell replacement therapies (CRTs). Some of the cell types that have or are currently being developed include cardiomyocytes (CM), neurons, hepatocytes, bone marrow cells, islet cells and endothelial cells.[7] However, the derivation of such cell types from ESs is not without obstacles and hence current research is focused on overcoming these barriers. For example, studies are underway to differentiate ES in to tissue specific CMs and to eradicate their immature properties that distinguish them from adult CMs.[8]

Besides in the future becoming an important alternative to organ transplants, ES are also being used in field of toxicology and as cellular screens to uncover new chemical entities (NCEs) that can be developed as small molecule drugs. Studies have shown that cardiomyocytes derived from ES are validated in vitro models to test drug responses and predict toxicity profiles.[7] ES derived cardiomyocytes have been shown to respond to pharmacological stimuli and hence can be used to assess cardiotoxicity like Torsades de Pointes.[9]

ES-derived hepatocytes are also useful models that could be used in the preclinical stages of drug discovery. However, the development of hepatocytes from ES has proven to be challenging and this hinders the ability to test drug metabolism. Therefore, current research is focusing on establishing fully functional ES-derived hepatocytes with stable phase I and II enzyme activity.[10]

More here:
Embryonic stem cell - Wikipedia, the free encyclopedia

Stell Cell Research – Stem Cell Cafe

Here at Macleans, we appreciate the written word. And we appreciate you, the reader. We are always looking for ways to create a better user experience for you and wanted to try out a new functionality that provides you with a reading experience in which the words and fonts take centre stage. We believe youll appreciate the clean, white layout as you read our feature articles. But we dont want to force it on you and its completely optional. Click View in Clean Reading Mode on any article if you want to try it out. Once there, you can click Go back to regular view at the top or bottom of the article to return to the regular layout. Scientist Dr. Mark Post poses with samples of in-vitro meat in a laboratory, at the University of Maastricht in the Netherlands on November 9, 2011. (Francois Lenoir/Reuters) Its high time for summer barbecue season. On Aug. 5, as long weekend revelers across Canada throw steaks and sausages on the grill, Dr. Mark Post will be cooking up something very different: a hamburger made of animal stem cells, grown in his lab at Maastricht University in the Netherlands. This one little five-ounce patty has taken him years to perfect, at a cost of 300,000 euros, or over $409,500 (donated by an anonymous investor), making it what must be the most expensive and labour-intensive sandwich patty in history. Some doubted it could be done. As the burger is unveiled in Londonthen bitten, chewed, swallowed and consumed, for all the world to seePosts burger will redefine meat as we know it. This is the food of the future. Post, a medical doctor, has been attempting to create tissues in the lab for almost a decade. The applications are huge: engineered human tissues could be used to test drugs, for example, or to treat many diseases where the body wastes away. To Post, the food application started out as an interesting side project, one that soon stole the spotlight from his other work. Meat for consumption is in theory, much easier to grow, he told Macleans in an interview in 2012. The tissue does not need to physically integrate into the body. I considered it a closer goal to reach, he says, and a very important one. Indeed, the global appetite for meat is growing. Livestock production already takes up 30 per cent of the land surface on our planet, says a 2006 United Nations report, producing more greenhouse gas emissions than all our cars and trucks, combined. According to Patrick O. Brown of Stanford University, eating one four-ounce hamburger is the equivalent of leaving a bathroom faucet running round-the-clock for a week. Developing nations are increasingly emulating the meat-heavy Western diet, and it isnt sustainable. We are heading towards a meat shortage worldwide, Post says. Instead of producing beef, pork and poultry on massive industrial farms, in the near future, he predicts, well be growing it in factories. And while this first hamburger was incredibly expensive to make, as techniques are perfected and lab-grown stem-cell burgers can be mass-produced, the cost will go down; one day it could be lower than the price of traditionally raised meat, which is expected to rise. Of course, growing a minced hamburger pattylet alone a dense, fat-marbled steakisnt a simple task. Post and his team harvested stem cells from a cows muscle tissue, and bathed them in a special formula of nutrients. As these cells start to differentiate into muscle cells, theyre hooked to attachment points (Post has used Velcro) to create tiny strips of tissue, like a tendon. Eventually, they start to contract on their own. The downside for animal lovers is that you still need animals, a donor herd to provide stem cells, Post says. But compared to factory farming today, the number would be very small. If we grew all our meat in a lab, Post believes, the number of livestock worldwide could be reduced by a factor of one millionthe equivalent of reducing 10 billion livestock animals on the planet to 10,000. This would free up land, water, and other resources, while making sure remaining livestock didnt suffer a death fraught with the issues of large-scale slaughter. Other than Post, only a handful of scientists are working on lab-grown meat; others believe the future lies in plant-based substitutes, ones so good they could fool even the most discerning palate, although Post maintains that we humans will always have an appetite for the real thing. Worldwide, the meat-eater population is going to grow. Theres no doubt about that, he says. Posts hamburger is a powerful proof of concept, an important first step. As we begin to unravel the implications of this one burgerfor science, for health care, and for the food supply that feeds everyone on the planetwell be watching on Aug. 5, with bated breath, wondering what, exactly, it tastes like. Anyone who wants to follow along can watch a livestream of the burger consumption on Aug. 5 atculturedbeef.net. Continued here: One lab-grown hamburger, coming up Blog Central, Kate Lunau

Original post:
Stell Cell Research – Stem Cell Cafe

Tackling Huntington’s disease with stem cell therapy in mice

The neurodegenerative disorder Huntingtons disease (HD) is characterised by diminished muscle coordination, cognitive impairment and behavioural changes. It is a genetic disorder caused by the expansion of a CAG trinucleotide repeat in the gene encoding the huntingtin protein. This results in the degeneration of nerve cells, starting with those in the striatum of the brain. At present there is no treatment for this disease, nor any means to slow down its progression. Current therapies therefore focus on managing symptoms. Research is underway to determine whether stem cell therapies could reduce the neuropathological deficits brought on by HD and in doing so slow disease progression. A recent study published in Stem Cell Research & Therapy by Gary Dunbar from Central Michigan University, USA and colleagues, probes the potential of mesenchymal stem cells in treating a mouse model of HD.

Immunohistochemical analysis of low passage (left) and high passage (right) umbilical cord mesenchymal stem cells (blue) transplanted into the striata of R6/2 mice. Stained for NeuN (red) and GFAP (green). Image source: Fink et al, Stem Cell Research & Therapy, 2013, 4:130

Dunbar and colleagues used the R6/2 mouse model of HD to test the efficacy of umbilical cord-derived mesenchymal stem cells (UC-MSCs). R6/2 mice express the N-terminal portion of the human huntingtin gene, containing a highly expanded CAG repeat, and consequently develop progressive neurological phenotypes resembling the disease in humans. At five weeks of age, R6/2 mice were transplanted with either low passage or high passage UC-MSCs, and were followed for six weeks. The mice underwent a number of behavioural tests, including the rotarod task to assess balance, the Morris water maze and the limb-clasping response. They were subsequently sacrificed for histological analysis. Wild-type and sham-operated R6/2 mice served as the controls.

R6/2 mice treated with high passage UC-MSCs performed better on the rotarod task compared with untreated R6/2 mice at ten weeks of age, although the improvement was transient. The most promising effects of treatment with high passage UC-MSCs were seen in the reduction of neuropathological deficits. The researchers found that untreated R6/2 mice had significantly smaller brain areas than wild-type animals, suggesting brain atrophy. This effect was mitigated in mice treated with high passage UC-MSCs, which showed no difference from wild-type mice in measures of brain area. Transplantation of high passage UC-MSCs into R6/2 mice also preserved substantially more metabolic activity in striatal brain tissue compared with untreated animals.

Although no long-term effects on behaviour were observed in this study, the fact that UC-MSCs significantly reduced neuropathological deficits suggests that stem cells could have therapeutic value in the management of HD.

Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis

Excerpt from:
Tackling Huntington’s disease with stem cell therapy in mice

Alpha Stem Cell Clinics | California’s Stem Cell Agency

RFA 13-06 is one of two RFAs released as part of the CIRM Alpha Stem Cell Clinics (CASC) Network Initiative. The overall goal of the initiative is to accelerate therapeutic development and delivery of stem cell therapies by providing a high-quality, efficient infrastructure to support clinical research emanating from CIRMs funding pipeline as well as non-CIRM funded investigator- or industry-sponsored trials.

The CASC Initiative consists of two linked Requests for Applications (RFAs) that will be co-released:

The Alpha Stem Cell Clinics will provide critical operational support for the conduct of clinical trials for investigational stem cell therapies and will operate as a center of excellence for approved stem cell therapies. They will provide focused resources and expertise in clinical research with novel stem cell-based products, and an array of critical clinical operations support and patient care coordination personnel and resources. These activities would be integrated into the larger CASC network, utilizing efficient and standardized methods to accomplish its goals and activities.

Please see the RFA for full details. RFA 13-06: CIRM Alpha Stem Cell Clinics Awards [pdf]

Informational Webinar CIRM conducted a webinar for prospective applicants on Tuesday, November 5, 2013 to address questions about both RFA 13-06 and 13-07 and the application process. Click the following links for a recording of the webinar and supplemental materials:

Further reading: Appendix A Alpha Stem Cell Clinics Concept Statement [pdf] Appendix B Alpha Stem Cell Clinics: Delivering a New Kind of Medicine [pdf] Appendix C The Alpha Stem Cell Clinic: A Model for Evaluating and Delivering Stem Cell-Based Therapies [pdf]

Submission of an application for a CIRM Alpha Stem Cell Clinics Awards involves a two-step process. A Program Director may only submit one LOI for this RFA and only one LOI will be accepted from each Institution. In addition to the Authorized Organizational Official (AOO) authorization, each LOI must be signed by an Authorized Executive Officer (AEO) who is an organizational official (e.g. Vice-Chancellor, Dean, etc.) with the authority, to nominate the institutions sole candidate for this award. An eligible applicant must first submit a Letter of Intent (LOI) to CIRM following the instructions below. In the second step of the process, eligible applicants will submit a full application.

The Letter of Intent (LOI) must be submitted via the CIRM Grants Management Portal, as follows:

The LOI must be received by CIRM no later than 5:00 pm (PST) on December 16, 2013 via the CIRM Grants Management Portal. No exceptions to this deadline will be made.

Visit link:
Alpha Stem Cell Clinics | California's Stem Cell Agency

www.CLINICell.com "MENISCUS TEAR alternative with PRP and Stem Cell Therapy" – Video


http://www.CLINICell.com "MENISCUS TEAR alternative with PRP and Stem Cell Therapy"
http://www.CLINICell.com offers the latest alternative treatments with PRP and Stem Cell Therapy for an MENISCUS Tear. Platelet Rich Plasma and Stem Cell treatments can be used as an alternative...

By: ClinicellTech

Read the original post:
http://www.CLINICell.com "MENISCUS TEAR alternative with PRP and Stem Cell Therapy" - Video

Stem Cell Treatment and Stem Cell Therapy | Vista Stem Cell

Stem Cell Treatment at Your Fingertips Stem cell therapy has come a long way over the last ten years, despite repeated interventions by some western governments to restrict its research. One place which has not suffered from these setbacks is China.

At our facilities in Beijing, we have been administering treatments using fetal stem cells for nearly ten years with ever improving results. Our sophisticated stem cell treatment techniques and experience ensure patients receive the highest quality therapy in the world and an alternative to existing treatments that they cannot find in their own country.

We use the strictest protocols to ensure that all our stem cells are disease-free and healthy. Most of our doctors were educated in the West and have a strong understanding of the demands of western patients.

We believe people should not have to put up with their illness when an alternative already exists. Our mission is to improve the quality of life of all our patients and enable you to gain control over your life.

View our Current Treatments section to find out more about the stem cell treatment and therapy we can provide you with.

See original here:
Stem Cell Treatment and Stem Cell Therapy | Vista Stem Cell

Cell Therapy News – Shopping cheap jerseys on our online cheap …

Project A.L.S. Announces Research Effort with Lilly Project A.L.S. announced an agreement with Eli Lilly and Company aimed at helping to accelerate the development of potential therapies for the neurodegenerative disease amyotrophic lateral sclerosis (ALS), also known as Lou Gehrigs disease. [Project A.L.S.] Press Release

Life Stem Genetics Announces Collaborative Agreement with American CryoStem Life Stem Genetics, Inc. announced a strategic collaborative agreement with American CryoStem Corporation (CRYO). CRYO is a leading developer, marketer and global licensor of patented adipose tissue-based cellular technologies for the Regenerative and Personalized Medicine industries. [Business Wire] Press Release

Actinium Pharmaceuticals Announces Plans for Iomab-B Phase III Pivotal Trial Following Meeting with FDA Actinium Pharmaceuticals, Inc. a biopharmaceutical company developing targeted payload immunotherapeutics for the treatment of advanced cancers, provided a corporate update on its two most advanced clinical programs. Kaushik J. Dave Ph.D., MBA, President and Chief Executive Officer discussed recent progress and outline development plans for the company's clinical stage products: Iomab-B and Actimab-A. [Actinium Pharmaceuticals, Inc.] Press Release

Alnylam Earns $7 Million Milestone Payment from Genzyme for Phase II Success with Patisiran (ALN-TTR02), an RNAi Therapeutic Targeting Transthyretin (TTR) for the Treatment of TTR-Mediated Amyloidosis (ATTR) Alnylam Pharmaceuticals, Inc. announced that it has earned a $7 million milestone from its partner Genzyme, a Sanofi company, for achieving Phase II success with patisiran (ALN-TTR02). [Alnylam Pharmaceuticals] Press Release

ARMO BioSciences Initiates Phase I Clinical Trial of First-in-Class Cancer Immunotherapy ARMO BioSciences, Inc. announced that it initiated the first cohort of patients with advanced solid tumors in a Phase I clinical trial of AM0010, a PEGylated form of recombinant human interleukin-10. [PR Newswire Association LLC] Press Release

Alliqua Receives License to Celgene Cellular Therapeutics Advanced Wound Care ProductsAlliqua, Inc. entered into a licensing agreement with Celgene Cellular Therapeutics, a subsidiary of Celgene Corporation, whereby Alliqua received the right to develop and market the advanced wound care products Biovance and Extracellular Matrix. [Alliqua Inc.] Press Release

Leading Scientists Join BioResearch Open Access Editorial Board under Editor-in-Chief Robert Lanza Dr. Robert Lanza announced that in addition to the distinguished group of Section Editors, including Alan Russell, James Wilson, and Sir Ian Wilmut, among others, fifteen world renowned experts have joined the new Editorial Board of BioResearch Open Access, including ten members of the National Academy of Sciences and Institute of Medicine. [Mary Ann Liebert, Inc.] Press Release

Allergen Research Corporation Announces $17 Million Series A Financing Allergen Research Corporation announced the successful completion of financing to support its upcoming Phase IIb clinical trial to evaluate peanut allergy oral immunotherapy with characterized peanut allergen, as well as related development projects. [Allergen Research Corporation] Press Release

Regeneus to Fast-Track Human Cells under New Japanese Laws The Japanese parliament has passed new laws that provide a rapid approval process specifically designed for human stem cell therapies. Regenerative medicine company, Regeneus, is ready to move on the opportunity. These new laws give the company a unique opportunity to fast-track the clinical trial and potential approval of its new human off-the-shelf cell therapy to treat osteoarthritis and other inflammatory musculoskeletal conditions into the Japanese market. [Regeneus Ltd.] Press Release

New Japanese Regenerative Medicine Legislation and Commercial Opportunities for Stem Cell Products Regenerative medicine company Mesoblast Limited gave an update on new legislation which provides a framework for accelerated approval of stem cell products in Japan, the world's second-largest mature healthcare market. [Mesoblast Limited] Press Release

Follow this link:
Cell Therapy News - Shopping cheap jerseys on our online cheap ...