Faulty stem cell regulation may contribute to cognitive deficits associated with Down syndrome
Sep. 11, 2013 Michael Clarke and his colleagues were the first to discover that Down syndrome may be linked to faulty stem cell regulation.
The learning and physical disabilities that affect people with Down syndrome may be due at least in part to defective stem cell regulation throughout the body, according to researchers at the Stanford University School of Medicine. The defects in stem cell growth and self-renewal observed by the researchers can be alleviated by reducing the expression of just one gene on chromosome 21, they found.
The finding marks the first time Down syndrome has been linked to stem cells, and addresses some long-standing mysteries about the disorder. Although the gene, called Usp16, is unlikely to be the only contributor to the disease, the finding raises the possibility of an eventual therapy based on reducing its expression.
"There appear to be defects in the stem cells in all the tissues that we tested, including the brain," said Michael Clarke, MD, Stanford's Karel H. and Avice N. Beekhuis Professor in Cancer Biology. The researchers conducted their studies in both mouse and human cells. "We believe Usp16 overexpression is a major contributor to the neurological deficits seen in Down syndrome."
Clarke is the senior author of the research, published Sept. 11 in Nature. Postdoctoral scholar Maddalena Adorno, PhD, is the lead author.
"Conceptually, this study suggests that drug-based strategies to slow the rate of stem cell use could have profound effects on cognitive function, aging and risk for Alzheimer's disease in people with Down syndrome," said co-author Craig Garner, PhD, who is the co-director of Stanford's Center for Research and Treatment of Down Syndrome and a professor of psychiatry and behavioral sciences
Down syndrome, which is caused by an extra copy of chromosome 21, affects about 400,000 people in the United States and 6 million worldwide. It causes both physical and cognitive problems. While many of the physical issues, such as vulnerability to heart problems, can now be treated, no treatments exist for poor cognitive function.
The new study's findings suggest answers to many long-standing mysteries about the condition, including why people with Down syndrome appear to age faster and exhibit early Alzheimer's disease.
"This study is the first to provide a possible explanation for these tendencies," said Garner. The fact that people with Down syndrome have three copies of chromosome 21 and the Usp16 gene "accelerates the rate at which stem cells are used during early development, which likely exhausts stem cell pools and impairs tissue regeneration in adults with Down syndrome. As a result, their brains age faster and are susceptible to early onset neurodegenerative disorders."
The researchers didn't confine their studies to laboratory mice. They also investigated the effect of Usp16 overexpression in human cells. Adorno and colleagues in the laboratory of co-author Samuel Cheshier, MD, assistant professor of neurosurgery, found that the presence of excess Usp16 caused skin cells from unaffected people to grow more slowly. Furthermore, neural progenitor cells (those self-renewing cellular factories responsible for the development and maintenance of many of the cell types in the brain) were less able to form balls of cells called neurospheres -- a laboratory test that reflects the number and robustness of nerve stem cells in a culture. Conversely, reducing Usp16 expression in skin and nerve-progenitor cells from people with Down syndrome allowed the cells, which usually proliferate slowly, to assume normal growth patterns.
Read the rest here:
Faulty stem cell regulation may contribute to cognitive deficits associated with Down syndrome