StemGenex™ on Adult Stem Cell-Based Therapy for Multiple Sclerosis

LA JOLLA, Calif., Oct. 10, 2012 /PRNewswire/ --New research directions are being explored to find therapies for hard to treat diseases. One exciting new approach is the use of autologous Adult Stem Cells. Multiple Sclerosis (MS) is one of the many notable diseasesadult stem cell therapycould potentially impact. Multiple Sclerosis (MS) is a disorder in which an individual's own immune system attacks the 'myelin sheath'. The myelin sheath serves to protect the nerve cells within the body's central nervous system (CNS). The damage caused by MS may result in many types of symptoms including:

(Photo: http://photos.prnewswire.com/prnh/20121010/LA89802-INFO)

Currently there is no cure for MS, but MS stem cell therapiesattempt to slow the disease's progression and limit symptoms. Since adult stem cells have the ability to differentiate into many different types of cells, such as those required for proper functioning and protection of nerve cells, the use of adult stem cells for MS therapy could be of substantial value. Adult stem cells can be isolated with relative ease from an individual's own 'adipose' (fat) tissue. As a result, adult stem cell therapy is not subject to the ethical or religious issues troubling embryonic methods.

Encouragingly for MS treatment potential, scientific researchers have been studying the properties of adipose-derived stem cells. Their results from canine and equine studies suggest anti-inflammatory and regenerative roles for these stem cells. Also, further research findings suggest these adipose-derived stem cells can have specific immune-regulating properties. Markedly, clinical-based work conducted overseas has indicated that individuals suffering from MS could respond well to adipose-derived stem cell treatment, with a substantially improved quality of life.

The US based company, StemGenex, is pioneering new methods for using adipose derived adult stem cells to help in diseases with limited treatment options like MS. StemGenex has been conducting research with physicians over the last 5 years to advance adult stem cell treatment protocols for alleviating MS symptoms. StemGenex's proprietary protocol includes the use of a double activation process, which increases both the viability and the quantity of stem cells that are received in a single application.

To find out more about stem cell treatments contact StemGenex either by phone at 800.609.7795 or email at Contact@StemGenex.com.

Follow this link:
StemGenex™ on Adult Stem Cell-Based Therapy for Multiple Sclerosis

NeoStem Announces New Publication That Supports Positive Results of AMR-001 for Treatment of AMI

NEW YORK, Oct. 10, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NBS), an emerging leader in the fast growing cell therapy market, announced today that a new article published by the International Scholarly Research Network provides further evidence that AMR-001, NeoStem's lead product candidate through its Amorcyte subsidiary, appears capable of preserving heart muscle function following a large myocardial infarction. Amorcyte demonstrated in its Phase 1 trial that AMR-001 preserved heart muscle function when a therapeutic dose of cells was administered. No patient experienced a deterioration in heart muscle function who received 10 million cells or more whereas 30 to 40 percent of patients not receiving a therapeutic dose did. The new study shows that cardiac muscle function sparing effects are evident even earlier after treatment than previously shown.

The article titled "Assessment of myocardial contractile function using global and segmental circumferential strain following intracoronary stem cell infusion after myocardial infarction: MRI Feature Tracking Feasibility Study" by Sabha Bhatti, MD, et al. appears in ISRN Radiology Volume 2013, Article ID 371028 and is published online at http://www.isrn.com/journals/radiology/2013/371028. The publication by Dr. Bhatti and colleagues, including Dr. Andrew Pecora, Chief Medical Officer of NeoStem, supports the finding that AMR-001 preserves heart function. Previously, Amorcyte, a NeoStem subsidiary, showed that six months after STEMI AMR-001 improved blood flow to the heart and preserved heart muscle. By using cardiac magnetic resonance imaging, specifically measuring circumferential strain of the left ventricle, the authors show that AMR-001's effects are evident by three months after STEMI.

AMR-001's angiogenic and anti-apoptotic mechanisms of action indicate that preservation of heart muscle function should start within weeks and be evident in fewer than 6 months. This publication, based on blinded analysis of Amorcyte's Phase 1 data, confirms the expected time course for AMR-001's mechanism of action. In the context of previously published results, these effects are durable.

Amorcyte is developing AMR-001, a cell therapy for the treatment of cardiovascular disease, and is enrolling patients in a Phase 2 trial to investigate AMR-001's efficacy in preserving cardiac function and preventing adverse clinical events after a large myocardial infarction.

About NeoStem, Inc.

NeoStem, Inc. continues to develop and build on its core capabilities in cell therapy, capitalizing on the paradigm shift that we see occurring in medicine. In particular, we anticipate that cell therapy will have a significant role in the fight against chronic disease and in lessening the economic burden that these diseases pose to modern society. We are emerging as a technology and market leading company in this fast developing cell therapy market. Our multi-faceted business strategy combines a state-of-the-art contract development and manufacturing subsidiary, Progenitor Cell Therapy, LLC ("PCT"), with a medically important cell therapy product development program, enabling near and long-term revenue growth opportunities. We believe this expertise and existing research capabilities and collaborations will enable us to achieve our mission of becoming a premier cell therapy company.

Our contract development and manufacturing service business supports the development of proprietary cell therapy products. NeoStem's most clinically advanced therapeutic, AMR-001, as mentioned above, is being developed at Amorcyte, LLC ("Amorcyte"), which we acquired in October 2011. Amorcyte is developing a cell therapy for the treatment of cardiovascular disease and is enrolling patients in a Phase 2 trial to investigate AMR-001's efficacy in preserving heart function after a heart attack. Athelos Corporation ("Athelos"), which is approximately 80%-owned by our subsidiary, PCT, is collaborating with Becton-Dickinson in the early clinical exploration of a T-cell therapy for autoimmune conditions. In addition, pre-clinical assets include our VSELTM Technology platform as well as our mesenchymal stem cell product candidate for regenerative medicine. Our service business and pipeline of proprietary cell therapy products work in concert, giving us a competitive advantage that we believe is unique to the biotechnology and pharmaceutical industries. Supported by an experienced scientific and business management team and a substantial intellectual property estate, we believe we are well positioned to succeed.

Forward-Looking Statements for NeoStem, Inc.

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements reflect management's current expectations, as of the date of this press release, and involve certain risks and uncertainties. Forward-looking statements include statements herein with respect to the successful execution of the Company's business strategy, including with respect to the Company's or its partners' successful development of AMR-001 and other cell therapeutics, the size of the market for such products, its competitive position in such markets, the Company's ability to successfully penetrate such markets and the market for its CDMO business, and the efficacy of protection from its patent portfolio, as well as the future of the cell therapeutics industry in general, including the rate at which such industry may grow. Forward looking statements also include statements with respect to satisfying all conditions to closing the disposition of Erye, including receipt of all necessary regulatory approvals in the PRC. The Company's actual results could differ materially from those anticipated in these forward- looking statements as a result of various factors, including but not limited to (i) the Company's ability to manage its business despite operating losses and cash outflows, (ii) its ability to obtain sufficient capital or strategic business arrangement to fund its operations, including the clinical trials for AMR-001, (iii) successful results of the Company's clinical trials of AMR-001 and other cellular therapeutic products that may be pursued, (iv) demand for and market acceptance of AMR-001 or other cell therapies if clinical trials are successful and the Company is permitted to market such products, (v) establishment of a large global market for cellular-based products, (vi) the impact of competitive products and pricing, (vii) the impact of future scientific and medical developments, (viii) the Company's ability to obtain appropriate governmental licenses and approvals and, in general, future actions of regulatory bodies, including the FDA and foreign counterparts, (ix) reimbursement and rebate policies of government agencies and private payers, (x) the Company's ability to protect its intellectual property, (xi) the company's ability to successfully divest its interest in Erye, and (xii) matters described under the "Risk Factors" in the Company's Annual Report on Form 10-K filed with the Securities and Exchange Commission on March 20, 2012 and in the Company's other periodic filings with the Securities and Exchange Commission, all of which are available on its website. The Company does not undertake to update its forward-looking statements. The Company's further development is highly dependent on future medical and research developments and market acceptance, which is outside its control.

Here is the original post:
NeoStem Announces New Publication That Supports Positive Results of AMR-001 for Treatment of AMI

The New York Stem Cell Foundation announces $9 million to 6 new NYSCF-Robertson Investigators

Public release date: 10-Oct-2012 [ | E-mail | Share ]

Contact: David McKeon dmckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY (October 10, 2012) The New York Stem Cell Foundation (NYSCF) named six of the most promising scientists as its 2012 NYSCF Robertson Investigators.

Each Investigator will receive a $1.5 million award disbursed over the next five years to foster his or her innovative research by expanding laboratories and by training other scientists. Three of the scientists were named NYSCF Robertson Stem Cell Investigators, a program in its third year, and three were named NYSCF Robertson Neuroscience Investigators, a program in its second year.

"These young Investigators truly undertake the most daring yet rewarding stem cell research. We are all honored to support the future investigations of these promising talents," said Susan L. Solomon, Chief Executive Officer of NYSCF.

The Investigators were announced at NYSCF's Seventh Annual Translational Stem Cell Research Conference, held at The Rockefeller University in Manhattan.

Designed to support scientists engaged in novel neuroscience and cutting-edge translational stem cell research, the two Investigator programs aid these researchers as they move beyond postdoctoral work and establish their own laboratories.

The Investigator award builds on the previous success of NYSCF's Postdoctoral Fellowship program, which is the largest program of postdoctoral support for stem cell researchers in the United States, and has provided funding for 35 postdoctoral researchers to date.

Marc Tessier-Lavigne, President of The Rockefeller University, chaired the NYSCF Robertson Neuroscience Investigator program's selection committee.

"With such an outstanding group of young scientists, we had an exceptionally difficult decision to make. We are thrilled to be able to give these awards to such a talented group of scientists," remarked Tessier-Lavigne. "We are confident they will become leaders in the field of neuroscience."

Read the original:
The New York Stem Cell Foundation announces $9 million to 6 new NYSCF-Robertson Investigators

Nobel prize winner in medicine warns of rogue 'stem cell therapies'

Nobel laureate Shinya Yamanaka warned patients on Tuesday about unproven "stem cell therapies" offered at clinics and hospitals in a growing number of countries, saying they were highly risky.

The Internet is full of advertisements touting stem cell cures for just about any disease -- from diabetes, multiple sclerosis, arthritis, eye problems, Alzheimer's and Parkinson's to spinal cord injuries -- in countries such as China, Mexico, India, Turkey and Russia.

Yamanaka, who shared the Nobel Prize for Medicine on Monday with John Gurdon of the Gurdon Institute in Cambridge, Britain, called for caution.

"This type of practice is an enormous problem, it is a threat. Many so-called stem cell therapies are being conducted without any data using animals, preclinical safety checks," said Yamanaka of Kyoto University in Japan.

"Patients should understand that if there are no preclinical data in the efficiency and safety of the procedure that he or she is undergoing ... it could be very dangerous," he told Reuters in a telephone interview.

Yamanaka and Gurdon shared the Nobel Prize for the discovery that adult cells can be transformed back into embryo-like stem cells that may one day regrow tissue in damaged brains, hearts or other organs.

"I hope patients and lay people can understand there are two kinds of stem cell therapies. One is what we are trying to establish. It is solely based on scientific data. We have been conducting preclinical work, experiments with animals, like rats and monkeys," Yamanaka said.

"Only when we confirm the safety and effectiveness of stem cell therapies with animals will we initiate clinical trials using a small number of patients."

Yamanaka, who calls the master stem cells he created "induced pluripotent stem cells" (iPS), hopes to see the first clinical trials soon.

"There is much promising research going on," he said.

Go here to read the rest:
Nobel prize winner in medicine warns of rogue 'stem cell therapies'

International Stem Cell Corp Discusses Its New Cellular Reprogramming Technology in View of the Recent Award of the …

CARLSBAD, CA--(Marketwire - Oct 9, 2012) - International Stem Cell Corporation ( OTCQB : ISCO ) (www.internationalstemcell.com) ("ISCO" or "the Company"), a California-based biotechnology company focused on therapeutic and research products, congratulates Sir John Gurdon and Dr. Shinya Yamanaka on the recently announced Nobel Prize in Physiology or Medicine for discovering cellular reprogramming to create pluripotent stem cells.These discoveries lead to the development of induced pluripotent stem cells (iPS) which is now a major area of research.However, currently cellular reprogramming is accomplished by inserting genetic material, via a virus or otherwise, which raises serious safety concerns when developing treatments.ISCO has developed a technology that potentially allows for the creation of a new generation of iPS cells without these safety concerns.Unlike methods requiring the use of viruses or DNA constructs that may integrate into the genome, ISCO's new method utilizes only proteins which are naturally eliminated once they have served their purpose.

Dr. Ruslan Semechkin, Vice President and head of ISCO's Research and Development comments, "Overall, our new technology represents a level of control that is much finer than the multiple infections necessary for viral-based systems which cannot be turned off and where the dosage level cannot be modulated.Moreover, ISCO's method can be used not only to reprogram somatic cells to become stem cells, but also transform stem cells into somatic cells.This technology provides an alternative to the existing cellular reprogramming methods and represents an enormous opportunity for ISCO to become a leader in the iPS field."

About International Stem Cell Corporation

International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products.ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs) hence avoiding ethical issues associated with the use or destruction of viable human embryos.ISCO scientists have created the first parthenogenetic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology (www.lifelinecelltech.com), and stem cell-based skin care products through its subsidiary Lifeline Skin Care (www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com.

To receive ongoing corporate communications via email, visit: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0

To like our Facebook page or follow us on Twitter for company updates and industry related news, visit: http://www.facebook.com/InternationalStemCellCorporation and http://www.twitter.com/intlstemcell

Safe harbor statement

Statements pertaining to anticipated developments, the potential uses of our technologies and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects" or "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products and the management of collaborations, regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update forward-looking statements.

The rest is here:
International Stem Cell Corp Discusses Its New Cellular Reprogramming Technology in View of the Recent Award of the ...

Pioneering iPS Cell Scientist Kazutoshi Takahashi Receives NYSCF – Robertson Prize in Stem Cell Research

NEW YORK, Oct. 9, 2012 /PRNewswire/ --Today, The New York Stem Cell Foundation (NYSCF) will award a Japanese scientist with the NYSCF Robertson Prize for his extraordinary achievements in translational stem cell research.

This award will go to Kazutoshi Takahashi, PhD, Lecturer, Center for iPS Cell Research and Application (CiRA) at Kyoto University, for his vital contribution to induced pluripotent stem (iPS) cell derivation.

Dr. Takahashi was lead author on a series of landmark papers that described reprogramming adult cells into iPS cells, which were published while he was a postdoctoral researcher in Shinya Yamanaka's, MD, PhD, laboratory at Kyoto University.

Yesterday, judges in Stockholm announced that Dr. Yamanaka and Sir John Gurdon, DPhil, the Gurdon Institute, won the Nobel Prize in Physiology or Medicine for their stem cell research breakthroughs. Both scientists demonstrated that adult cells can be reprogrammed into pluripotent cells, cells that can become any cell type in the body.

The NYSCF Robertson prize will be presented at a ceremony in New York City by Susan L. Solomon, CEO of The New York Stem Cell Foundation, and Professor Peter J. Coffey, DPhil, the inaugural recipient of the NYSCF Robertson Prize in 2011, Executive Director of Translation at UC Santa Barbara's Center for Stem Cell Biology and Engineering, and Director of the London Project to Cure Blindness, University College London.

"Dr. Takahashi's path-breaking work truly has opened up the entire field of stem cell research," said Ms. Solomon. "In addition to his derivation of induced pluripotent stem cells, he focuses on improving this technique and other critical translational studies."

Dr. Takahashi's research group at Kyoto University was established in 2010 to focus on two areas of cellular reprogramming. Their first area of investigation is in the process of cellular reprogramming and the second area is evaluating iPS cell quality and differentiation potential.

"I congratulate Dr. Takahashi for his groundbreaking work, opening new avenues in the search for cures," said Julian H. Robertson, Jr. "The NYSCF Robertson Stem Cell Prize was created to recognize and support the work of young scientists like Dr. Takahashi, whose research offers enormous potential."

The jury that selected Dr. Takahashi in September consisted of Christine Mummery, PhD, Chair of the Department of Anatomy and Embryology at Leiden University Medical Center in the Netherlands; Lorenz Studer, MD, Director of the Sloan-Kettering Center for Stem Cell Biology; Irving Weissman, MD, Director of the Institute for Stem Cell Biology and Regenerative Medicine at the Stanford School of Medicine; and, Peter J. Coffey, DPhil.

The NYSCF Robertson prize is awarded annually to a young scientist in recognition of innovative and groundbreaking achievement, or body of work, that has significantly advanced human stem cell research toward clinical application. The terms of the prize require that the $200,000 stipend be used, at the recipients' discretion, to further support their research.

See more here:
Pioneering iPS Cell Scientist Kazutoshi Takahashi Receives NYSCF - Robertson Prize in Stem Cell Research

Charter Medical Launches New EXP-Pak(TM) Cell Expansion Containers for Cellular Therapy Applications

MANCHESTER, Conn., Oct. 9, 2012 (GLOBE NEWSWIRE) -- Charter Medical, Ltd., a division of Lydall, Inc., (LDL) announced today that it has recently launched the new EXP-Pak(TM) cell expansion containers intended for the expansion and culture of non-adherent cells. The launch of this exciting new product family allows Charter Medical to provide enabling technology critical to the rapidly growing cellular therapy market. The family of closed-system cell expansion containers offers a broad size range from 500mL to 5L and end-user validated cell expansion rates and recovery.

Joe Petrosky, Vice President of Global Marketing and Sales for Charter Medical, stated, "We are excited with the launch of the EXP-Pak(TM) cell expansion product family. The EXP-Pak(TM) containers complement our closed-system solution approach and play a key role in supporting the development of new cellular therapies."

Dale Barnhart, President and CEO of Lydall, stated, "I am pleased with the launch of this product family for cellular therapy which represents a strategic growth opportunity. It further demonstrates our commitment to being the global supplier of choice as we grow our presence in this emerging segment."

About Lydall, Inc.

Lydall, Inc. is a New York Stock Exchange listed company, headquartered in Manchester, Connecticut. The Company, with operations in the U.S., France, and Germany and offices in Europe and Asia, focuses on specialty engineered products for the thermal/acoustical and filtration/separation markets. Charter Medical, Ltd., a Lydall subsidiary, is a vital fluids management company focused on providing products to separate, contain and transport vital fluids in the blood and cell therapy market and the biotech and pharmaceutical industries. Lydall(R) is a registered trademark of Lydall, Inc. in the U.S. and other countries. All product names are trademarks of Lydall, Inc. or Charter Medical, Ltd.

Read the original:
Charter Medical Launches New EXP-Pak(TM) Cell Expansion Containers for Cellular Therapy Applications

Nobel Prize Winner Yamanaka Remains at Forefront of Fast-Moving Stem Cell Field He Galvanized

Mariselle Lancero, a research associate II, and research scientist Kiichiro Tomoda, PhD, work in the Yamanaka Lab at the Gladstone Institutes on the day Shinya Yamanaka won the Nobel Prize for Physiology or Medicine.

Stem cell researcher Shinya Yamanaka, MD, PhD, reached in Kyoto shortly after being named winner of the 2012 Nobel Prize for Physiology or Medicine, said he was doing some housecleaning when the call came in, and was very surprised.

But at UCSF, where Yamanaka joined the faculty in 2007, splitting his time between Kyoto University and the UCSF-affiliated Gladstone Institutes, his winning the Nobel Prize was considered virtually inevitable. The only surprise, colleagues say, was that the honor came so quickly.

Often the Nobel Committee waits decades before awarding the prize to make sure the discovery stands the test of time. Its rare for a scientists influence on scientific thought and experimentation to spread as fast as it did in this case.

Yamanaka discovered keys to the developmental destiny of cells, and how these keys can be used to manipulate cell fate in ways that offer hope to scientists who seek new methods of providing tissues for organ transplantation and for other medical applications. His seminal paper was published in 2006, and there is an expectation that the techniques he developed will lead to clinical trials for macular degeneration as early as next year.

Its a great day for the Gladstone, and a great day for UCSF, said Deepak Srivastava, MD, director of the Gladstone Institute of Cardiovascular Disease and a UCSF professor in the departments of pediatrics and biochemistry and biophysics.

Im a little surprised it happened this year, Srivastava said. I thought it would happen in the next five to 10 years.

Even without considering the clinical potential, the implications of Yamanakas work for understanding basic biology are deserving of recognition, Srivastava said.

The award is carefully worded, he noted. The fundamental, basic discovery that we can alter cell fates is really what this prize is about; its not so much about stem cells, or even about regenerative medicine. Its about the discovery that we can control the fate of the cell by manipulating DNA without changing the genetic code.

The ability to control cell fate, we hope, will allow us in the future to use the technology for regenerative medicine and disease modeling to drive discovery, he said.

Read this article:
Nobel Prize Winner Yamanaka Remains at Forefront of Fast-Moving Stem Cell Field He Galvanized

Gurdon And Yamanaka Share Nobel Prize For Stem Cell Work

Two pioneers of stem cell research have shared the Nobel prize for medicine or physiology.

John Gurdon from the UK and Shinya Yamanaka from Japan were awarded the prize for changing adult cells into stem cells, which can become any other type of cell in the body.

Prof Gurdon used a gut sample to clone frogs and Prof Yamanaka altered genes to reprogramme cells.

The Nobel committee said they had "revolutionised" science.

The prize is in stark contrast to Prof Gurdon's first foray into science when his biology teacher described his scientific ambitions as "a waste of time".

Cloned frog When a sperm fertilises an egg there is just one type of cell. It multiplies and some of the resulting cells become specialised to create all the tissues of the body including nerve and bone and skin.

It had been though to be a one-way process - once a cell had become specialised it could not change its fate.

In 1962, John Gurdon showed that the genetic information inside a cell taken from the intestines of a frog contained all the information need to create a whole new frog. He took the genetic information and placed it inside a frog egg. The resulting clone developed into a normal tadpole.

The technique would eventually give rise to Dolly the sheep, the first cloned mammal.

Reset button Forty years later Shinya Yamanaka used a different approach. Rather than transferring the genetic information into an egg, he reset it.

View post:
Gurdon And Yamanaka Share Nobel Prize For Stem Cell Work