Stem Cell Scientists Awarded Nobel Prize in Physiology and Medicine

Kyodo / Reuters

Kyoto University Professor Shinya Yamanaka (left) and John Gurdon of the Gurdon Institute in Cambridge, England, at a symposium on induced pluripotent stem cells in Tokyo in April 2008

In a testament to the revolutionary potential of the field of regenerative medicine, in which scientists are able to create and replace any cells that are at fault in disease, the Nobel Prize committee on Monday awarded the 2012 Nobel in Physiology or Medicine to two researchers whose discoveries have made such cellular alchemy possible.

The prize went to John B. Gurdon of the University of Cambridge in England, who was the first to clone an animal, a frog, in 1962, and to Shinya Yamanaka of Kyoto University in Japan who in 2006 discovered the four genes necessary to reprogram an adult cell back to an embryonic state.

Sir John Gurdon, who is now a professor at an institute that bears his name, earned the ridicule of many colleagues back in the 1960s when he set out on a series of experiments to show that the development of cells could be reversed. At the time, biologists knew that all cells in an embryo had the potential to become any cell in the body, but they believed that once a developmental path was set for each cell toward becoming part of the brain, or a nerve or muscle it could not be returned to its embryonic state. The thinking was that as a cell developed, it would either shed or silence the genes it no longer used, so that it would be impossible for a cell from an adult animal, for example, to return to its embryonic state and make other cells.

(MORE: Stem Cell Miracle? New Therapies May Cure Chronic Conditions Like Alzheimers)

Working with frogs, Gurdon proved his critics wrong, showing that some reprogramming could occur. Gurdon took the DNA from a mature frogs gut cell and inserted it into an egg cell. The resulting egg, when fertilized, developed into a normal tadpole, a strong indication that the genes of the gut cell were amenable to reprogramming; they had the ability to function as more than just an intestinal cell, and could give rise to any of the cells needed to create an entirely new frog.

Just as Gurdon was facing his critics in England, a young boy was born in Osaka, Japan, who would eventually take Gurdons finding to unthinkable extremes. Initially, Shinya Yamanaka would follow his fathers wishes and become an orthopedic surgeon, but he found himself ill-suited to the surgeons life. Intrigued more by the behind-the-scenes biological processes that make the body work, he found himself drawn to basic research, and began his career by trying to find a way to lower cholesterol production. That work also wasnt successful, but it drew him to the challenge of understanding what makes cells divide, proliferate and develop in specific ways.

In 2006, while at Kyoto University, Yamanaka stunned scientists by announcing he had successfully achieved what Gurdon had with the frog cells, but without using eggs at all. Yamanaka mixed four genes in with skin cells from adult mice and turned those cells back to an embryo-like state, essentially erasing their development and turning back their clock. The four genes reactivated other genes that are prolific in the early embryo, and turned off those that directed the cells to behave like skin.

(MORE: Ovary Stem Cells Can Produce New Human Eggs)

See the original post:
Stem Cell Scientists Awarded Nobel Prize in Physiology and Medicine

Cellectis: the Award of Nobel Prize in Medicine to Professor Yamanaka Confirms the Relevance of the Group's Stem Cell …

PARIS--(BUSINESS WIRE)--

Regulatory News:

Cellectis (ALCLS.PA) (ALCLS.PA), the French genome engineering specialist, considers the award of the Nobel Prize fin Medicine to Professor Shinya Yamanaka as the validation of its stem cell strategy and is a major growth driver for this activity.

Since 2010 Cellectis started collaborating with Professor Shinya Yamanaka at the Center for iPS Cell Research and Application (CiRA) at Kyoto, Japan, working together on genome engineering of induced pluripotent stem (iPS) cells.

Since then, Cellectis has successively:

Cellectis already sells cellular models for research and drug development within pharmaceutical industry, implementing technologies developed by CiRA. In addition, Cellectis is currently working on a number of develops large-scale projects based on iPS cell technology with two aims:

Andr Choulika, CEO of Cellectis, declares: "the quality of relations between the teams of CiRA and Cellectis Group - based on mutual respect of their scientific expertise on the one hand, the recognition of the strong complementarity of their knowledge on the other - involved the establishment of a real alliance able to compete with the American presence in the area."

Cellectis plans to expand and deepen this collaboration with Prof. Yamanaka in order to strengthen its position as an industry leader, increase its activity remaining at the forefront of iPS cell technology, and develop industry standards in regenerative medicine.

About Cellectis

Founded in France in 1999, the Cellectis Group is based on a highly specific DNA engineering technology. Its application sectors are human health, agriculture and bio-energies. Co-created by Andr Choulika, its Chief Executive Officer, Cellectis is today one of the world leading companies in the field of genome engineering. The Group has a workforce of 230 employees working on 5 sites worldwide: Paris & Evry in France, Gothenburg in Sweden, St Paul (Minnesota) & Cambridge (Massachusetts) in the United States. Cellectis achieved in 2011 16M revenues and has signed more than 80 industrial agreements with pharmaceutical laboratories, agrochemical and biotechnology companies since its inception. AFM, Dupont, BASF, Bayer, Total, Limagrain, Novo Nordisk are some of the Groups clients and partners.

Read the rest here:
Cellectis: the Award of Nobel Prize in Medicine to Professor Yamanaka Confirms the Relevance of the Group's Stem Cell ...

British, Japanese scientists share Nobel Prize for stem cell work

Two scientists who upended fundamental beliefs about biology by demonstrating that every cell in the body has the potential to grow into every other type of cell have won the Nobel Prize in physiology or medicine.

Sir John Gurdon and Dr. Shinya Yamanaka were honored Monday for "the discovery that mature cells can be reprogrammed" to return to a very early state of development, the Nobel committee said in its citation.

Their research is still years away from yielding a clear breakthrough in medical treatment. But the work has upended the study of intractable conditions including heart disease, diabetes and Alzheimer's by allowing scientists to grow disease-specific and even patient-specific cells for experimentation in the laboratory, experts said.

"It's nothing short of a revolution in how we think of a cell," said Dr. Deepak Srivastava, director of the Roddenberry Center for Stem Cell Biology and Medicine at the Gladstone Institutes in San Francisco, where Yamanaka works one week each month.

Gurdon, 79, performed his seminal work at Oxford University in the late 1950s and early 1960s a good deal of it before Yamanaka was born.

Working with frogs, he showed in 1962 that replacing the nucleus of an egg cell with the nucleus from a cell taken from a tadpole's intestine allowed the egg to develop into a fully functional clone of that tadpole.

The discovery shocked his colleagues in the field. At the time, it wasn't clear whether different types of body cells had different DNA or shared the same genetic instructions and just read them differently, Srivastava said. Gurdon's experiments indicated that cells did contain the same genetic code and that individual cells were capable of creating an entire animal and thus any of its component parts if properly manipulated.

It would take 34 years for Scottish researcher Ian Wilmut to clone Dolly the sheep, replicating the feat in a mammal and capturing the public's imagination.

Yamanaka's achievement was to give scientists an idea of how that cellular reprogramming gets done. When he began this line of work, he was highly criticized in Japan for undertaking such a difficult project.

The Japanese scientist who trained as an orthopedic surgeon before becoming a full-time researcher figured out that activating simple combinations of genes in a mouse skin cell could rewind that cell to an embryo-like state, allowing it to develop anew as any other type of cell in the body.

Go here to read the rest:
British, Japanese scientists share Nobel Prize for stem cell work

Stem Cell Scientists Gurdon and Yamanaka Win Nobel Prize in Medicine

JUDY WOODRUFF: Next, to the 2012 Nobel Prizes. The first was awarded today for groundbreaking work in reprogramming cells in the body.

Ray Suarez looks at those achievements.

MAN: The Nobel Assembly at Karolinska Institute has today decided to award the Nobel Prize in Physiology or Medicine,2012 jointly to John B. Gurdon and Shinya Yamanaka.

RAY SUAREZ: The two scientists are from two different generations and celebrated today's announcement half-a-world apart.

But today they were celebrated together for their research that led to a groundbreaking understanding of how cells work.

Sir John Gurdon of CambridgeUniversity was awarded for his work in 1962. He was able to use specialized cells of frogs, like skin or intestinal cells, to generate new tadpoles and show DNA could drive the formation of all cells in the body.

Forty years later, Dr. Yamanaka built on that and went further. He was able to turn mature cells back into their earliest form as primitive cells. Those cells are in many ways the equivalent of embryonic stem cells, because they have the potential to develop into specialized cells for heart, liver and other organs.

Dr. Shinya Yamanaka is currently working at KyotoUniversity. Embryonic stem cells have had to be harvested from human embryos, a source of debate and considerable controversy.

For Gurdon, the prize had special meaning. At a news conference in London, he recalled one schoolteacher's reaction to his desire to study science.

JOHN GURDON, co-winner, Nobel Prize For Medicine or Physiology: It was a completely ridiculous idea because there was no hope whatever of my doing science, and any time spent on it would be a total waste of time, both on my part and the part of the person having to teach him. So that terminated my completely -- completely terminated my science at school.

Read this article:
Stem Cell Scientists Gurdon and Yamanaka Win Nobel Prize in Medicine

Cell rewind wins medicine Nobel

John Gurdon (left) and Shinya Yamanaka showed how to reprogram cells into their embryonic states.

J. Player/Rex Features; Aflo/Rex Features

The discovery that cells can be reprogrammed to an embryonic-like state has won this years Nobel Prize in Physiology or Medicine for two leading lights of stem-cell research: John Gurdon and Shinya Yamanaka.

Reprogrammed cells regain pluripotency, the potential to differentiate into many mature cell types. Many researchers hope that cells created in this way will eventually be used in regenerative medicine, providing replacement tissue for damaged or diseased organs. The field has become one of the hottest in biology, but the prizewinners discoveries were not without controversy when they were made.

Gurdon, who is based at the Gurdon Institute in Cambridge, UK, was the first person to demonstrate that cells could be reprogrammed, in work published 50years ago1. At the time, scientists believed that cellular specialization was a one-way process that could not be reversed. Gurdon overturned that dogma by removing the nucleus from a frog egg cell and replacing it with the nucleus from a tadpoles intestinal cell. Remarkably, the process was able to turn back the cellular clock of the substitute nucleus. Although it had already committed to specialization, inside the egg cell it acted like an eggs nucleus and directed the development of a normal tadpole.

Gurdon was a graduate student at the University of Oxford, UK, when he did the work. He received his doctorate in 1960 and went on to do a postdoc at the California Institute of Technology in Pasadena, leaving his frogs in Europe. He did not publish the research until two years after he got his PhD, once he was sure that the animals had matured healthily. I was a graduate student flying in the face of [established] knowledge, he says. There was a lot of scepticism.

Mammalian cells did not prove as amenable to this process, known as cloning by nuclear transfer, as frog cells. It was nearly 35years before the first cloned mammal Dolly the sheep was born, in 1996. Dolly was the only live birth from 277 attempts, and mammalian cloning remained a hit-and-miss affair.

Scientists were desperate to improve the efficiency of the system and to understand the exact molecular process involved. That is where Shinya Yamanaka of Kyoto University, Japan, made his mark. Yamanaka who was born the year that Gurdon published his formative paper used cultured mouse cells to identify the genes that kept embryonic cells immature, and then tested whether any of these genes could reprogram mature cells to make them pluripotent.

In the mid-2000s, the stem-cell community knew that Yamanaka was close. I remember when he presented the data at a 2006 Keystone symposium, says Cdric Blanpain, a stem-cell biologist at the Free University of Brussels. At that time he didnt name them and everyone was betting what these magic factors could be.

A few months later, attendees at the 2006 meeting of the International Society for Stem Cell Research in Toronto, Canada, packed out Yamanakas lecture. The audience waited in silence before he announced his surprisingly simple recipe: activating just four genes was enough to turn adult cells called fibroblasts back into pluripotent stem cells2. Such induced pluripotent stem (iPS) cells could then be coaxed into different types of mature cell types, including nerve and heart cells.

More:
Cell rewind wins medicine Nobel

Biopharma with personalized cell therapy raises $45M in stock sale, forges collaboration deal

A company with the first FDA-approved personalized cell therapy for reducing wrinkles has raised $45 million in a private stock sale. The financing was sought to improve manufacturing capacity for the therapy and advance other uses for it such as treating burn victims, according to a company statement.

Fibrocell Sciences aesthetic therapeutic, Laviv, secured got the green light from the U.S. Food and Drug Administration last year. Laviv uses individuals fibroblast cells to reduce nasolabial fold wrinkles, creases on the face that start from the outer corners of the nose and go down to the corners of the mouth. It also has an acne therapy in phase 3 clinical trials and a burn scar therapy in phase 2 trials.

The Exton, Pennsylvania biopharmaceutical companys personalized cell development platform technology isolates, purifies and multiplies a patients fibroblast cells, connective skin cells that make collagen.

Additionally, Fibrocell agreed to a strategic collaboration with biotechnology firm Intrexon which can provide genome engineering, cell processing, and cell system engineering, among other services, to help advance Fibrocells personalized cell therapy program.

As part of the financing deal, Third Security LLC will get two seats on Fibrocells board.

Personalized stem cell development fits into the broader category of personalized medicine, regarded as the future of medicine in which therapies will be better targeted to individuals and more effective.

Link:
Biopharma with personalized cell therapy raises $45M in stock sale, forges collaboration deal

Fingers crossed at AIIMS after stem cell transplant for MS, first in country

Doctors at the All India Institute of Medical Sciences (AIIMS) have conducted a stem cell transplant on a multiple sclerosis (MS) patient. They believe this is the first recorded case of an autologous stem cell therapy where the donor and recipient are the same person for MS in the country.

Six months after the transplant, doctors say the spread of MS, an autoimmune disease that affects the brain and spinal cord, appears to have been contained but the therapy cannot be declared a success until the patient is monitored for at least a year.

International trials have demonstrated that this transplant can restrict the spread of the disease in advanced patients, and may even reverse symptoms in early stages in some patients.

Thirty-two-year-old Rohit Yadav, a commerce graduate from Delhi University, was diagnosed with the neurological disorder in 2010. In March this year, after trying all possible conventional treatment options, doctors at AIIMS finally decided on stem cell therapy.

Dr Kameshwar Prasad, professor of neurology who has been monitoring Yadav, said: The primary purpose of autologous stem cell transplant is to control the spread of lesions. We extract the patients own stem cells, treat and inject the stem cells back. Ever since the procedure, the patient has been completely stable. To the best of our knowledge, this is the first case of stem cell therapy for MS.

In MS, the bodys own immune system attacks the myelin sheath that coats nerves, slowly destroying the central nervous system. Symptoms range from numbness and weakness in the limbs to sudden loss of balance and coordination, blurred vision and paralysis and, at the most advanced stage, disability.

... contd.

See the rest here:
Fingers crossed at AIIMS after stem cell transplant for MS, first in country

Japan, UK scientists win Nobel for stem cell breakthroughs

STOCKHOLM: Scientists from Britain and Japan shared the Nobel Prize in Medicine on Monday for the discovery that adult cells can be reprogrammer back into stem cells which can turn into any kind of tissue and may one day repair damaged organs. John Gurdon, 79, of the Gurdon Institute in Cambridge, Britain and Shinya Yamanaka, 50, of Kyoto University in Japan, discovered ways to create tissue that would act like embryonic cells, without the need to harvest embryos. They share the $1.2 million prize equally. These groundbreaking discoveries have completely changed our view of the development and specialization of cells, the Nobel Assembly at Stockholms Karolinska Institute said in a statement. The big hope for stem cells is that they can be used to replace damaged tissues in everything from spinal cord injuries to Parkinsons disease. All of the tissue in the body starts as stem cells, before developing into mature skin, blood, nerves, muscle and bone. Scientists once thought it was impossible to turn adult tissue back into stem cells, which meant that new stem cells could only be created by harvesting embryos. But Yamanaka and Gurdon showed that development can be reversed, turning adult cells back into cells that behave like embryos. With induced pluripotency stem cells, or iPS cells, ordinary skin or blood cells from adults are transformed back into stem cells which doctors hope will be able to repair damaged organs without being rejected by the immune system. There are concerns, however, that iPS cells could grow out of control and develop into tumors. The eventual aim is to provide replacement cells of all kinds, Gurdons Institute explains on its website. We would like to be able to find a way of obtaining spare heart or brain cells from skin or blood cells. The important point is that the replacement cells need to be from the same individual, to avoid problems of rejection and hence of the need for immunosuppression. Gurdon discovered in 1962 that the specialization of cells could be reversed. In what the prize committee called a classic experiment, he replaced the immature cell nucleus in an egg cell of a frog with the nucleus from a mature intestinal cell. This modified egg cell developed into a normal tadpole, proving that the mature cell still had all the information needed to develop all cells in the frog. More than 40 years later, in 2006, Yamanaka discovered how intact mature cells in mice could be reprogrammer to become stem cells by adding just a few genes. Thanks to these two scientists, we know now that development is not strictly a one-way street, said Thomas Perlmann, Nobel Committee member and professor of Molecular Development Biology at the Karolinska Institute. There is lot of promise and excitement, and difficult disorders such as neurodegenerative disorders, like perhaps Alzheimers and, more likely, Parkinsons disease, are very interesting targets.

Read the original here:
Japan, UK scientists win Nobel for stem cell breakthroughs

UK, Japan scientists win Nobel for stem cell breakthroughs

STOCKHOLM (Reuters) - Scientists from Britain and Japan shared the Nobel Prize in Medicine on Monday for the discovery that adult cells can be reprogrammed back into stem cells which can turn into any kind of tissue and may one day repair damaged organs.

John Gurdon, 79, of the Gurdon Institute in Cambridge, Britain and Shinya Yamanaka, 50, of Kyoto University in Japan, discovered ways to create tissue that would act like embryonic cells, without the need to harvest embryos. They share the $1.2 million prize equally.

"These groundbreaking discoveries have completely changed our view of the development and specialisation of cells," the Nobel Assembly at Stockholm's Karolinska Institute said in a statement.

The big hope for stem cells is that they can be used to replace damaged tissues in everything from spinal cord injuries to Parkinson's disease.

All of the tissue in the body starts as stem cells, before developing into mature skin, blood, nerves, muscle and bone.

Scientists once thought it was impossible to turn adult tissue back into stem cells, which meant that new stem cells could only be created by harvesting embryos. But Yamanaka and Gurdon showed that development can be reversed, turning adult cells back into cells that behave like embryos.

With "induced pluripotency stem cells", or iPS cells, ordinary skin or blood cells from adults are transformed back into stem cells which doctors hope will be able to repair damaged organs without being rejected by the immune system.

There are concerns, however, that iPS cells could grow out of control and develop into tumours.

"The eventual aim is to provide replacement cells of all kinds," Gurdon's Institute explains on its website.

"We would like to be able to find a way of obtaining spare heart or brain cells from skin or blood cells. The important point is that the replacement cells need to be from the same individual, to avoid problems of rejection and hence of the need for immunosuppression."

See original here:
UK, Japan scientists win Nobel for stem cell breakthroughs

Nobel Prize in medicine awarded to pair for stem-cell discovery

STOCKHOLM A British researcher and a Japanese scientist won the Nobel Prize in physiology or medicine today for discovering that ordinary cells of the body can be reprogrammed into stem cells, which then can turn into any kind of tissue a discovery that may led to new treatments.

Scientists want to build on the work by John Gurdon and Shinya Yamanaka to create replacement tissues for treating diseases like Parkinson's and diabetes, and for studying the roots of diseases in the laboratory without the ethical dilemma posed by embryonic stem cells.

In announcing the 8 million kronor ($1.2 million) award, the Nobel committee at Stockholm's Karolinska Institute said the discovery has "revolutionized our understanding of how cells and organisms develop."

Gurdon showed in 1962 the year Yamanaka was born that the DNA from specialized cells of frogs, like skin or intestinal cells, could be used to generate new tadpoles. That showed the DNA still had its ability to drive the formation of all cells of the body.

At the time, the discovery had "no obvious therapeutic benefit at all," Gurdon told reporters in London. "It was almost 50 years before the value the potential value of that basic scientific research comes to light," he said.

In 1997, the cloning of Dolly the sheep by other scientists showed that the same process Gurdon discovered in frogs would work in mammals.

More than 40 years after Gurdon's discovery, in 2006, Yamanaka showed that a surprisingly simple recipe could turn mature cells back into primitive cells, which in turn could be prodded into different kinds of mature cells.

Basically, the primitive cells were the equivalent of embryonic stem cells, which had been embroiled in controversy because to get human embryonic cells, human embryos had to be destroyed. Yamanaka's method provided a way to get such primitive cells without destroying embryos.

"The discoveries of Gurdon and Yamanaka have shown that specialized cells can turn back the developmental clock under certain circumstances," the committee said. "These discoveries have also provided new tools for scientists around the world and led to remarkable progress in many areas of medicine."

Just last week, Japanese scientists reported using Yamanaka's approach to turn skin cells from mice into eggs that produced baby mice.

Read more:
Nobel Prize in medicine awarded to pair for stem-cell discovery