Gazette.Net: Rockville biotech tests stem cells for depression

Neuralstem, the Rockville company thats developing a stem cell treatment for patients with amyotrophic lateral sclerosis, has begun testing the safety of its treatment for major depressive disorder.

The compound, NSI-189, stimulates new neuron growth in the brain's hippocampus region, which scientists think is involved in depression and other conditions, including Alzheimer's disease, anxiety and post-traumatic stress disorder, according to a company statement. The phase 1b study involves 24 depressed patients and is expected to run six months.

"We believe it could help patients who suffer from depression via a new mechanism that does not seek to modulate brain chemistry, but rather stimulates new neuron growth in the hippocampus and increases hippocampal volume, thereby potentially addressing the problem at the source," Karl Johe, Neuralstem's chief scientific officer, said in the statement.

The company has researched hippocampal stem cell lines since 2000 and in 2009 won U.S. patents for four chemical entities that generate new neurons. In studies, NSI-189 stimulated such growth in mice.

In other Maryland bioscience industry news:

Supernus Pharmaceuticals has received tentative marketing approval from the Food and Drug Administration for its once-daily, extended release version of an epilepsy treatment.

The FDA said it has completed its review of Trokendi XR and no more clinical trials are required. Final approval hinges on resolving a marketing exclusivity issue that involves a specific pediatric population, according to the FDA's letter to Supernus.

Trokendi XR is an extended-release version of topimarate, which is marketed as Topamax by Janssen Pharmaceuticals of Titusville, N.J., to treat seizures and migraine headaches.

"We will continue to work closely with the FDA to further understand the outstanding issue and move forward towards final approval," CEO Jack Khattar said in the statement.

Supernus, which went public this year, also said the FDA denied a petition filed in 2011 by Upsher Smith Laboratories related to its Trokendi XR application.

Read the original:
Gazette.Net: Rockville biotech tests stem cells for depression

Cedars-Sinai researchers, with stem cells and global colleagues, develop Huntingtons research tool

Public release date: 28-Jun-2012 [ | E-mail | Share ]

Contact: Nicole White nicole.white@cshs.org 310-423-5215 Cedars-Sinai Medical Center

LOS ANGELES (EMBARGOED UNTIL NOON EDT ON JUNE 28, 2012) Cedars-Sinai scientists have joined with expert colleagues around the globe in using stem cells to develop a laboratory model for Huntington's disease, allowing researchers for the first time to test directly on human cells potential treatments for this fatal, inherited disorder.

As explained in a paper published June 28 on the Cell Stem Cell website and scheduled for print in the journal's Aug. 3 issue, scientists at Cedars-Sinai's Regenerative Medicine Institute and the University of Wisconsin took skin cells from patients with Huntington's disease and reprogrammed them into powerful stem cells; these were then made into the nervous system cells affected by the disease. Seven laboratories around the world collaborated to demonstrate the cells had hallmarks of Huntington's.

"This Huntington's 'disease in a dish' will enable us for the first time to test therapies on human Huntington's disease neurons," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute and a senior author of the study. "In addition to increasing our understanding of this disorder and offering a new pathway to identifying treatments, this study is remarkable because of the extensive interactions between a large group of scientists focused on developing this model. It's a new way of doing trailblazing science."

The Huntington's Disease iPSC Consortium united some of the world's top scientists working on this disease. Cedars-Sinai researchers took skin cells from a several Huntington's patients, including a six-year-old with a severe juvenile form of the disease. They genetically reprogrammed these tissues into induced pluripotent stem cells, which can be made into any type of cell in the body. The cells lines were banked by scientists at Cedars-Sinai and scrutinized by all consortium members for differences that may have led to the disease. These cell lines are now an important resource for Huntington's researchers and have been made available via a National Institutes of Health-funded repository at Coriell Institute for Medical Research in New Jersey.

Huntington's, known to the public, for example, as the cause of folksinger Woody Guthrie's death, typically strikes patients in midlife. It causes jerky, twitching motions, loss of muscle control, psychiatric disorders and dementia; the disease ultimately is fatal. In rare, severe cases, the disorder appears in childhood.

Researchers believe that Huntington's results from a mutation in the huntintin gene, leading to production of an abnormal protein and ultimately cell death in specific areas of the brain that control movement and cognition. There is no cure for Huntington's, nor therapies to slow its progression.

The consortium showed Huntington's cell deficits or how they differ from normal cells, including that they were less likely to survive cultivation in the petri dish. Scientists tried depriving them of a growth factor present around normal cells, or "stressing" them, and found that Huntington's neurons died even faster.

"It was great that these characteristics were seen not only in our laboratory, but by all of the consortium members using different techniques," said Virginia Mattis, a post-doctoral scientist at the Cedars-Sinai Regenerative Medicine Institute and one of the lead authors of the study. "It was very reassuring and significantly strengthens the value of this study."

Original post:
Cedars-Sinai researchers, with stem cells and global colleagues, develop Huntingtons research tool

Stem cell bank at UMass to close at year's end

SHREWSBURY, Mass.The stem cell bank at the University of Massachusetts is set to run out of cash and close at the end of this year.

State and university officials tell The Boston Globe (http://bo.st/LQi71Z ) that changes in technology and federal policies around stem cell research have made obsolete the facility at the U-Mass Medical Center's Shrewsbury campus.

The stem cell bank was established in 2008 with the help of $8.6 million state funding, part of Gov. Deval Patrick's effort to boost the life sciences industry in Massachusetts. Human stem cells were kept and distributed to researchers working on potential cures for diseases and spinal cord injuries.

Experts say new technologies for producing stem cells and the loosening of federal restrictions on research have significantly altered the need for facilities like the one at U-Mass.

Information from: The Boston Globe, http://www.boston.com/globe

Copyright 2012 Associated Press. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.

Read the original here:
Stem cell bank at UMass to close at year's end

Turning skin cells into brain cells

Public release date: 28-Jun-2012 [ | E-mail | Share ]

Contact: Stephanie Desmon sdesmon1@jhmi.edu 410-955-8665 Johns Hopkins Medical Institutions

Johns Hopkins researchers, working with an international consortium, say they have generated stem cells from skin cells from a person with a severe, early-onset form of Huntington's disease (HD), and turned them into neurons that degenerate just like those affected by the fatal inherited disorder.

By creating "HD in a dish," the researchers say they have taken a major step forward in efforts to better understand what disables and kills the cells in people with HD, and to test the effects of potential drug therapies on cells that are otherwise locked deep in the brain.

Although the autosomal dominant gene mutation responsible for HD was identified in 1993, there is no cure. No treatments are available even to slow its progression.

The research, published in the journal Cell Stem Cell, is the work of a Huntington's Disease iPSC Consortium, including scientists from the Johns Hopkins University School of Medicine in Baltimore, Cedars-Sinai Medical Center in Los Angeles and the University of California, Irvine, as well as six other groups. The consortium studied several other HD cell lines and control cell lines in order to make sure results were consistent and reproducible in different labs.

The general midlife onset and progressive brain damage of HD are especially cruel, slowly causing jerky, twitch-like movements, lack of muscle control, psychiatric disorders and dementia, and eventually death. In some cases (as in the patient who donated the material for the cells made at Johns Hopkins), the disease can strike earlier, even in childhood.

"Having these cells will allow us to screen for therapeutics in a way we haven't been able to before in Huntington's disease," says Christopher A. Ross, M.D., Ph.D., a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine and one of the study's lead researchers. "For the first time, we will be able to study how drugs work on human HD neurons and hopefully take those findings directly to the clinic."

Ross and his team, as well as other collaborators at Johns Hopkins and Emory University, are already testing small molecules for the ability to block HD iPSC degeneration. These small molecules have the potential to be developed into novel drugs for HD.

The ability to generate from stem cells the same neurons found in Huntington's disease may also have implications for similar research in other neurodegenerative diseases such as Alzheimer's and Parkinson's.

Originally posted here:
Turning skin cells into brain cells

Gladstone scientists use stem cell technology to tackle Huntington's disease

Public release date: 28-Jun-2012 [ | E-mail | Share ]

Contact: Diane Schrick diane.schrick@gladstone.ucsf.edu 415-734-2538 Gladstone Institutes

SAN FRANCISCO, CAJune 28, 2012Scientists at the Gladstone Institutes and an international team of researchers have generated a human model of Huntington's diseasedirectly from the skin cells of patients with the disease.

For years, scientists have studied Huntington's disease primarily in post-mortem brain tissue or laboratory animals modified to mimic the disease. Today, in Cell Stem Cell, the international team shows how they developed a human model of Huntington's disease, which causes a diverse range of neurological impairments. The new model should help scientists better understand the development of Huntington'sand provide better ways to identify and screen potential therapeutics for this devastating disease.

This new model comes at a time of concentrated federal efforts to accelerate solutions for diseasesincluding a number of debilitating conditions that touch only small percentages of the population. Last year, the National Institutes of Health consolidated its efforts to attack rare diseases under the new National Center for Translational Sciences.

Huntington's is such a rare disease, although it is the most common inherited neurodegenerative disorder. It afflicts approximately 30,000 people in the United Stateswith another 75,000 people carrying the gene that will eventually lead to it. Caused by a mutation in the gene for a protein called huntingtin, the disease damages brain cells so that people with Huntington's progressively lose their ability to walk, talk, think and reason.

"An advantage of this human model is that we now have the ability to identify changes in brain cells over timeduring the degeneration process and at specific stages of brain-cell development," said Gladstone Senior Investigator Steve Finkbeiner, MD, PhD. "We hope this model will help us more readily uncover relevant factors that contribute to Huntington's disease and especially to find successful therapeutic approaches."

In this research, Dr. Finkbeiner and others took advantage of advanced "reprogramming" techniques pioneered by Gladstone Senior Investigator Shinya Yamanaka, MD, PhD. They reprogrammed skin cells from Huntington's disease patients into stem cells known as induced pluripotent stem cells, or iPS cellswhich can become virtually any cell type in the body. The researchers then instructed the iPS cells to develop into neurons, a key type of brain cell. Importantly, each cell line contained a complete set of the genes from each Huntington's disease patient. Because each patient has a different pattern of disease onset and duration, this model may replicate Huntington's more faithfully than animal models do. The model is likely to prove more useful in understanding the disease's progression.

"The iPS cells will provide insights into Huntington's disease, helping us to develop new therapies and test drug candidates," said Dr. Finkbeiner, who is also a professor of neurology and physiology at the University of California, San Francisco, with which Gladstone is affiliated. "We hope that drugs developed with this new human model will have greater success in clinical trials. The track record of animal models for predicting therapies that will work in people has been poor, making drug discovery for neurodegenerative diseases very costlyand therefore less attractive to drug companies. We hope to change that."

###

View original post here:
Gladstone scientists use stem cell technology to tackle Huntington's disease

UMass stem cell lab to close

The stem cell bank that was a marquee piece of Governor Deval Patricks effort to bolster the life sciences industry will run out of funding at the end of the year and close, state and University of Massachusetts Medical School officials said Wednesday. The state invested $8.6 million in public funds to establish the bank at the medical schools Shrewsbury campus.

That decision in 2008 was seen then as a bold statement of support for research on human embryonic stem cells during a time when federal funding for work on the controversial cells was restricted. But advances in technology and changes to federal policies rapidly made the bank obsolete, state officials said.

The laboratory grew and stored human stem cells, which are capable of becoming any cell in the body, and made them available to scientists nationwide for use in experiments to study diseases such as diabetes and spinal cord injuries. When it is dismantled, several thousand vials of stem cellswill be sent back to the research centers where they originated, and the equipment will be given to other UMass labs.

Susan Windham-Bannister, president of the Massachusetts Life Sciences Center, a quasi-public agency that oversees the $1 billion life sciences initiative, defended the decision to initially fund the stem cell bank. She said there are many examples of technology that in hindsight are unnecessary, but at the time it was conceived, when the investment was made, it was absolutely state of the art. The center, she said, was one of them.

Originally, the bank was seen as a repository for embryonic stem cell lines that were being created but were not eligible for federal funding under Bush-era restrictions. The field has evolved significantly since then, with President Obamas loosening of restrictions on federal funding and the development of new technologies for making stem cells.

Still, stem cell banks are seen as useful by some. The California Institute for Regenerative Medicine, for example, is preparing to invest $10 million in its own stem cell banking initiative, and another $20 million to underwrite the creation of stem cells from patients with specific diseases.

Massachusetts Senate minority leader Bruce Tarr, Republican of Gloucester, said he was concerned that lawmakers had not been told the bank would close.

Given the fact that this is a resource that was created by an act of the Legislature, I would hope anyone seeking to change its status would consult with the Legislature, he said. The notion has always been we have been working hard to make Massachusetts a leader in stem cell research, and I dont know how ceasing the operations of the stem cell bank advances that goal.

Researchers who had developed and sent some of the 18 embryonic stem cell batches, called lines, that are currently available at UMass expressed their disappointment.

I think the closing of the UMass bank, where we had anticipated maintaining a lot of our lines, means we will have to come up with an alternative, said Dr. George Q. Daley, a stem cell scientist at Boston Childrens Hospital and the Harvard Stem Cell Institute who has sent about half a dozen stem cell lines to the bank. He said he received a call Tuesday from Joseph Laning, who joined UMass Medical School in 2010 to run the bank, alerting him that the bank would be closed.

See original here:
UMass stem cell lab to close

Nuvilex Finalizes Asset Purchase Agreement and Completes Acquisition of SG Austria Assets

SILVER SPRING, Md., June 28, 2012 (GLOBE NEWSWIRE) -- Nuvilex, Inc. (NVLX), a biotechnology provider of cell and gene therapy solutions, announced today that the final Asset Purchase Agreement, as amended, has been executed and the transfer of the assets of SG Austria Pte. Ltd. to Nuvilex has begun.

Austrianova Singapore Private Limited (ASPL) and Bio Blue Bird AG (BBB) are now functioning as wholly-owned subsidiaries of Nuvilex, Inc. subject to the terms of the Asset Purchase Agreement between the companies. By acquiring the shares of ASPL and BBB, NVLX has acquired the former SG Austria assets which include, but are not limited to all licenses, IP, patents, personnel, capabilities, and facilities associated with the cell encapsulation technology for cancer treatment and all other applications. Completing this acquisition allows Nuvilex to move forward toward conducting the pancreatic cancer treatment trial and advancing its use for diabetes therapy and stem cells.

The Executive Chairman for SG Austria and ASPL, Professor Dr. Walter Gunzburg commented, "We are pleased to inform our combined shareholders and investors that activities we aimed to complete prior to this point have been accomplished. As a result, our management teams decided the timing was right to complete the transfer of assets."

SG Austria and ASPL's Chief Executive, Dr. Brian Salmons stated, "Together, we see this as an important step that increases our ability to move ahead with our collective operational goals. We anticipate announcing additional information about plans for the live cell encapsulation technology in the near future."

Dr. Robert F. Ryan, Nuvilex's Chief Executive added, "The management teams of both Nuvilex and ASPL have been working closely together and are very pleased to be able to make this transfer of assets happen. We will continue our effort to develop treatments for cancer and other diseases, and we hope to play a substantial role in the future of biotechnology and cell and gene therapy."

About Nuvilex

Nuvilex, Inc. (NVLX) is an international biotechnology provider of live therapeutically valuable, encapsulated cells and services for research and medicine. Our company's clinical offerings will include cancer, diabetes and other treatments using the company's cell and gene therapy expertise and live-cell encapsulation technology.

The Nuvilex, Inc. logo is available at http://www.globenewswire.com/newsroom/prs/?pkgid=13494

Safe Harbor Statement

This press release contains forward-looking statements described within the 1995 Private Securities Litigation Reform Act involving risks and uncertainties including product demand, market competition, and meeting current or future plans which may cause actual results, events, and performances, expressed or implied, to vary and/or differ from those contemplated or predicted. Investors should study and understand all risks before making an investment decision. Readers are recommended not to place undue reliance on forward-looking statements or information. Nuvilex is not obliged to publicly release revisions to any forward-looking statement, reflect events or circumstances afterward, or disclose unanticipated occurrences, except as required under applicable laws.

Read the rest here:
Nuvilex Finalizes Asset Purchase Agreement and Completes Acquisition of SG Austria Assets

Human model of Huntington's disease created from skin's stem cells

Public release date: 28-Jun-2012 [ | E-mail | Share ]

Contact: Tom Vasich tmvasich@uci.edu 949-824-6455 University of California - Irvine

Irvine, Calif., June 28, 2012 An international consortium of Huntington's disease experts, including several from the Sue & Bill Gross Stem Cell Research Center at UC Irvine, has generated a human model of the deadly inherited disorder directly from the skin cells of affected patients.

The re-created neurons, which live in a petri dish, will help researchers better understand what disables and kills brain cells in people with HD and let them gauge the effects of potential drug therapies on cells that are otherwise locked deep in the brain.

UCI scientists were part of a consortium that in 1993 identified the autosomal dominant gene mutation responsible for HD, but there is still no cure, and no treatments are available to even slow its onset or progression. The research, published online today in the journal Cell Stem Cell, is the work of the Huntington's Disease iPSC Consortium. Participants examined several other cell lines and control cell lines to ensure that their results were consistent and reproducible in different labs.

"Our discovery will enable us for the first time to test therapies on human Huntington's disease neurons," said Leslie Thompson, UCI professor of psychiatry & human behavior and neurobiology & behavior, one of the world's leading HD experts and a senior author of the study. "This has been a remarkable time in HD research, with the advent of stem cell technologies that have allowed these scientific advancements. Also, having a team of scientists working together as a consortium has benefited the research tremendously and accelerated its pace."

Leslie Lock, a UCI assistant professor of developmental & cell biology and biological chemistry whose lab helped develop the induced pluripotent stem cells (iPSC), added: "It's exciting to be carrying out work that provides hope for HD patients and their families."

Thompson said that UCI scientists will use the new model to study the specific gene expression changes in human brain cells that trigger the onset of HD, helping them understand how these changes happen and how to correct them.

Huntington's disease afflicts about 30,000 people in the U.S. typically striking in midlife and another 75,000 carry the gene that will eventually lead to it. Caused by a mutation in the gene for a protein called huntingtin, the disease damages brain cells so that individuals with HD progressively lose their ability to walk, talk and reason. It invariably culminates in death. While rare, HD is the most common inherited neurodegenerative disease.

###

Continued here:
Human model of Huntington's disease created from skin's stem cells

Diabetes breakthrough: UBC scientists reverse disease in mice using stem-cell transplants

VANCOUVER -- For the first time ever, University of B.C. scientists have used human embryonic stem cell transplants to reverse Type 1 diabetes in mice with the disease, giving hope to about 300 million people around the world who suffer from the chronic disease.

A 13-member team, whose milestone work is published in the journal Diabetes, shows that after transplantation, the stem cells matured into insulin-secreting, pancreatic beta-cells. The cells automatically sensed blood sugar levels to release the right amount of insulin and a few dozen diabetic mice were gradually weaned off insulin given to them over a period of months.

Insulin is produced by beta-cells to to help the body absorb sugar and use it for energy.

Essentially, the mice were cured of their diabetes by placing the body back in charge of regulated insulin production as it is in healthy, non-diabetics, said lead author Timothy Kieffer.

It took about four to five months for the [stem] cells to become functional in our experiments and the mice were able to maintain good blood glucose levels even when fed a high-glucose diet, said Kieffer, a UBC professor in the department of cellular and physiological sciences.

Type 1 diabetes otherwise known as juvenile diabetes is an autoimmune disease in which a patients immune system kills off insulin-producing cells in the pancreas. About 10 per cent of diabetics are Type 1 and typically, they must inject themselves with insulin or use pumps to control their blood glucose levels.

While pancreatic islet cell transplantation pioneered at the University of Alberta several years ago has been shown to be an effective way of reducing dependence on insulin injections, the treatment is costly and cumbersome as it requires donor cells from cadavers, which are always in short supply. As well, islet cell transplant patients must forever take anti-rejection drugs that can cause organ damage.

In the study methodology, mice were anesthetized and then injected with millions of cells derived from stem cells which were placed under the left kidney area.

Although the research showed that stem cells may one day provide a cure for diabetes, it also revealed hurdles to overcome before agencies like the Food and Drug Administration in the United States or Health Canada can approve the therapy.

For example, some mice developed bone or cartilage in areas where the cells were inserted, an unacceptable side-effect that future experiments must resolve.

See the article here:
Diabetes breakthrough: UBC scientists reverse disease in mice using stem-cell transplants

International Stem Cell Corporation Reports Reaching Milestone in Its Cornea Program

CARLSBAD, CA--(Marketwire -06/28/12)- International Stem Cell Corporation (ISCO) http://www.internationalstemcell.com today announced that its Research and Development team has advanced its program to create a functional and transplantable human cornea by developing a new method to derive corneal endothelium-like cells from human pluripotent stem cells.

This work represents a significant step towards the creation of complete cornea tissue that can be used for transplantation and supports prior data showing indications of corneal endothelium generated by ISCO's collaborators at Sankara Nethralaya Eye Hospital, India. Such cells by themselves may potentially promote wound healing and regeneration of the cornea and therefore could be used as a standalone medical treatment.

Development and commercialization of ISCO's stem cell-derived cornea tissue along with manufacturing of Lifeline Cell Technology's media and cellular products are the foundation for our expansion to the Asian markets and for clinical collaboration with Indian biomedical organizations including Sankara Nethralaya Eye Hospital and All-India Institute for Medical Sciences.

Asia represents a huge potential growth market for ISCO's Cornea program. For example, in India alone there are more than 4 million people suffering from corneal vision impairment with limited access to corneal tissue. ISCO's intention is to work with our clinical affiliate in India to meet this healthcare demand.

Dr. Ruslan Semechkin, Vice President of Research & Development, commented: "This new method not only brings our cornea program closer to clinical use, but it also gives us additional licensing opportunities. We have made good progress towards our goal of creating usable corneas, however the additional work, necessary to prove that these endothelium-like cells can be fully functional, will be done in conjunction with our collaborators."

About International Stem Cell Corporation

International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology (www.lifelinecelltech.com), and stem cell-based skin care products through its subsidiary Lifeline Skin Care (www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com or follow us on Twitter @intlstemcell.

To receive ongoing corporate communications, please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0

Forward-Looking StatementsStatements pertaining to anticipated developments, the potential benefits of research programs and products, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update forward-looking statements.

Go here to see the original:
International Stem Cell Corporation Reports Reaching Milestone in Its Cornea Program