Paralyzed Rats Walk Again After Stem Cell Transplant

Rats once paralyzed from complete surgical cuts through their spinal cords can walk again after stem cells were transplanted into the site of the injury, report researchers today in the journal Cell. The results suggest that stem cells might work as a treatment for patients even if they have completely severed cords, a potential therapy that has been viewed skeptically by many in the field.

Neural stem cells, derived from aborted fetal spinal cord tissue, were implanted onto each side of the spinal cord injury in the rats along with a supportive matrix and molecular growth factors. The human stem cells grew into the site of injury and extended delicate cellular projections called axons into the rats spinal cord, despite the known growth-inhibiting environment of the injured spinal cord. The rats' own neurons sent axons into the transplanted material and the rats were able to move all joints of their hind legs.

The cells are produced by a Rockville, Maryland company called Neuralstem. The same cells are also being tested in ALS patients (see "New Cells for ALS Patients") where they have shown some promise of stabilizing the progressive disease. Last month, the company announced that it has asked to FDA to approve a trial to test the cells in spinal cord-injured patients.

Researchers are currently testing neural stem cells from a Newark, California-based company called StemCells Inc, in spinal cord injured patients; two of the three patients have reported the recover of some sensation (see "Human Stem Cells Found to Restore Memory" for an overview of the company).

See the original post here:
Paralyzed Rats Walk Again After Stem Cell Transplant

Marlee Matlin fears for deaf stem-cell treatment

British researchers have been able to rebuild nerves in the ears of gerbils, and it is believed the same technique could one day be applicable to deaf humans.

However, Oscar-winning actress Matlin, who has been deaf since she was 18 months old, is worried about the implications of the development.

In a series of posts on Twitter.com, she writes, "'Deafness cure' is trending (on Twitter). My concern is that it's bigger than a 'trend.' It involves people & not as simple as the 4 letters in 'cure.' For those who think being deaf is a handicap, there are millions of Americans who sign, who are deaf, and are not a 'disease' to cure.

"Think about this. What if someone told you that you could've been made different than the content person you are with genetics. Would you? Now think how millions of deaf people who lead productive lives, would feel when told that babies born deaf can be 'cured'."

Matlin also told followers, "Be proud of who you are, regardless of what people think is a 'handicap' or 'normal.' Normal is what you want to be. Don't let anyone tell you who or what you should be."

Read the original here:
Marlee Matlin fears for deaf stem-cell treatment

Human stem cell treatment restores hearing in gerbils

A UK study in the journal Nature reports that deaf gerbils have had their hearing restored following a human stem cell treatment.

The researchers at the University of Sheffield, including Dr. Marcelo Rivolta, aimed to replace damaged nerve cells, called spiral ganglion neurons, that are unable to convert sound waves in the air into electrical signals to your brain. Roughly one in 10 people with profound hearing loss have this auditory damage, according to the LA Times.

The researchers used stem cells from a human embryo, added that to a "chemical soup," as the BBC referred to it, that converted them into cells similar to the spiral ganglion neurons. The cells were then injected into the inner ears of 18 gerbils.

Over the course of the 10 week study the gerbils' hearing improved by an average of 45 percent.

Rivolta told the BBC, "It would mean going from being so deaf that you wouldn't be able to hear a lorry or truck in the street to the point where you would be able to hear a conversation. It is not a complete cure, they will not be able to hear a whisper, but they would certainly be able to maintain a conversation in a room."

The LA Times noted that the researchers hope this study will spark a new interest in using stem cells to treat hearing loss in people.

But stem cell research is still highly controversial. The AP explained that human embryonic stem cells are initially obtained by destroying embryos, but they can be manipulated to produce any type of cell.

http://www.globalpost.com/dispatch/news/health/120913/human-stem-cell-treatment-restores-hearing-gerbils

Here is the original post:
Human stem cell treatment restores hearing in gerbils

Deaf Gerbils Can Hear Again After Stem Cell Treatment

Researchers at the University of Sheffield in the UK have been able to restore the hearing of deaf gerbils using stem cells, they reported yesterday in the journal Nature. If it works in humans, this new therapeutic strategy could improve the lives of people that are hard-of-hearing.

There are different types of deafness, but this research focuses on auditory neuropathy. This disorder occurs when sound enters the inner ear normally but the signals created by the ear are lost along the way to the brain. In the ear, sound waves are translated into electrical signals when they vibrate tiny hair cells in your inner ear. Loss or damage of these hair cells and the brain cells they communicate with make hearing difficult.

The animals were deafened in one ear using a drug to destroy their auditory nerves before receiving an injection of around 50,000 human embryonic stem cells, which had previously been treated with chemicals to coax them into becoming ear cells.

Gerbils were used because of they hear a similar sound range as humans. After the treatment the researchers looked for brain signals created in response to sounds to detect improvement: Some gerbils restored up to 90 percent of the hearing within 10 weeks of the treatment.

BBC News spoke to Dr. Marcelo Rivolta of the Department of Biomedical Sciences at the University of Sheffield and he acknowledges that this is not a complete cure and while someone may still not be able to hear a whisper, they will certainly be able to maintain a conversation in a room.

Read this article:
Deaf Gerbils Can Hear Again After Stem Cell Treatment

Neuralstem Gains on Stem Cell Therapy for Paralyzed Rats

By Ryan Flinn - 2012-09-13T20:06:09Z

Neuralstem Inc. (CUR), a biotechnology company with no approved products, gained the most ever after saying its stem cell treatment restored paralyzed rats ability to move in an early study.

Neuralstem rose 38 percent to $1.38 at the close of trading in New York, its largest single-day gain since the shares first started trading in December 2006. The Rockville, Maryland-based companys stock has gained 43 percent this year.

Researchers severed the spinal vertebrae of 12 rats, then gave half of them Neuralstems stem cells a week after the injury, according to the study published today in the journal Cell. The rats that received the injections gained significant locomotor recovery, according to a company statement.

The U.S. Food and Drug Administration placed a hold on Neuralstems proposed human trial to treat spinal cord injury in October 2010, according to a company filing.

We think that this paper is the last piece of the puzzle to get the FDA to take our spinal cord injury trial off hold, Richard Garr, chief executive officer, said in an interview.

Neuralstem also is testing its therapy in early human clinical trials for amyotrophic lateral sclerosis, known as Lou Gehrigs disease, and for depression.

To contact the reporter on this story: Ryan Flinn in San Francisco at rflinn@bloomberg.net

To contact the editor responsible for this story: Reg Gale at rgale5@bloomberg.net

Read more here:
Neuralstem Gains on Stem Cell Therapy for Paralyzed Rats

Stem cell treatment restores hearing in gerbils

A novel treatment using human embryonic stem cells has successfully restored some hearing to previously deaf gerbils, according to a study published this week in the journal Nature.

Hearing loss is generally caused by the interruption of two different types of cells: The loss of hair cells in the ear, which transform vibrations into electrical signals, and loss of the auditory nerve, which transmits the signals detected by the hair cells to the brainstem. While cochlear implants have proven effective in restoring hearing in cases of hair cell damage, no such treatment has existed for the roughly 10% cases in which the auditory nerve itself is damaged.

The new strategy, designed by Marcelo Rivolta and his team at the University of Sheffield, uses techniques the group has recently developed to coax human embryonic stem cells to differentiate into what are called "otic progenitor cells" -- cells that have the possibility to develop further into either hair cells or auditory nerve cells. The progenitor cells are then transplanted into the ears of gerbils with damaged auditory nerves, and allowed to differentiate further. Gerbils were used in the experiment because they hear a similar range of sounds as humans do.

At that point, the researchers held their breath, hoping that the cells would integrate themselves with the existing infrastructure and take their place in the chain of sensory signaling between the hair cells and the brainstem. In nearly all cases, the scientists could clearly see under the microscope that the new cells had targeted the right spots, reconnecting the hair cells to the brainstem.

But the ultimate test is hearing itself. To test this, the researchers used a standard approach called auditory-evoked responses, which are detected in the brainstem and provide a clear verdict of whether or not sound is being successfully transmitted to the brain.

Control animals with their auditory nerves knocked out did not recover during the experiment -- in order for a sound to register an auditory-evoked response in the brainstem, the control animals basically had to be at a rock concert, requiring a 76-decibel sound. But in the treated animals, that number dropped to 50 decibels on average, and in some animals approached the levels of animals whose hearing was never damaged at all. The strength of the effect was akin to suddenly being able to hear someone talking while previously not being able to hear them yell.

The researchers hope that their method will spark a new interest in using stem cells to treat hearing loss in people, though much work needs to be done before that is a real possibility. Hurdles include developing a surgical technique to access the appropriate part of the ear in people, and ensuring that the treatment sticks over long periods of time.

Nevertheless, the scientists are optimistic that the approach can be directly translated to humans with hearing loss, finally allowing people who cannot benefit from a cochlear implant to hear again.

You can read a summary of the paper here.

Return to the Science Now blog.

Go here to read the rest:
Stem cell treatment restores hearing in gerbils

Deaf gerbils hear again with human stem cells

Scientists have restored hearing to deaf gerbils using human embryonic stem cells in an advance that could eventually help people with an intractable form of deafness caused by nerve damage.

The procedure needs further animal research to assess safety and long-term effectiveness but researchers said on Wednesday the experiment was an important proof of concept, marking a further advance in the growing field of regenerative medicine.

Marcelo Rivolta from Britain's University of Sheffield, who led the research, said the first patients could receive cell therapy for hearing loss in clinical trials in "a few years".

After treating 18 gerbils with complete deafness in one ear, his team reported in the journal Nature that stem cells produced an average 46 percent recovery in hearing function, as measured by electrical signals in the animals' brains.

"If this was a human patient, it would mean going from being so deaf as to be unable to hear a lorry or truck on the street to being able to maintain a conversation," Rivolta told reporters.

"What we have shown here is functional recovery using human stem cells, which is unique."

Gerbils were selected for the test because their hearing range is similar to that of humans, while mice - the usual choice for laboratory tests - hear at higher frequencies.

The animals were deafened using a drug to destroy their auditory nerves before receiving an injection of around 50,000 human embryonic stem cells, which had previously been treated with growth factors to coax them into becoming ear cells.

The response among the gerbils varied, depending on how well the new cells were integrated into the cochlea, the spiral-shaped cavity in the inner ear.

Deafness is caused primarily by loss of sensory hair cells in the ear and auditory nerves. Since these cells are created only in the womb, there is no way to repair them once they have been damaged, resulting in permanent hearing loss.

Original post:
Deaf gerbils hear again with human stem cells

'Berlin Man,' Doctor Convinced HIV Cure Is Real

The first person reportedly cured of HIV said Wednesday he is hopeful that medical advances will allow others suffering from the virus that causes AIDS to be cured, too.

Timothy Ray Brown of San Francisco is known as "The Berlin Patient" because of where he was treated. He and the doctor who treated him, Gero Hutter, made their first joint appearance in the U.S. on Wednesday when Hutter spoke at a symposium on gene therapy at Washington University in St. Louis.

Scientists are studying whether gene therapy can be used to rid the body of HIV. Some doctors remain skeptical that Brown, 46, is cured. His case was first reported in the media in 2008 and described in the New England Journal of Medicine in 2009.

Brown and Hutter, in an interview with The Associated Press during the symposium, said the passage of time is further proof that Brown is cured. Hutter cited the same five-year standard after which some cancer patients are said to be cured.

Brown was diagnosed with HIV in 1995. In 2006, he also developed leukemia while living in Germany. Hutter performed a blood stem cell transplant using a donor with a rare gene mutation that provides natural resistance to HIV. Hutter said that resistance transferred to Brown.

Brown said he feels great, has not needed HIV medication since the 2007 surgery, and is now active in a foundation named for him that seeks a cure for HIV.

Brown grew up in Seattle and moved to Germany in 1993. After the HIV diagnosis, he started on medication to prevent him from developing full-blown AIDS.

He was attending a wedding in New York in 2006 when he became unusually tired. An avid cyclist, within weeks he could barely ride the bike and eventually was diagnosed with leukemia.

Brown underwent chemotherapy but needed a blood stem cell transplant and turned to Hutter, a blood specialist at Heidelberg University.

Hutter suggested they seek a donor with a certain cell feature that gives them natural resistance to HIV infection. Only about 1 percent of the northern European population has this feature. Hutter theorized that a transplant from such a donor could make the recipient resistant to HIV.

Read the original post:
'Berlin Man,' Doctor Convinced HIV Cure Is Real

'Stem cell hope' for deaf people

12 September 2012 Last updated at 13:00 ET By James Gallagher Health and science reporter, BBC News

UK researchers say they have taken a huge step forward in treating deafness after stem cells were used to restore hearing in animals for the first time.

Hearing partially improved when nerves in the ear, which pass sounds into the brain, were rebuilt in gerbils - a UK study in the journal Nature reports.

Getting the same improvement in people would be a shift from being unable to hear traffic to hearing a conversation.

However, treating humans is still a distant prospect.

If you want to listen to the radio or have a chat with a friend your ear has to convert sound waves in the air into electrical signals which the brain will understand.

This happens deep inside the inner ear where vibrations move tiny hairs and this movement creates an electrical signal.

However, in about one in 10 people with profound hearing loss, nerve cells which should pick up the signal are damaged. It is like dropping the baton after the first leg of a relay race.

The aim of researchers at the University of Sheffield was to replace those baton-dropping nerve cells, called spiral ganglion neurons, with new ones.

While there is excitement at the prospect of using stem cells to restore nerves in the ear this exact technique will not help the vast, vast majority of people with hearing loss.

Continue reading here:
'Stem cell hope' for deaf people

RNL BIO, a South Korean adult stem cell firm, introduces its autologous stem cell therapeutics in Turkey to treat …

SEOUL, South Korea, Sept. 13, 2012 /PRNewswire/ --RNL Bio (www.rnl.co.kr) announced on Sep 11, 2012 that it signed the agreement with RST Biomedikal Sanayi A.S. (RST), a Turkish company, to license RNL Bio's stem cell technology. Turkey is the 6th country where RNL Bio's stem cell technology has entered. This is one of the major accomplishments that RNL BIO has long focused on establishing the so-called 'Stem Cell Silk Road' with South Korean stem cell technology to give hope to patients with intractable diseases in the world.

RST as a licensee will pay the $5 million fee upfront within 60 days from the agreement and will continue to pay the running royalty of 15% of the revenue, which could be up to $ 200 million. RST will benefit from the geographical advantages of Turkey where Western, Arabic and Oriental cultures are crossed. It plans to establish a GMP facility and invite patients from Europe and Middle East early next year.

Ilknur Erdemin, CEO of RST said, "We expect to improve public health and the quality of life in Turkey through stem cell therapy technology imported from RNL BIO in treating various intractable diseases. We will also grow Turkey to one of the world's most renowned country in regards to medical tourism with RNL's stem cell technology in combination with Turkish World's Heritage." To begin with, RST will focus on the treatment ofdiabeticcomplications, autoimmune diseases, cerebral palsy, and degenerative arthritis with RNL's autologous adipose derived stem cell technology. Stem cell therapy has already been allowed by Turkish health authority since 2011. Turkey actively promotes the industry of regenerative medicine and makes a quick move to expand in related fields.

Dr. Jeong-Chan Ra, president of RNL Stem Cell Technology Institute said, "This licensing deal will be a good opportunity todevelopRNL's stem cell technology to be the world's standards and tofulfillmy goal to make RNL BIO a company that will have treated and helped the most patients suffering from intractable diseases." He had a seminar introducing his stem cell studies to Turkish attendees from related fields and distinguished invitees one day prior to signing licensing agreement.

See the original post here:
RNL BIO, a South Korean adult stem cell firm, introduces its autologous stem cell therapeutics in Turkey to treat ...