Stem cell bank at UMass to close at year's end

SHREWSBURY, Mass.The stem cell bank at the University of Massachusetts is set to run out of cash and close at the end of this year.

State and university officials tell The Boston Globe (http://bo.st/LQi71Z ) that changes in technology and federal policies around stem cell research have made obsolete the facility at the U-Mass Medical Center's Shrewsbury campus.

The stem cell bank was established in 2008 with the help of $8.6 million state funding, part of Gov. Deval Patrick's effort to boost the life sciences industry in Massachusetts. Human stem cells were kept and distributed to researchers working on potential cures for diseases and spinal cord injuries.

Experts say new technologies for producing stem cells and the loosening of federal restrictions on research have significantly altered the need for facilities like the one at U-Mass.

Information from: The Boston Globe, http://www.boston.com/globe

Copyright 2012 Associated Press. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.

Read the original here:
Stem cell bank at UMass to close at year's end

Turning skin cells into brain cells

Public release date: 28-Jun-2012 [ | E-mail | Share ]

Contact: Stephanie Desmon sdesmon1@jhmi.edu 410-955-8665 Johns Hopkins Medical Institutions

Johns Hopkins researchers, working with an international consortium, say they have generated stem cells from skin cells from a person with a severe, early-onset form of Huntington's disease (HD), and turned them into neurons that degenerate just like those affected by the fatal inherited disorder.

By creating "HD in a dish," the researchers say they have taken a major step forward in efforts to better understand what disables and kills the cells in people with HD, and to test the effects of potential drug therapies on cells that are otherwise locked deep in the brain.

Although the autosomal dominant gene mutation responsible for HD was identified in 1993, there is no cure. No treatments are available even to slow its progression.

The research, published in the journal Cell Stem Cell, is the work of a Huntington's Disease iPSC Consortium, including scientists from the Johns Hopkins University School of Medicine in Baltimore, Cedars-Sinai Medical Center in Los Angeles and the University of California, Irvine, as well as six other groups. The consortium studied several other HD cell lines and control cell lines in order to make sure results were consistent and reproducible in different labs.

The general midlife onset and progressive brain damage of HD are especially cruel, slowly causing jerky, twitch-like movements, lack of muscle control, psychiatric disorders and dementia, and eventually death. In some cases (as in the patient who donated the material for the cells made at Johns Hopkins), the disease can strike earlier, even in childhood.

"Having these cells will allow us to screen for therapeutics in a way we haven't been able to before in Huntington's disease," says Christopher A. Ross, M.D., Ph.D., a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine and one of the study's lead researchers. "For the first time, we will be able to study how drugs work on human HD neurons and hopefully take those findings directly to the clinic."

Ross and his team, as well as other collaborators at Johns Hopkins and Emory University, are already testing small molecules for the ability to block HD iPSC degeneration. These small molecules have the potential to be developed into novel drugs for HD.

The ability to generate from stem cells the same neurons found in Huntington's disease may also have implications for similar research in other neurodegenerative diseases such as Alzheimer's and Parkinson's.

Originally posted here:
Turning skin cells into brain cells

Gladstone scientists use stem cell technology to tackle Huntington's disease

Public release date: 28-Jun-2012 [ | E-mail | Share ]

Contact: Diane Schrick diane.schrick@gladstone.ucsf.edu 415-734-2538 Gladstone Institutes

SAN FRANCISCO, CAJune 28, 2012Scientists at the Gladstone Institutes and an international team of researchers have generated a human model of Huntington's diseasedirectly from the skin cells of patients with the disease.

For years, scientists have studied Huntington's disease primarily in post-mortem brain tissue or laboratory animals modified to mimic the disease. Today, in Cell Stem Cell, the international team shows how they developed a human model of Huntington's disease, which causes a diverse range of neurological impairments. The new model should help scientists better understand the development of Huntington'sand provide better ways to identify and screen potential therapeutics for this devastating disease.

This new model comes at a time of concentrated federal efforts to accelerate solutions for diseasesincluding a number of debilitating conditions that touch only small percentages of the population. Last year, the National Institutes of Health consolidated its efforts to attack rare diseases under the new National Center for Translational Sciences.

Huntington's is such a rare disease, although it is the most common inherited neurodegenerative disorder. It afflicts approximately 30,000 people in the United Stateswith another 75,000 people carrying the gene that will eventually lead to it. Caused by a mutation in the gene for a protein called huntingtin, the disease damages brain cells so that people with Huntington's progressively lose their ability to walk, talk, think and reason.

"An advantage of this human model is that we now have the ability to identify changes in brain cells over timeduring the degeneration process and at specific stages of brain-cell development," said Gladstone Senior Investigator Steve Finkbeiner, MD, PhD. "We hope this model will help us more readily uncover relevant factors that contribute to Huntington's disease and especially to find successful therapeutic approaches."

In this research, Dr. Finkbeiner and others took advantage of advanced "reprogramming" techniques pioneered by Gladstone Senior Investigator Shinya Yamanaka, MD, PhD. They reprogrammed skin cells from Huntington's disease patients into stem cells known as induced pluripotent stem cells, or iPS cellswhich can become virtually any cell type in the body. The researchers then instructed the iPS cells to develop into neurons, a key type of brain cell. Importantly, each cell line contained a complete set of the genes from each Huntington's disease patient. Because each patient has a different pattern of disease onset and duration, this model may replicate Huntington's more faithfully than animal models do. The model is likely to prove more useful in understanding the disease's progression.

"The iPS cells will provide insights into Huntington's disease, helping us to develop new therapies and test drug candidates," said Dr. Finkbeiner, who is also a professor of neurology and physiology at the University of California, San Francisco, with which Gladstone is affiliated. "We hope that drugs developed with this new human model will have greater success in clinical trials. The track record of animal models for predicting therapies that will work in people has been poor, making drug discovery for neurodegenerative diseases very costlyand therefore less attractive to drug companies. We hope to change that."

###

View original post here:
Gladstone scientists use stem cell technology to tackle Huntington's disease

UMass stem cell lab to close

The stem cell bank that was a marquee piece of Governor Deval Patricks effort to bolster the life sciences industry will run out of funding at the end of the year and close, state and University of Massachusetts Medical School officials said Wednesday. The state invested $8.6 million in public funds to establish the bank at the medical schools Shrewsbury campus.

That decision in 2008 was seen then as a bold statement of support for research on human embryonic stem cells during a time when federal funding for work on the controversial cells was restricted. But advances in technology and changes to federal policies rapidly made the bank obsolete, state officials said.

The laboratory grew and stored human stem cells, which are capable of becoming any cell in the body, and made them available to scientists nationwide for use in experiments to study diseases such as diabetes and spinal cord injuries. When it is dismantled, several thousand vials of stem cellswill be sent back to the research centers where they originated, and the equipment will be given to other UMass labs.

Susan Windham-Bannister, president of the Massachusetts Life Sciences Center, a quasi-public agency that oversees the $1 billion life sciences initiative, defended the decision to initially fund the stem cell bank. She said there are many examples of technology that in hindsight are unnecessary, but at the time it was conceived, when the investment was made, it was absolutely state of the art. The center, she said, was one of them.

Originally, the bank was seen as a repository for embryonic stem cell lines that were being created but were not eligible for federal funding under Bush-era restrictions. The field has evolved significantly since then, with President Obamas loosening of restrictions on federal funding and the development of new technologies for making stem cells.

Still, stem cell banks are seen as useful by some. The California Institute for Regenerative Medicine, for example, is preparing to invest $10 million in its own stem cell banking initiative, and another $20 million to underwrite the creation of stem cells from patients with specific diseases.

Massachusetts Senate minority leader Bruce Tarr, Republican of Gloucester, said he was concerned that lawmakers had not been told the bank would close.

Given the fact that this is a resource that was created by an act of the Legislature, I would hope anyone seeking to change its status would consult with the Legislature, he said. The notion has always been we have been working hard to make Massachusetts a leader in stem cell research, and I dont know how ceasing the operations of the stem cell bank advances that goal.

Researchers who had developed and sent some of the 18 embryonic stem cell batches, called lines, that are currently available at UMass expressed their disappointment.

I think the closing of the UMass bank, where we had anticipated maintaining a lot of our lines, means we will have to come up with an alternative, said Dr. George Q. Daley, a stem cell scientist at Boston Childrens Hospital and the Harvard Stem Cell Institute who has sent about half a dozen stem cell lines to the bank. He said he received a call Tuesday from Joseph Laning, who joined UMass Medical School in 2010 to run the bank, alerting him that the bank would be closed.

See original here:
UMass stem cell lab to close

Nuvilex Finalizes Asset Purchase Agreement and Completes Acquisition of SG Austria Assets

SILVER SPRING, Md., June 28, 2012 (GLOBE NEWSWIRE) -- Nuvilex, Inc. (NVLX), a biotechnology provider of cell and gene therapy solutions, announced today that the final Asset Purchase Agreement, as amended, has been executed and the transfer of the assets of SG Austria Pte. Ltd. to Nuvilex has begun.

Austrianova Singapore Private Limited (ASPL) and Bio Blue Bird AG (BBB) are now functioning as wholly-owned subsidiaries of Nuvilex, Inc. subject to the terms of the Asset Purchase Agreement between the companies. By acquiring the shares of ASPL and BBB, NVLX has acquired the former SG Austria assets which include, but are not limited to all licenses, IP, patents, personnel, capabilities, and facilities associated with the cell encapsulation technology for cancer treatment and all other applications. Completing this acquisition allows Nuvilex to move forward toward conducting the pancreatic cancer treatment trial and advancing its use for diabetes therapy and stem cells.

The Executive Chairman for SG Austria and ASPL, Professor Dr. Walter Gunzburg commented, "We are pleased to inform our combined shareholders and investors that activities we aimed to complete prior to this point have been accomplished. As a result, our management teams decided the timing was right to complete the transfer of assets."

SG Austria and ASPL's Chief Executive, Dr. Brian Salmons stated, "Together, we see this as an important step that increases our ability to move ahead with our collective operational goals. We anticipate announcing additional information about plans for the live cell encapsulation technology in the near future."

Dr. Robert F. Ryan, Nuvilex's Chief Executive added, "The management teams of both Nuvilex and ASPL have been working closely together and are very pleased to be able to make this transfer of assets happen. We will continue our effort to develop treatments for cancer and other diseases, and we hope to play a substantial role in the future of biotechnology and cell and gene therapy."

About Nuvilex

Nuvilex, Inc. (NVLX) is an international biotechnology provider of live therapeutically valuable, encapsulated cells and services for research and medicine. Our company's clinical offerings will include cancer, diabetes and other treatments using the company's cell and gene therapy expertise and live-cell encapsulation technology.

The Nuvilex, Inc. logo is available at http://www.globenewswire.com/newsroom/prs/?pkgid=13494

Safe Harbor Statement

This press release contains forward-looking statements described within the 1995 Private Securities Litigation Reform Act involving risks and uncertainties including product demand, market competition, and meeting current or future plans which may cause actual results, events, and performances, expressed or implied, to vary and/or differ from those contemplated or predicted. Investors should study and understand all risks before making an investment decision. Readers are recommended not to place undue reliance on forward-looking statements or information. Nuvilex is not obliged to publicly release revisions to any forward-looking statement, reflect events or circumstances afterward, or disclose unanticipated occurrences, except as required under applicable laws.

Read the rest here:
Nuvilex Finalizes Asset Purchase Agreement and Completes Acquisition of SG Austria Assets

Human model of Huntington's disease created from skin's stem cells

Public release date: 28-Jun-2012 [ | E-mail | Share ]

Contact: Tom Vasich tmvasich@uci.edu 949-824-6455 University of California - Irvine

Irvine, Calif., June 28, 2012 An international consortium of Huntington's disease experts, including several from the Sue & Bill Gross Stem Cell Research Center at UC Irvine, has generated a human model of the deadly inherited disorder directly from the skin cells of affected patients.

The re-created neurons, which live in a petri dish, will help researchers better understand what disables and kills brain cells in people with HD and let them gauge the effects of potential drug therapies on cells that are otherwise locked deep in the brain.

UCI scientists were part of a consortium that in 1993 identified the autosomal dominant gene mutation responsible for HD, but there is still no cure, and no treatments are available to even slow its onset or progression. The research, published online today in the journal Cell Stem Cell, is the work of the Huntington's Disease iPSC Consortium. Participants examined several other cell lines and control cell lines to ensure that their results were consistent and reproducible in different labs.

"Our discovery will enable us for the first time to test therapies on human Huntington's disease neurons," said Leslie Thompson, UCI professor of psychiatry & human behavior and neurobiology & behavior, one of the world's leading HD experts and a senior author of the study. "This has been a remarkable time in HD research, with the advent of stem cell technologies that have allowed these scientific advancements. Also, having a team of scientists working together as a consortium has benefited the research tremendously and accelerated its pace."

Leslie Lock, a UCI assistant professor of developmental & cell biology and biological chemistry whose lab helped develop the induced pluripotent stem cells (iPSC), added: "It's exciting to be carrying out work that provides hope for HD patients and their families."

Thompson said that UCI scientists will use the new model to study the specific gene expression changes in human brain cells that trigger the onset of HD, helping them understand how these changes happen and how to correct them.

Huntington's disease afflicts about 30,000 people in the U.S. typically striking in midlife and another 75,000 carry the gene that will eventually lead to it. Caused by a mutation in the gene for a protein called huntingtin, the disease damages brain cells so that individuals with HD progressively lose their ability to walk, talk and reason. It invariably culminates in death. While rare, HD is the most common inherited neurodegenerative disease.

###

Continued here:
Human model of Huntington's disease created from skin's stem cells

Diabetes breakthrough: UBC scientists reverse disease in mice using stem-cell transplants

VANCOUVER -- For the first time ever, University of B.C. scientists have used human embryonic stem cell transplants to reverse Type 1 diabetes in mice with the disease, giving hope to about 300 million people around the world who suffer from the chronic disease.

A 13-member team, whose milestone work is published in the journal Diabetes, shows that after transplantation, the stem cells matured into insulin-secreting, pancreatic beta-cells. The cells automatically sensed blood sugar levels to release the right amount of insulin and a few dozen diabetic mice were gradually weaned off insulin given to them over a period of months.

Insulin is produced by beta-cells to to help the body absorb sugar and use it for energy.

Essentially, the mice were cured of their diabetes by placing the body back in charge of regulated insulin production as it is in healthy, non-diabetics, said lead author Timothy Kieffer.

It took about four to five months for the [stem] cells to become functional in our experiments and the mice were able to maintain good blood glucose levels even when fed a high-glucose diet, said Kieffer, a UBC professor in the department of cellular and physiological sciences.

Type 1 diabetes otherwise known as juvenile diabetes is an autoimmune disease in which a patients immune system kills off insulin-producing cells in the pancreas. About 10 per cent of diabetics are Type 1 and typically, they must inject themselves with insulin or use pumps to control their blood glucose levels.

While pancreatic islet cell transplantation pioneered at the University of Alberta several years ago has been shown to be an effective way of reducing dependence on insulin injections, the treatment is costly and cumbersome as it requires donor cells from cadavers, which are always in short supply. As well, islet cell transplant patients must forever take anti-rejection drugs that can cause organ damage.

In the study methodology, mice were anesthetized and then injected with millions of cells derived from stem cells which were placed under the left kidney area.

Although the research showed that stem cells may one day provide a cure for diabetes, it also revealed hurdles to overcome before agencies like the Food and Drug Administration in the United States or Health Canada can approve the therapy.

For example, some mice developed bone or cartilage in areas where the cells were inserted, an unacceptable side-effect that future experiments must resolve.

See the article here:
Diabetes breakthrough: UBC scientists reverse disease in mice using stem-cell transplants

International Stem Cell Corporation Reports Reaching Milestone in Its Cornea Program

CARLSBAD, CA--(Marketwire -06/28/12)- International Stem Cell Corporation (ISCO) http://www.internationalstemcell.com today announced that its Research and Development team has advanced its program to create a functional and transplantable human cornea by developing a new method to derive corneal endothelium-like cells from human pluripotent stem cells.

This work represents a significant step towards the creation of complete cornea tissue that can be used for transplantation and supports prior data showing indications of corneal endothelium generated by ISCO's collaborators at Sankara Nethralaya Eye Hospital, India. Such cells by themselves may potentially promote wound healing and regeneration of the cornea and therefore could be used as a standalone medical treatment.

Development and commercialization of ISCO's stem cell-derived cornea tissue along with manufacturing of Lifeline Cell Technology's media and cellular products are the foundation for our expansion to the Asian markets and for clinical collaboration with Indian biomedical organizations including Sankara Nethralaya Eye Hospital and All-India Institute for Medical Sciences.

Asia represents a huge potential growth market for ISCO's Cornea program. For example, in India alone there are more than 4 million people suffering from corneal vision impairment with limited access to corneal tissue. ISCO's intention is to work with our clinical affiliate in India to meet this healthcare demand.

Dr. Ruslan Semechkin, Vice President of Research & Development, commented: "This new method not only brings our cornea program closer to clinical use, but it also gives us additional licensing opportunities. We have made good progress towards our goal of creating usable corneas, however the additional work, necessary to prove that these endothelium-like cells can be fully functional, will be done in conjunction with our collaborators."

About International Stem Cell Corporation

International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology (www.lifelinecelltech.com), and stem cell-based skin care products through its subsidiary Lifeline Skin Care (www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com or follow us on Twitter @intlstemcell.

To receive ongoing corporate communications, please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0

Forward-Looking StatementsStatements pertaining to anticipated developments, the potential benefits of research programs and products, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update forward-looking statements.

Go here to see the original:
International Stem Cell Corporation Reports Reaching Milestone in Its Cornea Program

New drug dramatically improves survival in Hodgkin lymphoma patients

ScienceDaily (June 27, 2012) A new cancer drug with remarkably few side effects is dramatically improving survival in Hodgkin lymphoma patients who fail other treatments and are nearly out of options.

Loyola University Medical Center oncologist Scott E. Smith, MD, PhD presented survival data for the drug, brentuximab vedotin (Adcetris), at the 17th Congress of the European Hematology Association. Smith is director of Loyola's Hematological Malignancies Research Program.

The multi-center study included 102 Hodgkin lymphoma patients who had relapsed after stem cell transplants. Tumors disappeared in 32 percent of patients and shrank by at least half in 40 percent of patients. An additional 21 percent of patients experienced some tumor shrinkage. Only 6 percent of patients had no response to the drug.

Sixty five percent of patients were alive at 24 months, and in 25 percent of patients, the cancer had not progressed at all.

These are "encouraging results in patients with historically poor prognosis," researchers said.

Loyola patient Michelle Salerno had failed two stem cell transplants -- one using her own cells and one using cells donated by her brother -- and multiple rounds of chemotherapy before going on brentuximab vedotin. After three or four infusions, she stopped suffering chills, sweats, high fevers and itchy pain from head to toe. And she experienced almost none of the side effects common to chemotherapy.

"I kept my hair, and never felt like vomiting," she said. "You get the drug, you go home, you feel good."

The standard regimen is a 30-minute infusion every three weeks. A patient typically receives 16 doses over 48 weeks.

Loyola has administered about 500 doses to 60 patients. "A lot of our patients are doing great on this regimen," Smith said.

Hodgkin lymphoma is a cancer of the immune system. Most patients can be cured with chemotherapy or radiation, especially when the disease is diagnosed in early stages. However, if initial treatment fails, the patient may require an autologous stem cell transplant. This procedure uses the patient's own stem cells to replace immune system cells that are destroyed by high-dose chemotherapy or radiation.

Link:
New drug dramatically improves survival in Hodgkin lymphoma patients

The Pontifical Council for Culture and the Stem for Life Foundation Present Groundbreaking Book on Adult Stem Cell …

VATICAN CITY, Italy, June 27, 2012 (GLOBE NEWSWIRE) -- Today, as part of an ongoing mission to advance scientific research on adult stem cell therapies and explore their cultural and ethical implications, Monsignor Tomasz Trafny of the Vatican's Pontifical Council for Culture, joined Dr. Robin Smith, CEO of NeoStem (NYSE MKT:NBS) and Chairman and President of the Stem for Life Foundation, and Dr. Max Gomez, trustee of the Stem for Life Foundation, to present the first copy of their forthcoming book, Our Stem Cells: The Mystery of Life and Secrets of Healing, to The Holy Father, Pope Benedict XVI.

The book is the result of a unique collaboration between the Vatican's Pontifical Council for Culture (via its charitable foundation STOQ International) and the Stem for Life Foundation, and will be available later this year. It includes a special address by His Holiness Benedict XVI, urging increased support and awareness for advancements in adult stem cell research in order to alleviate human suffering.

The book focuses on concepts discussed at the First International Vatican Adult Stem Cell Conference (2011) and presents the reader with an engaging, comprehensive overview of adult stem cells and their vital role in a future of regenerative medicine. In powerful, accessible language the book showcases a wide array of emerging adult stem cell breakthroughs, including their ability to repair damaged hearts and organs, restore sight, kill cancer, cure diabetes, heal burns and stop the march of degenerative diseases, such as Alzheimer's, multiple sclerosis and Lou Gehrig's disease.

"In addition to making the science easy to understand, we filled the book with here-and-now case studies on how adult stem cell therapies are already helping real people suffering needlessly from deadly and debilitating diseases and medical conditions," said Dr. Smith. "Not only does the book speak to the success of our historic partnership with the Vatican, but it sets the stage for our next events."

"This book promotes a powerful dialogue between scientific and religious communities," said Monsignor Tomasz Trafny. "This dialogue needs to find its expression within the important framework of searching for truth and being guided by the highest ethical values. We hope this book will help educate people throughout the world regarding the importance of ethical scientific research and help them understand they do not need to choose between their faith and science; but in fact, the two can work together to profoundly improve humanity."

To preorder the book, go to: http://www.stemforlife.org/ourstemcells

About the Stem for Life Foundation

Stem for Life Foundation (SFLF) is dedicated to improving the quality of life of millions of people suffering from dozens of painful and sometimes debilitating medical conditions by providing information and updates about adult stem cell research, therapy development and possible healthcare applications. SFLF focuses on educating the public, convening the best minds in adult stem cell medicine and research, supporting clinical research, and subsidizing adult stem cell collection and storage for those who need it most.

Understanding that adult stem cell research could lead to better treatments and possibly cures for chronic disease, as well as reduce health care costs and improve quality of life for those with chronic disease and disability, SFLF was established in 2007. SFLF's Board of Trustees and staff are deeply committed to expediting development of stem cell therapies that offer real hope to individuals suffering from a wide-range of life-threatening medical conditions.

About The Pontifical Council for Culture

See the original post:
The Pontifical Council for Culture and the Stem for Life Foundation Present Groundbreaking Book on Adult Stem Cell ...