Regenerative medicine: Could the ways animals regenerate hair and feathers help restore human fingers and toes?

ScienceDaily (May 10, 2012) This summer's action film, "The Amazing Spider-Man," is another match-up between the superhero and his nemesis the Lizard. Moviegoers and comic book fans alike will recall that the villain, AKA Dr. Curt Connors, was a surgeon who, after losing an arm, experimented with cell generation and reptilian DNA and was eventually able to grow back his missing limb.

The latest issue of the journal Physiology contains a review article that looks at possible routes that unlock cellular regeneration in general, and the principles by which hair and feathers regenerate themselves in particular.

The authors apply what is currently known about regenerative biology to the emerging field of regenerative medicine, which is being transformed from fantasy to reality.

Review Article

While the concept of regenerative medicine is relatively new, animals are well known to remake their hair and feathers regularly by normal regenerative physiological processes. In their review, the authors focus on (1) how extrafollicular environments can regulate hair and feather stem cell activities and (2) how different configurations of stem cells can shape organ forms in different body regions to fulfill changing physiological needs.

The review outlines previous research on the role of normal regeneration of hair and feathers throughout the lifespan of various birds and mammals. The researchers include what is currently known about the mechanism behind this re-growth, as well as what gaps still exist in the knowledge base and remain ripe for future research.

The review examines dozens of papers on normal "physiological regeneration" -- the re-growth that happens over the course of an animal's life and not in response to an injury. This regeneration takes place to accommodate different stages in an animal's life (e.g., replacing downy chick feathers with an adult chicken's, or replacing the fine facial hair of a young boy with the budding beard of an adolescent), or in response to various environmental conditions (e.g., cats shedding a thick winter coat in the summer heat but re-growing it when the seasons change again, or snowshoe hares switching from brown in the summer to white in the winter for camouflage).

These changes seem to respond both to internal cues such as physiology of the hair follicle itself, or external cues such as the environment, but the mechanisms behind these normal alterations are largely unknown. Stem cells inside the follicle prompt hair and feather regeneration, but researchers are still unsure how to guide those cells to form the shape, size, and orientation of these "skin appendages" so that controlled re-growth is possible. Additionally, scientists are still unsure how to re-grow hair on skin in people after severe injuries that lead to scar tissue.

Importance of the Findings

The reviewed studies suggest that while researchers are making headway in understanding how and why hair and feathers regenerate after normal loss or in response to different life stages, much still remains unknown. This missing knowledge could hold valuable clues to learning how to regenerate much more complicated and valuable structures after loss to injury, such as fingers and toes.

Visit link:
Regenerative medicine: Could the ways animals regenerate hair and feathers help restore human fingers and toes?

Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies

Connie K. Ho for RedOrbit.com

A new study by researchers at the University of California, Los Angeles (UCLA) has discovered two adult stem cell-like subpopulations in adult human skin.

The findings allow for further research to be done in the area of personalized medicine and patient-specific cellular therapies.

The study, using technology from Fibrocell Science, allowed the researchers to identify and confirm two types of cells in human skin cell cultures; the possible source of stem cell-like subpopulations from skin biopsies would be faster to perform, painless, and less invasive than current extractions from adipose tissues and bone marrow.

The research, featured in the inaugural issue of BioResearch Open Access, discusses two subtypes of cells. BioResearch Open Access is a bimonthly, peer-reviewed journal. It features scientific topics like biochemistry, bioengineering, gene therapy, genetics, microbiology, neuroscience, regenerative medicine, stem cells, systems biology, tissue engineering and biomaterials, and virology.

Being able to identify two sub-populations of rare, viable and functional cells that behave like stem cells from within the skin is an important finding because both cell types have the potential to be investigated for diverse clinical applications, commented Dr. James A. Bryne, lead author of the report.

Brynes research, first at Stanford University then at UCLA, focused on reprogramming beginnings of cells from animals and then humans. A graduate of Cambridge University, Bryne studied the intra- and inter-species of epigenetic reprogramming. His work also highlighted how primate embryonic stem cells could be derived from somatic cell nuclear transfers.

The study published in BioResearch Open Access confirmed previous research that identified a rare population of cells in adult human skin that had a marker called stage-specific embryonic antigen 3 (SSEA3). Bryne and his colleagues found that there was an increase in the amount of SSEA3 expressing cells after injury to the human skin. It showed that the SSEA3 biomarker could be used to help identify and isolate cells with tissue-regenerative traits.

Finding these rare adult stem cell-like subpopulations in human skin is an exciting discovery and provides the first step towards purifying and expanding these cells to clinically relevant numbers for application to a variety of potential personalized cellular therapies for osteoarthritis, bone loss, injury and/or damage to human skin as well as many other diseases, remarked Bryne, an Assistant Professor of Molecular and Medical Pharmacology at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Bryne and his team used Fibrocell technology to collect cells from skin samples, cultured the cells in the lab, and purified them by fluorescence-activated cell sorting (FACS). The FACS tagged suspended cells with fluorescent markers for undifferentiated stem cells. The researchers were able to separate the rare cell subpopulations from other kinds of cells.

See the original post here:
Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies

New England Journal of Medicine Reports on Three Phase III REVLIMID® (lenalidomide) Trials in Patients with Newly …

BOUDRY, Switzerland--(BUSINESS WIRE)--

Celgene International Srl, a subsidiary of Celgene Corporation (NASDAQ: CELG - News), today announced that results from three phase III studies evaluating the use of continuous REVLIMID (lenalidomide) treatment in newly diagnosed multiple myeloma (MM) patients or maintenance treatment with lenalidomide following autologous stem cell transplant were published online in the May 10, 2012 edition of the New England Journal of Medicine. All three publications highlight the expanding body of clinical evidence supporting lenalidomide treatment in these areas.

Continuous Lenalidomide Therapy (non-transplant eligible population):

The first article highlights a Celgene-sponsored study of continuous lenalidomide treatment in elderly patients newly diagnosed with multiple myeloma.

Continuous Lenalidomide Treatment for Newly Diagnosed Multiple Myeloma (MM-015)

This double-blind, phase III, multicenter, randomized study conducted by Celgene compared melphalanprednisonelenalidomide induction followed by lenalidomide maintenance (MPR-R), with melphalanprednisonelenalidomide (MPR), or melphalanprednisone (MP) followed by placebo in 459 patients aged 65 years with newly-diagnosed myeloma who were not eligible for autologous stem-cell transplant.

http://www.nejm.org/doi/full/10.1056/NEJMoa1112704

Post-transplant maintenance

The two additional articles published in the edition highlighted cooperative group studies that evaluated the use of lenalidomide maintenance following autologous stem cell transplant (ASCT).

In each of the studies, one funded by the National Cancer Institute and conducted by the Cancer and Leukemia Group B (CALGB) and one by the Intergroupe Francophone du Myelome (IFM), maintenance treatment with lenalidomide following ASCT resulted in delayed time to disease progression or death compared to placebo.

Read the original here:
New England Journal of Medicine Reports on Three Phase III REVLIMID® (lenalidomide) Trials in Patients with Newly ...

Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy

Public release date: 9-May-2012 [ | E-mail | Share ]

Contact: Dean Forbes dforbes@fhcrc.org 206-667-2896 Fred Hutchinson Cancer Research Center

SEATTLE For the first time, scientists at Fred Hutchinson Cancer Research Center have transplanted brain cancer patients' own gene-modified blood stem cells in order to protect their bone marrow against the toxic side effects of chemotherapy. Initial results of the ongoing, small clinical trial of three patients with glioblastoma showed that two patients survived longer than predicted if they had not been given the transplants, and a third patient remains alive with no disease progression almost three years after treatment.

"We found that patients were able to tolerate the chemotherapy better and without negative side effects after transplantation of the gene-modified stem cells than patients in previous studies who received the same type of chemotherapy without a transplant of gene-modified stem cells," said Hans-Peter Kiem, M.D., senior and corresponding author of the study published in the May 9 issue of Science Translational Medicine.

Kiem, a member of the Clinical Research Division at the Hutchinson Center, said that a major barrier to effective use of chemotherapy to treat cancers like glioblastoma has been the toxicity of chemotherapy drugs to other organs, primarily bone marrow. This results in decreased blood cell counts, increased susceptibility to infections and other side effects. Discontinuing or delaying treatment or reducing the chemotherapy dose is generally required, but that often results in less effective treatment.

In the current study, Kiem and colleagues focused on patients with glioblastoma, an invariably fatal cancer. Many of these patients have a gene called MGMT (O6-methylguanine-DNA-methyltransferase) that is turned on because the promoter for this gene is unmethylated. MGMT is a DNA repair enzyme that counteracts the toxic effect of some chemotherapy agents like temozolomide. Patients with such an unmethylated promoter status have a particularly poor prognosis.

A drug called benzylguanine can block the MGMT gene and make tumor cells sensitive to chemotherapy again, but when given with chemotherapy, the toxic effects of this combination are too much for bone marrow cells, which results in marrow suppression.

By giving bone marrow stem cells P140K, which is a modified version of MGMT, those cells are protected from the toxic effects of benzylguanine and chemotherapy, while the tumor cells are still sensitive to chemotherapy. "P140K can repair the damage caused by chemotherapy and is impervious to the effects of benzylguanine," Kiem said.

"This therapy is analogous to firing at both tumor cells and bone marrow cells, but giving the bone marrow cells protective shields while the tumor cells are unshielded," said Jennifer Adair, Ph.D., who shares first authorship of the study with Brian Beard, Ph.D., both members of Kiem's lab.

The three patients in this study survived an average of 22 months after receiving transplants of their own circulating blood stem cells. One, an Alaskan man, remains alive 34 months after treatment. Median survival for patients with this type of high-risk glioblastoma without a transplant is just over a year.

Read more from the original source:
Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy

Angie the chimp undergoes revolutionary stem cell treatment | Video

Chimp receives stem cells 25-year-old chimp received treatments for a torn ...

Photo by Eric Hasert

ERIC HASERT/TREASURE COAST NEWSPAPERS Dr. Darrell Nazareth, of the Florida Veterinary League in Vero Beach (background) injects chimpanzee stem cells with the help of veterinarian Dr. Jocelyn Bezner, of Save the Chimps, into the knee of Angie, a 25-year-old female chimp suffering from a torn anterior cruciate ligament, at the Save The Chimps Sanctuary in Fort Pierce. The surgery was performed inside the sanctuary's mobile surgical unit, which involved extraction of fat and blood cells that were transported to the Florida Veterinary League in Vero Beach to extract approximately 2.3 billion stem cells, then returning to the chimp sanctuary to finish the one-day procedure. "It feels wonderful, I can't wait to see the results two to three weeks out," Nazareth said about performing the procedure.

Photo by Eric Hasert

ERIC HASERT/TREASURE COAST NEWSPAPERS Nicole Devlin, a laboratory technician at the Florida Veterinary League in Vero Beach, works on a procedure to remove stem cells from blood and fat removed from Angie, a female chimp at Save The Chimps Sanctuary in Fort Pierce. After the stem cells were isolated, they were transported back to the chimp sanctuary in Fort Pierce to be injected back into Angie.

FORT PIERCE A 25-year-old female chimpanzee at the Save-the-Chimps sanctuary in Fort Pierce may be able to run again, thanks to a revolutionary stem cell treatment performed on Wednesday.

Angie, one of the 271 chimpanzees that live at the 150-acre sanctuary, received the cutting-edge treatment for a torn anterior cruciate ligament in her right knee, thanks to its Florida developer, Stemlogix LLC in Weston, and the Florida Veterinary League in Vero Beach.

The procedure, which normally would cost about $2,000, uses an animal's own fat to obtain adult stem cells, which are then injected into the problem area to stimulate growth of healthy cells.

Save-the-Chimps Veterinarian Dr. Linda Gregard handled the stem cell recovery procedures. Under anesthesia, fat was removed from chimp's abdomen Wednesday morning and transported to Dr. Darrell Nazareth at the Florida Veterinary League. Nazareth then isolated stem and regenerative cells from the fat, suspended them in platelet-rich plasma and transported the stem cells back to the sanctuary for the chimp's treatment.

"Hopefully, it stops the inflammation and encourages the injury to heal," said Nazareth, who has performed a similar treatment on 15 dogs and cats from his practice. He estimates that within two to three weeks, improvement will be seen in both the chimp's mobility and pain level.

Read more:
Angie the chimp undergoes revolutionary stem cell treatment | Video

Angie the chimp undergoes revolutionary stem cell treatment

Chimp receives stem cells 25-year-old chimp received treatments for a torn ...

Photo by Eric Hasert

ERIC HASERT/TREASURE COAST NEWSPAPERS Dr. Darrell Nazareth, of the Florida Veterinary League in Vero Beach (background) injects chimpanzee stem cells with the help of veterinarian Dr. Jocelyn Bezner, of Save the Chimps, into the knee of Angie, a 25-year-old female chimp suffering from a torn anterior cruciate ligament, at the Save The Chimps Sanctuary in Fort Pierce. The surgery was performed inside the sanctuary's mobile surgical unit, which involved extraction of fat and blood cells that were transported to the Florida Veterinary League in Vero Beach to extract approximately 2.3 billion stem cells, then returning to the chimp sanctuary to finish the one-day procedure. "It feels wonderful, I can't wait to see the results two to three weeks out," Nazareth said about performing the procedure.

Photo by Eric Hasert

ERIC HASERT/TREASURE COAST NEWSPAPERS Nicole Devlin, a laboratory technician at the Florida Veterinary League in Vero Beach, works on a procedure to remove stem cells from blood and fat removed from Angie, a female chimp at Save The Chimps Sanctuary in Fort Pierce. After the stem cells were isolated, they were transported back to the chimp sanctuary in Fort Pierce to be injected back into Angie.

FORT PIERCE A 25-year-old female chimpanzee at the Save-the-Chimps sanctuary in Fort Pierce may be able to run again, thanks to a revolutionary stem cell treatment performed on Wednesday.

Angie, one of the 271 chimpanzees that live at the 150-acre sanctuary, received the cutting-edge treatment for a torn anterior cruciate ligament in her right knee, thanks to its Florida developer, Stemlogix LLC in Weston, and the Florida Veterinary League in Vero Beach.

The procedure, which normally would cost about $2,000, uses an animal's own fat to obtain adult stem cells, which are then injected into the problem area to stimulate growth of healthy cells.

Save-the-Chimps Veterinarian Dr. Linda Gregard handled the stem cell recovery procedures. Under anesthesia, fat was removed from chimp's abdomen Wednesday morning and transported to Dr. Darrell Nazareth at the Florida Veterinary League. Nazareth then isolated stem and regenerative cells from the fat, suspended them in platelet-rich plasma and transported the stem cells back to the sanctuary for the chimp's treatment.

"Hopefully, it stops the inflammation and encourages the injury to heal," said Nazareth, who has performed a similar treatment on 15 dogs and cats from his practice. He estimates that within two to three weeks, improvement will be seen in both the chimp's mobility and pain level.

See the original post:
Angie the chimp undergoes revolutionary stem cell treatment

Stem cell sparing radiotherapy for head and neck cancer may avoid salivary gland damage

Public release date: 9-May-2012 [ | E-mail | Share ]

Contact: Emma Mason wordmason@mac.om European Society for Radiotherapy and Oncology (ESTRO)

Barcelona, Spain: Researchers believe they may have found a way to avoid damaging salivary glands during radiotherapy treatment for head and neck cancer a discovery that could improve the quality of life of 500,000 patients a year worldwide with the disease.

Presenting their findings to the 31st conference of the European Society for Radiotherapy and Oncology (ESTRO31) [1], the researchers said that they had discovered that the stem cells essential for regenerating the parotid gland (the largest pair of salivary glands) were located mainly in its major ducts, and that these could easily be avoided during radiotherapy or given a minimal radiation dose. "This would significantly reduce complications arising from radiotherapy for head and neck cancer," said Dr Peter van Luijk, a research associate at the University Medical Center Groningen, The Netherlands.

Around 40% of patients treated for head and neck cancer suffer from the distressing side-effects of dry mouth syndrome a condition that can occur when the parotid gland stops working properly after radiation damage. This causes problems with eating, sleeping, speech, tooth loss and oral hygiene, leading to diminished quality of life, social isolation and difficulty in continuing work. Attempts to treat dry mouth syndrome and its consequences can cost hundreds or even thousands of Euros per patient per year and are mostly insufficient.

Dr van Luijk said: "Parotid gland dysfunction after radiotherapy for head and neck cancer was, and still is, a major clinical problem. During radiotherapy, attempts to minimise the risk of this complication have been aimed at reducing the average dose to the salivary gland, on the assumption that it would not make a difference where in the gland the radiation dose was reduced. However, this does not seem logical according to the anatomy of the salivary gland and, in previous work, we discovered that reductions in the radiotherapy dose to some parts of the gland allowed the parotid gland to regenerate, whereas a dose to other parts did not. Therefore, we decided to investigate the reason for these regional differences. We hypothesised that our observations could be explained by a non-uniform distribution of stem cells necessary for the long-term maintenance of organ function and affected by irradiation."

Dr van Luijk and his colleagues investigated the location of stem cells and the effects of radiotherapy to particular regions of the gland first in mouse and rat models, and then in parotid and salivary gland tissue taken from patients (after informed consent) undergoing a neck dissection for head and neck cancer.

They found that in mouse, rat and human tissue, the stem cells were predominately located in the major ducts of the parotid gland. "We have found in previous work that these stem cells are capable of regenerating a parotid gland when they have been transplanted after irradiation," said Dr van Luijk.

Dissection of the rat parotid gland and culturing of the different parts of the gland in Petri dishes showed that a greater concentration of stem cells capable of regenerating the gland were located in the centre, where the largest ducts are located. The researchers then directed high-precision irradiation at this centre part in living rats and found that it resulted in excessive reduction of saliva production, in contrast to the minimal effects observed after irradiating other parts of the gland.

Dr van Luijk explained: "The position of the stem cells in rats corresponds to the cranio-ventral extension of the gland in humans, where the excretory duct leaves the gland on the ventral, or outward-facing side. So even though the glands have different shapes in rats and humans, the stem cells are in the exact same anatomical structure."

See more here:
Stem cell sparing radiotherapy for head and neck cancer may avoid salivary gland damage

Successful stem cell differentiation requires DNA compaction, study finds

ScienceDaily (May 11, 2012) New research findings show that embryonic stem cells unable to fully compact the DNA inside them cannot complete their primary task: differentiation into specific cell types that give rise to the various types of tissues and structures in the body.

Researchers from the Georgia Institute of Technology and Emory University found that chromatin compaction is required for proper embryonic stem cell differentiation to occur. Chromatin, which is composed of histone proteins and DNA, packages DNA into a smaller volume so that it fits inside a cell.

A study published on May 10, 2012 in the journal PLoS Genetics found that embryonic stem cells lacking several histone H1 subtypes and exhibiting reduced chromatin compaction suffered from impaired differentiation under multiple scenarios and demonstrated inefficiency in silencing genes that must be suppressed to induce differentiation.

"While researchers have observed that embryonic stem cells exhibit a relaxed, open chromatin structure and differentiated cells exhibit a compact chromatin structure, our study is the first to show that this compaction is not a mere consequence of the differentiation process but is instead a necessity for differentiation to proceed normally," said Yuhong Fan, an assistant professor in the Georgia Tech School of Biology.

Fan and Todd McDevitt, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, led the study with assistance from Georgia Tech graduate students Yunzhe Zhang and Kaixiang Cao, research technician Marissa Cooke, and postdoctoral fellow Shiraj Panjwani.

The work was supported by the National Institutes of Health's National Institute of General Medical Sciences (NIGMS), the National Science Foundation, a Georgia Cancer Coalition Distinguished Scholar Award, and a Johnson & Johnson/Georgia Tech Healthcare Innovation Award.

To investigate the impact of linker histones and chromatin folding on stem cell differentiation, the researchers used embryonic stem cells that lacked three subtypes of linker histone H1 -- H1c, H1d and H1e -- which is the structural protein that facilitates the folding of chromatin into a higher-order structure. They found that the expression levels of these H1 subtypes increased during embryonic stem cell differentiation, and embryonic stem cells lacking these H1s resisted spontaneous differentiation for a prolonged time, showed impairment during embryoid body differentiation and were unsuccessful in forming a high-quality network of neural cells.

"This study has uncovered a new, regulatory function for histone H1, a protein known mostly for its role as a structural component of chromosomes," said Anthony Carter, who oversees epigenetics grants at NIGMS. "By showing that H1 plays a part in controlling genes that direct embryonic stem cell differentiation, the study expands our understanding of H1's function and offers valuable new insights into the cellular processes that induce stem cells to change into specific cell types."

During spontaneous differentiation, the majority of the H1 triple-knockout embryonic stem cells studied by the researchers retained a tightly packed colony structure typical of undifferentiated cells and expressed high levels of Oct4 for a prolonged time. Oct4 is a pluripotency gene that maintains an embryonic stem cell's ability to self-renew and must be suppressed to induce differentiation.

"H1 depletion impaired the suppression of the Oct4 and Nanog pluripotency genes, suggesting a novel mechanistic link by which H1 and chromatin compaction may mediate pluripotent stem cell differentiation by contributing to the epigenetic silencing of pluripotency genes," explained Fan. "While a significant reduction in H1 levels does not interfere with embryonic stem cell self-renewal, it appears to impair differentiation."

Go here to read the rest:
Successful stem cell differentiation requires DNA compaction, study finds

Stem cell shield may protect body from chemotherapy side effects

A new study suggests stem cells may be able to act as a shield to protect the body from the harmful side effects of chemotherapy, the BBC News reported.

As chemotherapy drugs attempt to kill cancer drugs, they can also affect the bone marrow and other healthy tissues.

In a new study, however, researchers from the Fred Hutchinson Cancer Research Center in Seattle were able to use genetically modified stem cells to protect the bone marrow.

The bone marrow is very susceptible to chemotherapy, and in response to the treatment, produces less blood cells. This leaves the body more prone to infection and fatigue.

Stem cell shielding appeared to stave off some of these negative side effects. Researchers took bone marrow from patients with brain cancer and isolated the stem cells. They infected the cells with a virus which carried a gene to protect the cells against a chemotherapy drug, and then re-implanted the cells into the patients.

"We found that patients were able to tolerate the chemotherapy better, and without negative side effects, after transplantation of the gene-modified stem cells than patients in previous studies who received the same type of chemotherapy without a transplant of gene-modified stem cells, Professor Hans-Peter Kiem told the BBC News.

All three patients lived longer than the average survival time of 12 months. One patient was still alive 34 months after treatment, according to the BBC.

Click here to read more from the BBC News.

Link:
Stem cell shield may protect body from chemotherapy side effects

2 Cell Transplantation studies impact dental stem cell research for therapeutic purposes

Public release date: 8-May-2012 [ | E-mail | Share ]

Contact: David Eve celltransplantation@gmail.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Tampa, Fla. (May. 8, 2012) Two studies appearing in a recent issue of Cell Transplantation (20:11-12), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/, evaluate stem cells derived from dental tissues for characteristics that may make them therapeutically useful and appropriate for transplantation purposes.

Induced pluripotent stem cells from immature dental pulp stem cells

A Brazilian and American team of researchers used human immature dental pulp stem cells (IDPSCs) as an alternative source for creating induced pluripotent stem cells (iPSCs), stem cells that can be derived from several kinds of adult tissues. According to the study authors, production of iPSCs "opens new opportunities for increased understanding of human genetic diseases and embryogenesis" and will likely have a "great impact on future drug screening and toxicology tests."

The authors note, however, that the reprogramming methodology for making iPSCs is relatively new and "needs refining" in terms of technique, efficiency and cell type choice.

The researchers report that they easily, and in a short time frame, programmed human immature dental pulp stem cells into iPSCs with the hallmarks of pluripotent stem cells.

"Human IDPSCs can be easily derived from dental pulp extracted from adult or 'baby teeth' during routine dental visits," said study lead author Dr. Patricia C.B. Beltrao-Braga of the highly ranked National Institute of Science and Technology in Stem and Cell Therapy in Ribeirao Preto, Brazil. "hIDPSCs are immunologically privileged and can be used in the absence of any immune suppression protocol and have valuable cell therapy applications, including reconstruction of large cranial defects."

Contact: Dr. Patricia C.B. Beltrao-Braga, National Institute of Science and Technology in Stem Cell and Cell Therapy, 2051 Tenente Catao Roxo St. Ribeirao Preto, Brazil. Tel. 55 (11) 3091-7690 Email patriciacbbbraga@usp.br

Citation: Beltro-Braga, P. C. B.; Pignatari, G. C.; Maiorka, P. C.; Oliveira, N. A. J.; Lizier, N. F.; Wenceslau, C. V.; Miglino, M. A.; Muotri, A. R.; Kerkis, I. Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transplant. 20(11-12):1707-1719;2011.

Go here to see the original:
2 Cell Transplantation studies impact dental stem cell research for therapeutic purposes