Royal Oak Veterinarian Dr. Simon First in Michigan to Offer In-House Adult Pet Stem Cell Therapy

ROYAL OAK, Mich., June 17, 2012 (GLOBE NEWSWIRE) -- Woodside Animal Hospital announced they have added both stem cell therapy and cold laser therapy to their suite of services. These two cutting edge treatments are done entirely in-house, no third-party lab work is required. Royal Oak veterinarian Dr. John Simon is the first Michigan veterinarian to provide pets with in-house adult stem cell therapy. The stem cells are derived from the pet's fat deposits and absolutely no embryonic tissue is used.

"As a holistic veterinarian, I am committed to providing high quality, cutting-edge care that combines traditional veterinary care with advanced holistic treatments," said Dr. Simon. "Our in-house stem cell therapy and cold laser therapy procedures alleviate pain in limping dogs and promote internal healing following an injury. I also recommend these procedures for pets with osteoarthritis."

Cold laser therapy is a non-surgical approach to pain management. Holistic equine veterinarians have used the procedure for over 20 years to treat injuries and joint pain. Today, veterinarians are using cold laser therapy to provide natural pain relief for injured pets.

According to Dr. Simon, cold laser therapy works by using a low-level energy beam to penetrate just below the skin's surface. Injured cells use the laser's energy to repair cellular damage. This provides relief for pain and swelling following a soft tissue injury, such as a ligament, tendon or muscle strain.

"Cold laser therapy is a revolutionary treatment for natural pain management in animals," said the Royal Oak veterinarian. "Laser therapy allows for advanced pain management, especially for pets suffering from chronic conditions or soft tissue injuries."

Woodside Animal Hospital also provides in-house pet stem cell therapy. This treatment uses adult stem cells collected from a dog's fat deposits to promote the growth of new soft tissue and cartilage. By performing the whole procedure in the clinic, the stem cells can be harvested and re-injected on the same day.

"Our in-house pet stem cell therapy is an affordable, same-day treatment that helps dogs suffering from joint pain, osteoarthritis, soft tissue injuries and hip dysplasia," said Dr. Simon. "As pets age, it's natural that their range of movement becomes restricted. While oral joint care supplements and prescription painkillers can help, medication alone cannot restore a full range of movement. Our treatments help restore activity and movement."

In addition to cold laser therapy and stem cell therapy, Dr. Simon also provides holistic treatments for cancer in dogs, cat and dog rashes, and dietary needs. The Royal Oak practice is a full-service animal hospital with wellness care, vaccinations and surgical procedures.

Dr. Simon is active in the greater Detroit veterinary community, serving as the past president of the Oakland County Veterinary Medical Association and as a board member for the Southeastern Michigan Veterinary Medical Association (SEMVMA).

Read more from the original source:
Royal Oak Veterinarian Dr. Simon First in Michigan to Offer In-House Adult Pet Stem Cell Therapy

Stroke Treatment Using Stem Cells Shows Early Promise In Controversial Trial

Featured Article Main Category: Stroke Also Included In: Stem Cell Research;Neurology / Neuroscience Article Date: 17 Jun 2012 - 6:00 PDT

Current ratings for: 'Stroke Treatment Using Stem Cells Shows Early Promise In Controversial Trial'

4 (1 votes)

The hope is that the treatment, by repairing damaged brain tissue, will one day help stroke patients regain some movement and ability to speak. Even small improvements can make a big difference to a person who has been robbed of the ability to wash, dress and feed themselves.

The PISCES trial (Pilot Investigation of Stem Cells in Stroke) study, which is based in Scotland at the Institute of Neurological Sciences, Southern General Hospital, Greater Glasgow and Clyde NHS Board, is the first in the world to evaluate genetically engineered neural stem cells in people with disabling ischemic stroke.

The researchers presented the interim results at the 10th Annual Meeting of the International Society for Stem Cell Research (ISSR), which took place from 13 to 16 June 2012, in Yokohama, Japan.

The lead investigator of the trial is Professor Keith Muir, SINAPSE Professor of Clinical Imaging, Division of Clinical Neurosciences at the University of Glasgow. He told the press:

"We remain pleased and encouraged by the data emerging from the PISCES study to date."

The Phase I trial, which started towards the end of 2010, and follows five years of repeated regulatory rebuffs, is testing the safety of ReN001, a genetically engineered neural stem cell line made by UK biotech ReNeuron.

The trial is controversial because the stem cell line originated nearly ten years ago, from the tissue of a 12-week fetus.

Continue reading here:
Stroke Treatment Using Stem Cells Shows Early Promise In Controversial Trial

Stem cell treatment offers hope to those sickened after getting bone marrow

wwltv.com

Posted on June 15, 2012 at 5:53 PM

Updated yesterday at 7:35 PM

Meg Farris / Eyewitness News Email: mfarris@wwltv.com | Twitter: @megfarriswwl

NEWORLEANS- She was only in kindergarten when doctors gave her family the bad news.

Now she's one of the first in Louisiana to try a new treatment for people who get gravely ill after a bone marrow transplant.

The last three years of Sami Smith's life have been physically and emotionally painful.

"I literally, they try to scare me and they can't, because I've been through the scariest thing that you can," said Smith, 9, of Ponchatoula.

Her mother noticed she was napping more and bruising. Doctors diagnosed AML, a type of leukemia or blood cancer. Had she not gotten to the doctor then, she would not have made it much longer. A Child's Wish sent her to Disney World. The good news, one of her teen sisters Mary Hannah, 13, was a good bone marrow match. The transplant worked and Sami was cancer free.

Then devastating news. Sami got a condition called GvHD (Graft-versus-host disease) where the new marrow launches a painful attack on the recipient's body. It's the leading cause of transplant-related death.

Original post:
Stem cell treatment offers hope to those sickened after getting bone marrow

Life Technologies Signs Licensing Agreement with iPS Academia Japan for Global Patent Portfolio Rights to Induced …

CARLSBAD, Calif., June 15, 2012 /PRNewswire/ --Life Technologies Corporation (LIFE) today announced that it has deepened its commitment to stem cell research and its customers by signing a non-exclusive agreement with iPS Academia Japan for its induced pluripotent stem (iPS) cell patent portfolio. The worldwide license will enable Life Technologies, a leading provider of innovative life science solutions, to expand its range of products and services for the iPS cell research community.

By leveraging its expertise in stem cell tool manufacturing and its global distribution network, Life Technologies is now positioned to develop and commercialize products designed to create iPS cells and differentiate them into any cell type for use in drug discovery and pre-clinical research. In additional to directly selling iPS cells, the license enables the company to provide iPS cell creation, differentiation and screening services for scientists around the world.

"iPS Academia Japan is pleased to grant a non-exclusive license and build a relationship with Life Technologies Corporation. Because iPS cells are gaining greater attention for uses in drug discovery and disease research as well as other areas of biotechnology, distribution of iPS cell products or provision of services is important for gaining momentum in iPS cell research," said Shosaku Murayama, president and Chief Executive Officer of AJ. "We believe that Life Technologies' business will contribute to boost research and development for practical application of iPS cell technology. We hope for further advancement of the iPS cell technology and its practical use in the coming years and we continue to support expanding the iPS cell technology by licensing our patent portfolio."

Scientists use iPS cell technology to create iPS cells from patient-derived adult cells. The iPS cells can then be differentiated into many primary cell types, such as neurons and hepatocytes, to be studied in the lab. The ability to develop cells from people with particular conditions of interest gives researchers the ability to study the genetics behind patient-specific diseases in an effort to test or develop new potential treatments.

"I am very pleased that Life Technologies, a worldwide biotechnology company, has signed an agreement for Kyoto University Patent," said Professor Shinya Yamanaka, who led the team that was first to generate iPS cells in 2006. "I hope it will speed up the movement towards practical applications of iPS cell technology."

Mark Stevenson, President and COO of Life Technologies, added: "Life Technologies has a heritage of providing the science community with the most innovative solutions designed to accelerate research. With this license now in place, we are furthering our commitment to the stem cell field and to developing a full breadth of products and services for our customers whether they are in basic research, drug discovery and development, or moving toward clinical applications."

About Life TechnologiesLife Technologies Corporation (LIFE) is a global biotechnology company with customers in more than 160 countries using its innovative solutions to solve some of today's most difficult scientific challenges. Quality and innovation are accessible to every lab with its reliable and easy-to-use solutions spanning the biological spectrum with more than 50,000 products for translational research, molecular medicine and diagnostics, stem cell-based therapies, forensics, food safety and animal health. Its systems, reagents and consumables represent some of the most cited brands in scientific research including: Ion Torrent, Applied Biosystems, Invitrogen, GIBCO, Ambion, Molecular Probes, Novex, and TaqMan. Life Technologies employs approximately 10,400 people and upholds its ongoing commitment to innovation with more than 4,000 patents and exclusive licenses. LIFE had sales of $3.7 billion in 2011. Visit us at our website: http://www.lifetechnologies.com.

Life Technologies' Safe Harbor Statement This press release includes forward-looking statements about our anticipated results that involve risks and uncertainties. Some of the information contained in this press release, including, but not limited to, statements as to industry trends and Life Technologies' plans, objectives, expectations and strategy for its business, contains forward-looking statements that are subject to risks and uncertainties that could cause actual results or events to differ materially from those expressed or implied by such forward-looking statements. Any statements that are not statements of historical fact are forward-looking statements. When used, the words "believe," "plan," "intend," "anticipate," "target," "estimate," "expect" and the like, and/or future tense or conditional constructions ("will," "may," "could," "should," etc.), or similar expressions, identify certain of these forward-looking statements. Important factors which could cause actual results to differ materially from those in the forward-looking statements are detailed in filings made byLife Technologies with the Securities and Exchange Commission.Life Technologies undertakes no obligation to update or revise any such forward-looking statements to reflect subsequent events or circumstances.

ABOUT iPS ACADEMIA JAPAN, INC.iPS Academia Japan, Inc. (AJ) is an affiliate of Kyoto University, and its main role is, among other activities, to manage and utilize the patents and other intellectual properties held/controlled by Kyoto University and other universities in the field of iPSC technologies so that the research results contribute to health and welfare worldwide.

AJ was established in Kyoto in June 2008. AJ's patent portfolio consists of more than 60 patent families (the total number of patent applications is about 220 cases) in the iPSC technology as of April 2012, and about 50 license arrangements have been executed with domestic or international enterprises. For more information, visit http://www.ips-cell.net.

Visit link:
Life Technologies Signs Licensing Agreement with iPS Academia Japan for Global Patent Portfolio Rights to Induced ...

Biologists grow human-eye precursor from stem cells

A stem-cell biologist has had an eye-opening success in his latest effort to mimic mammalian organ development in vitro. Yoshiki Sasai of the RIKEN Center for Developmental Biology (CBD) in Kobe, Japan, has grown the precursor of a human eye in the lab.

The structure, called an optic cup, is 550 micrometres in diameter and contains multiple layers of retinal cells including photoreceptors. The achievement has raised hopes that doctors may one day be able to repair damaged eyes in the clinic. But for researchers at the annual meeting of the International Society for Stem Cell Research in Yokohama, Japan, where Sasai presented the findings this week, the most exciting thing is that the optic cup developed its structure without guidance from Sasai and his team.

The human eye is a complex structure but the cues to build it come from inside the growing cells.

Dougal Waters/Getty

The morphology is the truly extraordinary thing, says Austin Smith, director of the Centre for Stem Cell Research at the University of Cambridge, UK.

Until recently, stem-cell biologists had been able to grow embryonic stem-cells only into two-dimensional sheets. But over the past four years, Sasai has used mouse embryonic stem cells to grow well-organized, three-dimensional cerebral-cortex1, pituitary-gland2 and optic-cup3 tissue. His latest result marks the first time that anyone has managed a similar feat using human cells.

The various parts of the human optic cup grew in mostly the same order as those in the mouse optic cup. This reconfirms a biological lesson: the cues for this complex formation come from inside the cell, rather than relying on external triggers.

In Sasais experiment, retinal precursor cells spontaneously formed a ball of epithelial tissue cells and then bulged outwards to form a bubble called an eye vesicle. That pliable structure then folded back on itself to form a pouch, creating the optic cup with an outer wall (the retinal epithelium) and an inner wall comprising layers of retinal cells including photoreceptors, bipolar cells and ganglion cells. This resolves a long debate, says Sasai, over whether the development of the optic cup is driven by internal or external cues.

There were some subtle differences in the timing of the developmental processes of the human and mouse optic cups. But the biggest difference was the size: the human optic cup had more than twice the diameter and ten times the volume of that of the mouse. Its large and thick, says Sasai. The ratios, similar to those seen in development of the structure in vivo, are significant. The fact that size is cell-intrinsic is tremendously interesting, says Martin Pera, a stem-cell biologist at the University of Southern California, Los Angeles.

The achievement could make a big difference in the clinic. Scientists have had increasing success in transplanting cells: last month, a group at University College London showed that a transplant of stem-cell derived photoreceptors could rescue vision in mice4. But the transplant involved only rod-shaped receptors, not cone-shaped ones, and would leave the recipient seeing fuzzy images. Sasais organically layered structure offers hope that integrated photoreceptor tissue could one day be transplanted. The developmental process could also be adapted to treat a particular disease, and stocks of tissue could be created for transplant and frozen.

Originally posted here:
Biologists grow human-eye precursor from stem cells

Human-Eye Precursor Grown from Stem Cell

News | Health

The achievement, with an 'optic cup' that contains multiple layers of photoreceptors, raises hopes for repairs of damaged eyes in the clinic

By David Cyranoski and Nature magazine | June 15, 2012|

The human eye is a complex structure but the cues to build it come from inside the growing cells. Image: Dougal Waters/Getty

From Nature magazine

A stem-cell biologist has had an eye-opening success in his latest effort to mimic mammalian organ development in vitro. Yoshiki Sasai of the RIKEN Center for Developmental Biology (CBD) in Kobe, Japan, has grown the precursor of a human eye in the lab.

The structure, called an optic cup, is 550 micrometres in diameter and contains multiple layers of retinal cells including photoreceptors. The achievement has raised hopes that doctors may one day be able to repair damaged eyes in the clinic. But for researchers at the annual meeting of the International Society for Stem Cell Research in Yokohama, Japan, where Sasai presented the findings this week, the most exciting thing is that the optic cup developed its structure without guidance from Sasai and his team.

The morphology is the truly extraordinary thing, says Austin Smith, director of the Centre for Stem Cell Research at the University of Cambridge, UK.

Until recently, stem-cell biologists had been able to grow embryonic stem-cells only into two-dimensional sheets. But over the past four years, Sasai has used mouse embryonic stem cells to grow well-organized, three-dimensional cerebral-cortex1, pituitary-gland2 and optic-cup3 tissue. His latest result marks the first time that anyone has managed a similar feat using human cells.

Familiar patterns The various parts of the human optic cup grew in mostly the same order as those in the mouse optic cup. This reconfirms a biological lesson: the cues for this complex formation come from inside the cell, rather than relying on external triggers.

Follow this link:
Human-Eye Precursor Grown from Stem Cell

Bio-Matrix Scientific Group Announces David Audley, the Founder of International Cellular Medicine Society, Has Joined …

SAN DIEGO, CA--(Marketwire -06/15/12)- Bio-Matrix Scientific Group (BMSN) (BMSN) announced today the appointment of David Audley to the advisory board of Its Regen BioPharma subsidiary. Mr. Audley will advise Regen BioPharma on strategic leveraging of national and international clinical research resources. Mr. Audley is viewed by the Company as a key component in the commercialization of stem cell intellectual property. Additionally, it is anticipated that he will assist in raising international awareness for the regenerative therapies being developed by the Company.

In his function as executive director and CEO of the International Cellular Medicine Society (ICMS), Mr. Audley has spearheaded development and implementation of global guidelines for accreditation of stem cell clinics. Under his leadership, the ICMS has grown from a loose association of a handful of physicians to a major international standards organization with over 3500 members from 36 countries. He is a strong advocate for stem cell therapy development and implementation, and is the chief architect of the ICMS accreditation program that is currently evaluating the practices of nearly 20 facilities in a dozen countries. Mr. Audley also has strong professional relationships with Ministries of Health and governmental agencies in South America, Asia and the Middle East.

"My work at ICMS exposes me to the tremendous ability of stem cell therapeutics to alleviate human suffering. Unfortunately, business models have not caught up with the medical reality. Regen BioPharma is unique in that to my knowledge they are the first group to develop a model that accelerates development of stem cell therapeutics in a win-win situation for investors and patients," said David Audley.

"Mr. Audley has made a substantial impact in the clinical translation of stem cell therapeutics by establishing standards, accreditations, an Institutional Review Board (IRB), and partnerships with major organizations such as the AABB," said Christopher Mizer, President of Regen BioPharma. "We are extremely excited to work side by side with Mr. Audley in accelerating access of new stem cell therapies for patients."

About Bio-Matrix Scientific Group, Inc. and Regen BioPharma, Inc.:

Bio-Matrix Scientific Group, Inc. (BMSN) (BMSN) is a biotechnology company focused on the development of regenerative medicine therapies and tools. The Company is focused on human therapies that address unmet medical needs. Specifically, Bio-Matrix Scientific Group, Inc. is looking to increase the quality of life through therapies involving stem cell treatments. These treatments are focused in areas relating to cardiovascular, hematology, oncology and other indications.

Through Its wholly owned subsidiary, Regen BioPharma, it is the Company's goal to develop translational medicine platforms for the rapid commercialization of stem cell therapies. The Company is looking to use these translational medicine platforms to advance intellectual property licensed from entities, institutions and universities that show promise towards fulfilling the Company's goal of increased quality of life. To follow our development, visit us at http://www.regenbiopharma.com.

Disclaimer

This news release may contain forward-looking statements. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking statements. The risks and uncertainties to which forward-looking statements are subject include, but are not limited to, the effect of government regulation, competition and other material risks.

The rest is here:
Bio-Matrix Scientific Group Announces David Audley, the Founder of International Cellular Medicine Society, Has Joined ...

ViaCyte Appoints Dr. Paul Laikind Chief Executive Officer

SAN DIEGO, June 15, 2012 /PRNewswire/ --ViaCyte, Inc. today announced the appointment of seasoned entrepreneur, Paul Laikind, Ph.D., as President & Chief Executive Officer. Allan Robins, Ph.D., who was serving as Acting CEO, will continue in his role as Vice President & Chief Technology Officer. ViaCyte is a leading pre-clinical company developing a novel cell therapy product for the treatment of insulin dependent diabetes.

Dr. Laikind brings over 25 years of leadership experience in the biotechnology and life sciences industry to ViaCyte. He is a serial entrepreneur, who co-founded three San Diego companies, Gensia Pharmaceuticals Inc., Viagene Inc., and Metabasis Therapeutics Inc., serving in various executive positions including President and CEO. All three companies went public and were eventually acquired. Most recently, he served as Chief Business Officer and Senior Vice President of Business Development at the Sanford-Burnham Medical Research Institute.

"Paul brings to ViaCyte a wealth of experience in managing new businesses based on highly innovative life sciences technologies," said Fred Middleton, Chairman of ViaCyte. "We are pleased to have him join to lead ViaCyte through our next phase of development in bringing our transformative stem cell therapy to patients with diabetes. We believe Paul's leadership and business development skills will greatly assist us in our strategy to be a leader in regenerative medicine therapy and to capitalize on our current technology leadership position in the development of stem cell therapy."

As Sanford-Burnham's first Chief Business Officer, Dr. Laikind set a new direction for the Institute's business development activity through a combination of licensing and strategic partnerships with large pharmaceutical organizations, including collaborations with Pfizer's Centers for Therapeutic Innovation, Ortho-McNeil-Janssen Pharmaceuticals, Inc., a division of Johnson & Johnson, and Takeda Pharmaceutical. Working with the Institute's leadership team he helped establish a sophisticated infrastructure for advanced drug discovery and development at Sanford-Burnham.

Prior to Sanford-Burnham, Dr. Laikind served as President & CEO from 1999-2008 for Metabasis Therapeutics, which developed new therapies for metabolic and liver diseases. Dr. Laikind co-founded Gensia Pharmaceuticals in 1986, was a board member of the company and held various executive leadership positions. While at Gensia he was responsible for establishing a number of important strategic partnerships. In 1997, he was part of a team that restructured Gensia to focus on specialty pharmaceuticals. The restructured company was renamed Gensia Sicor and went on to be acquired for over $3 billion by Teva Pharmaceutical Industries in 2004. Soon after founding Gensia, he was co-founder of Viagene, a gene therapy company. Viagene completed an initial public offering in 1993 and was acquired in 1995 by Chiron Inc., now a subsidiary of Novartis Vaccines & Diagnostics.

Dr. Laikind earned his Ph.D. in biochemistry from the University of California, San Diego and is the inventor on a number of key patents.

"ViaCyte addresses one of the largest commercial and medical opportunities in stem-cell-derived therapeutics, and its team is internationally recognized for its scientific leadership," said Dr. Laikind. "I look forward to working with ViaCyte through clinical development and market launch of its first important product that promises to change the way we treat insulin dependent diabetes."

About ViaCyte

ViaCyte is a preclinical cell therapy company focused on diabetes. The Company's technology is based on pancreatic beta cell progenitors derived from human pluripotent stem cells. These cells are implanted using a durable and retrievable encapsulation device. Once implanted and matured, these cells secrete insulin in response to blood glucose levels. ViaCyte's goal is long term insulin independence without immune suppression, and without hypoglycemia and other diabetes-related complications.

ViaCyte is a private company headquartered in San Diego, California with additional operations in Athens, Georgia. The Company is funded in part by the California Institute for Regenerative Medicine.

View original post here:
ViaCyte Appoints Dr. Paul Laikind Chief Executive Officer

Researchers urge EU not to cut stem cell funding

* European Parliament debating funding for 2014 to 2020

* Scientists fear cuts to embryonic stem cell research

* Experts say cutting funds would hold back entire field

LONDON, June 15 (Reuters) - Leading scientists, biomedical research bodies and patient groups urged the European Parliament on Friday to maintain vital European Union funding for studies using embryonic stem cells.

Hailing the field as "one of the most exciting and promising" in modern biomedical research, the group said they feared research grants currently under review may be under threat from pro-life European parliamentarians who say public funds should not be spent on embryonic stem cell work.

"(EU) Commission funding must be available to continue to support scientists investigating all types of stem cells - including human embryonic stem cells - with potential to make advances in regenerative medicine," they wrote in an open letter released by the Wellcome Trust, a charitable health foundation.

The European Parliament is currently debating the future outline of Horizon (Euronext: HOR.NX - news) 2020, the EU's programme for research and innovation which will run from 2014 to 2020.

Draft rules provide for stem cell research funding, including embryonic stem cells but some member states have been lobbying for embryonic stem cell research to be excluded.

Many scientists believe stem cell research has the potential to lead to the development of treatments for a whole host of diseases including incurable neurodegenerative illnesses such as Parkinson's, motor neurone disease and multiple sclerosis, as well as type 1 diabetes, various serious heart conditions, liver damage, spinal cord damage and blindness.

Europe (Chicago Options: ^REURUSD - news) , and particularly Britain, is considered a world leader in stem cell research. The experts, from charities, funding bodies and patient groups, said if Europe is to hold on to this competitive edge, it is crucial to maintain funding for all stem cell research.

Read the original here:
Researchers urge EU not to cut stem cell funding

Lab-grown vein transplant is new milestone in stem cell research

In a first, doctors in Sweden have transplanted into the body of 10-year-old girl a vein grown in the laboratory from her own stem cells.

The core team that performed the procedure was led by Dr Suchitra Holgersson, a transplant medicine specialist originally from Mumbai, and included four other doctors from India. The landmark transplant was published in the British medical journal The Lancet on Thursday.

The procedure could offer a potential new way for patients lacking healthy veins to undergo dialysis or heart bypass surgery without the problems of synthetic grafts or the need for lifelong immunosuppressive drugs, The Lancet said.

The child had a blockage in her extrahepatic portal vein, which was obstructing blood supply to her liver. Options available to doctors included a liver transplant or taking a vein graft from the umbilical cord of a donor, which would have led to permanent dependence on immunosuppressants.

A third alternative was to graft another vein usually from the leg or neck on to the liver vein. But this procedure is associated with risks of lower limb disorders, and was not considered a viable option due to the girls young age.

Speaking to The Indian Express by phone, Dr Holgersson, a professor in the department of transplant and regenerative medicine at Sahlgrenska Science Park in Gothenburg University, explained the breakthrough procedure:

We took a 9-centimetre graft from a deceased donor and removed all its original cells, leaving a hollow piece of vein. We then extracted stem cells of two kinds from the bone marrow endothelial and smooth muscle cells of the little girl, gave it necessary growth factors, and let it incubate for two weeks.

... contd.

Original post:
Lab-grown vein transplant is new milestone in stem cell research